用户名: 密码: 验证码:
全馏分FCC汽油改质芳构化催化剂研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究了烯烃在纳米HZSM-5上的反应过程,考察了分子筛物化性质、钾改性、水热处理条件和金属改性对烯烃反应过程的影响,研究了烯烃和硫化物共存时的反应过程及相互影响,开发了以ZnLaP改性纳米HZSM-5的芳构化催化剂和先芳构后脱硫的全馏分FCC汽油改质工艺,得到了如下结论:
     与微米HZSM-5相比,纳米HZSM-5表现出更高的芳构化活性和反应稳定性。反应温度影响烯烃反应的类型和产物分布。高温有利于芳烃的生成和产品辛烷值的提高,但同时会导致芳烃组成中苯含量上升和产品液收下降。反应压力对正辛烯芳构化和芳烃组成影响不大。氢气在芳构化过程中起到了消炭作用。
     正辛烯首先发生分子内的双键和骨架异构,再裂解生成C3-C5的小分子烯烃中间体,中间体发生聚合、环化和氢转移生成芳烃和烷烃。正辛烯芳构化需要酸强度Ho<+2.27的酸中心的参与才能发生。结焦反应会优先发生在Ho<-3.0的酸中心上。酸中心数量影响烯烃中间体的分布,从而影响产物中芳烃的组成。
     水热处理能有效脱除HZSM-5骨架铝,降低分子筛酸量。强酸中心和弱酸中心的下降在抑制结焦方面能起到协同作用。纳米HZSM-5经过锌改性后,总酸量和B酸中心下降,L酸中心增加。适当的L酸和B酸分布可以提高催化剂的芳构化活性。
     纳米HZSM-5上硫化物的脱除能力不同。烯烃可吸附在催化剂活性位上,对硫化物的脱除有抑制作用。一定浓度的硫化物不会对芳构化和异构化活性造成明显影响。
     纳米HZSM-5经过500℃水热处理和ZnLaP改性后,总酸量为0.49mmol/g,Ho<+2.27的酸量为0.07mmol/g,L/B值为2.3。镧的加入提高了芳构化活性中心锌物种的分散度,增强锌物种和载体的相互作用,增加了[Zn(OH)]+物种含量,改善了催化剂的芳构化活性。磷的添加提高了锌物种在催化剂内表面的浓度,改善了催化剂的稳定性。镧磷的协同作用进一步增加了[Zn(OH)]+物种含量,延缓了锌物种的流失,提高了催化剂芳构化活性和稳定性。通过先芳构后脱硫工艺采用ZnLaP/HZSM-5催化剂对全馏分FCC汽油改质,产品中芳烃含量由原料的15.2%上升至19.3%,烯烃由40.1%下降至27.2%,异构烷烃含量从35.4%上升至38.4%,硫含量则由产品的190ppm下降至47ppm。产品的辛烷值为90.4,相比原料RON损失为0.3个单位。原料干点为187℃,产品干点上升至197℃。实验结果表明采用先芳构后脱硫的改质工艺,可以生产满足国IV标准的清洁汽油。
The effect of physicochemical properties of ZSM-5, hydrothermal treatment and metal modification conditions on the olefin transformation were investigated over nanoscale HZSM-5. The interaction effect of olefin and sulfur compounds on the aromatization and hydrodesulfurization activities was studied. The ZnLaP/HZSM-5aromatization catalyst and the two steps process applying the sequence that aromatization followed by desulfurization were developed. Based on the investigations, the following conclusions were reached:
     Nanoscale HZSM-5zeolite was more stable and showed higher aromatization activity than microscale HZSM-5. The reaction type and product distribution were strongly influenced by reaction temperature. High temperature was favorable to the aromatization activity and the increase of the product RON. But it resulted in the increase of benzene content and the decrease of the product yield. Pressure showed unobvious effect on the aromatization activity and the distribution of aromatics. The eliminating carbon ability of H2was found in the aromatization process.
     Double bond isomerization and skeletal isomerization of n-octene was the first step of n-octene transformation. Propene, butene and pentene were produced as intermediates. These olefins were oligomerized and then cracked to produce a wide distribution of olefins with different carbon atoms. These intermediates were quickly transformed into aromatics and alkanes by hydrogen transfer. The strong acid sites with acid strength H0≤+2.27were indispensable to the transformation of n-octene into aromatics. Coking reaction firstly occurred in the acid sites with acid strength H0≤-3.0. The distributions of olefin intermediates and aromatics were influenced by the acidic amount of HZSM-5.
     Hydrothermal treatment was a very effective dealumination method and reduced the acidic amount of HZSM-5obviously with the increase of the hydrothermal treatment temperature. The synergistic effect of strong and weak acid sites in improving the deactivation behavior of catalyst was found. The amount of Bronsted acid sites decreased and the amount of Lewis acid sites increased with the addition of the zinc into nanoscale HZSM-5. The maintenance of appropriate Bronsted and Lewis acid sites distribution greatly improved the aromatization stability.
     The hydrodesulfurization activities of sulfur compounds were different over nanoscale HZSM-5. The inhibiting effect of olefin on the removal of sulfur compounds was caused by the adsorption of olefins on the acid sites and was irreversible. The presence of200ppm sulfur compounds did not influence the aromatization and isomerization activities of nanoscale HZSM-5.
     The total acidic amount of nanoscale HZSM-5after hydrothermal treated at500℃and modified with Zn, La and P decreased to0.49mmol/g and the ratio of L/B was2.3. Zinc species were the active sites of aromatization. The addition of La improved the dispersion degree of zinc species, increased the zinc species-support interaction and the amount of [Zn(OH)]+species and therefore enhanced the aromatization activity of the catalyst. The addition of P increased the amount of the zinc species located in the channels of nanoscale HZSM-5and therefore enhanced the stability of the catalyst. The synergistic effect of La and P increased the amount of [Zn(OH)]+species, decreased the loss of zinc species and consequently increased the activity for FCC gasoline aromatization and the stability of the catalyst. The evaluation of ZnLaP/HZSM-5catalyst for upgrading of FCC gasoline was conducted in two steps process applying the sequence that aromatization followed by desulfurization. The results showed that the aromatics content increased from15.2%to19.3%, the olefins content decreased from40.1%to27.2%, the i-paraffins content increased from35.4%to38.4%and the sulfur content decreased from190ppm to47ppm. The RON of the product was90.4and the loss of the RON was0.3. The dry point increased from187℃of the feed to197℃of the product. The product can meet the National IV standard with sulfur content less than50ppm and the loss of RON less than one unit by the two steps process applying the sequence that aromatization followed by desulfurization.
引文
[1]Brignar G. B. The SCANfing hydrotreatment process[J]. World Refining,2000,10(7):14-18.
    [2]Greeley J P, Zaczepinski S. Selective cat naphtha hydrofining with minimal octane loss[C]. NPRA Annual Meeting, San Antonio, Texas,1999.
    [3]Desai P H, Gerritsen L A, Inoue Y. Low cost production of clean fuels with stars catalyst technology[C]. NPRA Annual Meeting, San Antonio, Texas,1999.
    [4]Halbert T R, Brignac G B, Greeley J P, et al. Technology options for meeting low sulfur mogas targets[C]. NPRA Annual Meeting, Washington,2000.
    [5]杨树杉.石油和石油化工技术实用手册(石油化工篇)[M].北京:中国石化出版社,2004.
    [6]Song C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel and jet fuel[J]. Catal. Today,2003,86(1-2):211-263.
    [7]Rock K. Ultra-low sulfur gasoline via catalytic distillation. Proceeding of the fifth international conference on refinery processing, AICHE 2002 spring national meeting [C]. New Orleans, LA,2002.
    [8]兰玲,鞠雅娜,钟海军.满足国IV标准的中国石油清洁汽油生产技术[J].哈尔滨理工大学学报,2010,15(6):102—106.
    [9]Kasztelan S, Morel F, Le Loarer J L, et al. Improving motor fuel quality---using a new generation of hydrotreatment catalysts, NPRA Annual Meeting[C]. San Antonio, Texas,1999.
    [10]Nocca J L, Cosyns J, Debuisschert Q, et al. The domino interaction of refinery processes for gasoline quality attainment, NPRA Annual Meeting[C]. Washington,2000.
    [11]李明丰,夏国富,褚阳.催化裂化汽油选择性加氢脱硫催化剂RSDS-1的开发[J].石油炼制与化工,2003,34(7):1—4.
    [12]李大东,石玉林,胡云剑.一种汽油深度脱硫降烯烃的方法:中国,1465666.[P].2004,01,07.
    [13]马伯文.清洁燃料生产技术[M].北京:中国石化出版社,2001.
    [14]李莉,徐庆玲.国内外清洁汽油技术进展[J].广州化工,2009,37(6):48-50.
    [15]伊西青.清洁汽油生产现状及技术进展[J].石油与天然气化工,2005,34(3):187—191.
    [16]Girish K. Chitnis. Commercial OCTGAINSM Unit Provides'Zero'Sulfur Gasoline with Higher Octane from A Heavy Cracked Naphtha Feed[C]. NPRA,2003.
    [17]Arvids Judzis. Start-UP of First CDHDS Unit at MotivaS Port Arthur, TX Refinery[C]. NPRA,2001.
    [18]Shih S S, Keville K M, Lissy D N. Gasoline upgrading process:US,5326462[P].1994,07,05.
    [19]Shih S S, Owens P J, Palit S, et al. Mobil's OCTGAIN Process:FCC gasoline desulfurization reaches a new performance level[C]. NPRA Annual Meeting, San Antonio, Texas,1999.
    [20]Rarrevo J.D. Catalyst Select Experience for Hydrotreating[J]. Oil & Gas J.,2000,98(41):72-74.
    [21]Edward J. Houde. Meet Gasoline Pool Sulfur and Octane Targets with the ISAL Process[C]. NPRA, 2000.
    [22]David Legg. Production of Ultra-Low Sulfur Gasoline:Protecting Important Stream Properties [C]. NPRA,2002.
    [23]Martinez N P, Salazar J A, Tejada J, et al. Gasoline pool sulfur and octane control with ISAL[J]. Vision Tecnologica,2000,7(2):77-82.
    [24]Martinez N P, Salazar J A, Tejada J, et al. Meet gasoline pool sulfur and octane targets with the ISAL process[C]. NPRA Annual Meeting, Washington,2000.
    [25]Antos G J, Solari B, Monque R. Hydroprocessing to produce reformulated gasolines:The ISAL process[J]. Stud. Surf. Sci. Catal.,1997,106:27-40.
    [26]Paul F. Meier. S-Zorb Gasoline Sulfur Removal Technology-Optimized Design[C]. NPRA,2004.
    [27]Pankaj H. Desai. Low Cost Production of Clean Fuels with STARS Catalyst Technology[C]. NPRA, 1999.
    [28]Khare G P, Engelbert D R, Cass B W. Transport desulfurization process utilizing a sulfur sorbent that is both fluidizable and circulatable and a method of making such sulfur sorbent:US,5914292[P]. 1999,06,22.
    [29]Khare G P. Process for the production of a sulfur sorbent:US,6184176[P].2001,02,06.
    [30]Khare G P. Desulfurization with zinc titanate sorbents:US,6338794[P].2002,01,15.
    [31]C. Marcilly, Catalyse acido-basique. Application au raffinage et a la petrochimie. Editions Technip[C]. Paris,2005.
    [32]何奕工,舒兴田,龙军.正碳离子和相关的反应机理[J].石油学报(石油加工),2007,23(4):1—7.
    [33]J. Weitkamp, P.A. Jacobs, J.A. Martens. Isomerization and hydrocracking of C9 through C16 n-alkanes onPt/HZSM-5 zeolite[J]. Appl. Catal.,1983,8(1):123-141.
    [34]V.B. Kazansky, I.N. Senchenya. Quantum chemical study of the electronic structure and geometry of surface alkoxy groups as probable active intermediates of heterogeneous acidic catalysts:What are the adsorbed carbenium ions[J]. J. Catal.,1989,119(1):108-120.
    [35]I.N. Senchenya, V.B. Kazansky. Quantum chemical studies of ethylene interaction with zeolite OH-groups[J]. Catal. Lett.,1991,8(5-6):317-325.
    [36]V.B. Kazansky, M.V. Frash, R.A. van Santen. A quantum-chemical study of hydride transfer in catalytic transformations of paraffins on zeolites. Pathways through adsorbed nonclassical carbonium ions[P]. Catal. Lett.,1997,48(1-2):61-67.
    [37]B. Aditya, V. Yogesh, W. Joshi. DFT investigation of alkoxide formation from olefins in H-ZSM-5[J]. J. Phys. Chem. B,2003,107(38):10476-10487.
    [38]V.B. Kazansky. Adsorbed carbocations as transition states in heterogeneous acid catalyzed transformations of hydrocarbons[J]. Catal. Today,1999,51(3-4):419-434.
    [39]M.V. Frash, V.B. Kazansky, A.M. Rigby. Cracking of Hydrocarbons on Zeolite Catalysts:Density Functional and Hartree-Fock Calculations on the Mechanism of the β-Scission Reaction[P]. J. Phys. Chem. B,1998,102(12):2232-2238.
    [40]A.M. Rigby, G.J. Kramer, R.A. van Santen. Mechanisms of Hydrocarbon Conversion in Zeolites:A Quantum Mechanical Study[J]. J. Catal.,1997,170(1):1-10.
    [41]S.R. Blaszkowski, R.A. van Santen. Quantum chemical studies of zeolite proton catalyzed reactions[P]. Top. Catal.1997,4(1-2):145-156.
    [42]W.O. Haag, R.M. Dessau. Proceedings of the 8th InternationalCongress of Catalysis[C]. Frankfurt, 1984.
    [43]G.A. Olah, P. Schilling, J.S. Staral. Electrophilic reactions at single bonds. XIV. Anhydrous fluoroantimonic acid catalyzed alkylation of benzene with alkanes and alkane-alkene and alkane-alkylbenzene mixtures[J]. J. Am. Chem. Soc.,1975,97(23):6807-6810.
    [44]C. Marcilly. Catalyse acido-basique:Application au raffinage et'a lap'etrochimie. Editions Technip[C]. Paris,2005.
    [45]A. Corma, A.V. Orchill'es. Current views on the mechanism of catalytic cracking[J]. Micropor. Mesopor. Mat.,2000,35-36:21-30.
    [46]V.B. Kazansky, M.V. Frash, R.A. van Santen. A quantum-chemical study of adsorbed nonclassical carbonium ions as active intermediates in catalytic transformations of paraffins. Ⅱ. Protolytic dehydrogenation and hydrogen-deuterium hetero-isotope exchange of paraffins on high-silica zeolites[J]. Catal. Lett.,1994,28(2-4):211-222.
    [47]T. Mole, J.R. Anderson, G. Creer. The reaction of propane over ZSM-5-H and ZSM-5-Zn zeolite catalysts[J]. Appl. Catal.,1985,17(1):141-154.
    [48]Ono, Y. Transformation of Lower Alkanes into aromatic hydrocarbons over ZSM-5 zeolites[J]. Catal. Rev. Sci. Eng.,1992,34(3):179-226.
    [49]Sirokman, G., Sendoda, Y., Ono Y. Conversion of pentane into aromatics over ZSM-5 Zeolites[J]. Zeolites,1986,6(4):299-303.
    [50]Shibata M., Kitagawa H., Sendoda, Y. Transformation of propene into aromatic hydrocarbons over ZSM-5 Zeolites[J]. Stud. Surf. Sci. Catal.,1986,28:717-724.
    [51]Kitagawa, H., Sendoda, Y., Ono,Y. Transformation of propane into aromatic hydrocarbons over ZSM-5 zeolites[J]. J. Catal.,1986,101(1):12-18.
    [52]Biscardi J A.. Reaction pathways and rate-determining steps in reactions of alkanes on H-ZSM5 and Zn/H-ZSM-5 catalysts[J]. J. Catal.,1999,182(1):117-128.
    [53]Guisnet M., G. N. S., Alario F. Aromatization of short chain alkanes on zeolite catalysts[J]. Appl. Catal. A:Gen.,1992,89(1):1-30.
    [54]Guisnet M., G. N. S. Mechanism of short-chain alkane transformation over protonic zeolites. Alkylation, disproportionation and aromatization[J]. Appl. Catal. A:Gen.,1996 146(1):33-64.
    [55]Kwak B. S. Effect of Ga/Proton balance in Ga/HZSM-5 catalysts on C3 conversion to aromatics[J]. J. Catal.,1994,145(2):456-463.
    [56]Paul Meriaudeau, C. N. Dehydrocyclization of alkanes over zeolite-supported metal catalysts: monofunctional or bifunctional route [J]. Catal. Rev. Sci. Eng.,1997,39(1&2):5-48.
    [57]D.B. Lukyanov, N.S. Gnep, M. Guisnet. Kinetic modeling of ethene and propene aromatization over HZSM-5 and GaHZSM-5[J]. Ind. Eng. Chem. Res.,1994,33(2):223-234.
    [58]D.B. Lukyanov, N.S. Gnep, M. Guisnet. Kinetic modeling of propane aromatization reaction over HZSM-5 and GaHZSM-5[J]. Ind. Eng. Chem. Res.,1995,34(2):516-523.
    [59]M. Guisnet, N.S. Gnep. Aromatization of propane over GaHMFI catalysts, reaction scheme, nature of the dehydrogenating species and mode of coke formation[J]. Catal. Today,1996,31(4):275-292.
    [60]P. M'eriaudeau, C. Naccache. The role of Ga2O3 and proton acidity on the dehydrogenating activity of Ga2O3-HZSM-5 catalysts:evidence of a bifunctional mechanism[J]. J. Mol. Catal.,1990,59(3): L31-L36.
    [61]N.S. Gnep, J. Y. Doyemet, M. Guisnet. Conversion of light alkanes into aromatic hydrocarbons: 1-dehydrocyclodimerization of propane on PtHZSM-5 catalysts[J]. Appl. Catal.,1987,35:93-108.
    [62]宋月芹.液化气中烯烃芳构化制取高辛烷值汽油的研究[D].大连:中国科学院大连化学物理研究所物所,2005.
    [63]熊国兴,邵春岩,崔巍.在HZSM-5分子筛上引入Zn, Ga物种对乙烷芳构化的影响[J].石油化工,1994,23(1):1-6.
    [64]Mao R Le Van, Dufresne L, YaoJ H. Long distance hydrogen back-spillover(LD-HBS) phenomena in the aromatization of light alkanes[J]. Appl. Catal.,1990,65 (1):143-157
    [65]Berndnt H, LietzG, Volter J. Zinc promotedH-ZSM-5 catalysts for conversion of propane to aromatics (II):Nature of the active sites and their activation[J]. Appl. Catal.,1996,146(2):365-379
    [66]刘兴云,佘励勤,李宣文.烃分子在锌改性ZSM-5沸石上芳构化分布及活性中心的位置[J].石油学报(石油加工),1989,5(4):34-41.
    [67]徐佩若,班卡拉,吴指南.碳四烃在改性HZSM-5分子筛上芳构化研究[J].燃料化学学报,1993,21(2):127—134.
    [68]Choudhary V. R., Panjala D, Banerjee S. Aromatization of propene and n-butane over H-galloaluminosilicate (ZSM-5 type) zeolite[J]. Appl.Catal.A-Gen.,2002,231(1-2):243-251.
    [69]Vasant R. Choudhary, Panjala Devadas, Subhabrata Banerjee, Anil K. Kinage. Aromatization of dilute ethylene over Ga-modified ZSM-5 type zeolite catalysts[J]. Micropor. Mesopor. Mat.,2001,47(2-3): 253-267.
    [70]V.R. Choudhary, A.K. Kinage, T.V. Choudhary. Direct aromatization of natural gas over H-gallosilicate (MFI), H-galloaluminosilicate (MFI) and zeolites[J]. Appl.Catal.A-Gen.,1997,162(1-2): 239-248.
    [71]T.V. Choudhary, A. Kinage, S. Banerjee, et al. Influence of Si/Ga and Si/Al ratios on propane aromatization over highly active H-GaAlMFI[J]. Catal. Comm.,2006,7(3):166-169.
    [72]V. R. Choudhary, S. A. R. Mulla, S. Banerjee. Aromatization of n-heptane over H-AlMFI, Ga/H-AIMFI, H-GaMFI and H-GaAlMFI zeolite catalysts:influence of zeolitic acidity and non-framework gallium[J]. Micropor. Mesopor. Mat.,2003,57(3):317-322.
    [73]田涛,骞伟中,孙玉建,等.Ag/ZSM-5催化剂上甲醇芳构化过程[J].现代化工,2009,29(1):55-58.
    [74]Haag Werner O, Huang Tracy J. Conversion of olefinic naphtha:US,4097367[P].1978,06,27.
    [75]Plank Charles J, Rosinski Edward J. Stabilized zinc-containing zeolites:US,4128504[P].1978,12,05.
    [76]Givens Edwin N, lank Charles J. Aromatization of C2-C10 hydrocarbons over stabilized zinc-containing zeolites:US,4157293[P],1979,06,05.
    [77]Chu Yung F., Chester Arthur W. Process for converting propane to aromatics over zinc-gallium zeolite:US,4490569[P].1981.05,11.
    [78]McCullen, Sharon Brawner, Rodewald, Paul Gerhard. Method for stabilization of zinc on aromatization catalysts:EP,0325859[P].1989,08,02.
    [79]佘励勤,刘兴云,李宣文.抗锌流失的烃类芳构化含锌沸石催化剂:中国,91105256.9[P].1992.01.01.
    [80]孙琳,叶娜,王祥生,郭洪臣.晶粒度对ZSM-5沸石上C4液化气低温芳构化反应的影响[J].化学通报,2007,(8):1—5.
    [81]Sugimoto M, Katsuno H, Takatsu K. Correlation between the crystal size and catalytic properties of ZSM-5 zeolites [J]. Zeolites,1987,7(6):503-507.
    [82]王岳,李凤艳,赵天波.纳米ZSM-5分子筛的合成、表征及甲苯歧化催化性能[J].石油化工高等学校学报,2005,18(4):20-23.
    [83]Peiqing Zhang, Xinwen Guo, Hongchen Guo, Xiangsheng Wang. Study of the performance of modified nano-scale ZSM-5 zeolite on olefins reduction in FCC gasoline[J]. J. Mol. Catal. A-Chem., 2007,261:139-146.
    [84]张培青,郭洪臣,祝洪杰,等.纳米HZSM-5催化剂催化烃类转化反应[J].高等学校化学学报,2006,12:2366-2371.
    [85]张培青,郭洪臣,王祥生,等.改性纳米ZSM-5催化剂上正辛烷转化反应的研究[J].高等学校化学学报,2006,5:929-934.
    [86]张培青,王祥生,郭洪臣组合改性对纳米HZSM-5催化剂降低汽油烯烃性能的影响[J].催化学报,2005,10:911—916.
    [87]赵晓波,郭新闻,王祥生.改性纳米HZSM-5催化剂在FCC汽油改质中的应用[J].石油学报(石油加工),2006,22(6):20-23.
    [88]Xiaobo Zhao, Xinwen Guo, Xiangsheng Wang. Effect of hydrothermal treatment temperature on FCC gasoline upgrading properties of the modified nanoscale ZSM-5 catalyst[J]. Fuel Proc. Techn.,2007, 88:237-241.
    [89]Topsoe H, Clausen B S, Topsoe N-Y. Progress in the design of hydrotreating catalysts based on fundamental molecular insight [J]. Stud. Surf. Sci. Catal.,1989,53:77-102.
    [90]Lauritsen J V, Helveg S, Laegsgaard E. Atomic-scale structure of Co-Mo-S nanoclusters in hydrotreating catalysts[J]. J. Catal.,2001,197(1):1-5.
    [91]Krebs E, Silvi B, Raybaud P. Mixed sites and promoter segregation:A DFT study of the manifestation of Le Chatelier's principle for the Co(Ni)MoS active phase in reaction conditions [J]. Catal.Today, 2008,130(1):160-169.
    [92]Daage M, Chianelli R. Structure-function relations in molybdenum sulfide catalysts:the "Rim-Edge" model [J]. J. Catal.,1994,149 (2):414-427.
    [93]Kaufmann T G, Kaldor A, Stuntz G F. Catalysis science and technology for cleaner transportation fuels[J]. Catal.Today,2000,62(1):77-90.
    [94]Bezverkhyy I, Afanasiev P, Geantet C. Highly active (Co)MoS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution[J]. J. Catal.,2001,204(2):495-497.
    [95]Yin C, Zhao R, Liu C. Hydrotreating of cracked naphtha over Ni/HZSM-5 catalyst[J]. Energy Fuels, 2003,17(5):1356-1359.
    [96]Yin C, Liu C. Hydrodesulfurization of cracked naphtha over zeolite-supported Ni-Mo-S catalysts[J]. Appl. Catal A-Gen.,2004,273(1-2):177-184.
    [97]赵晓波.改性纳米HZSM-5在低品质轻油改质中的应用研究[D].大连:大连理工大学化工学院,2007.
    [98]王文寿,郭洪臣,刘海鸥,等.NiO或NiSO4改性纳米HZSM-5催化剂的加氢脱硫活性[J].催化学报,2008,29(8):705-709.
    [99]Wenshou Wang, Hongchen Guo, Haiou Liu, et al. Promoting Effect of SO42- on Desulfurization Activity on Ni/Supports for Fluidized Catalytic Cracking (FCC) Gasoline[J]. Energy Fuels,2008, 22(5):2902-2908.
    [100]Argauer Robert J, Landolt George R. Crystalline zeolite ZSM-5 and method of preparing the same: US,3702886[P].1972,11,14.
    [101]王学勤,王祥生,郭新闻.超细颗粒五元环型沸石:中国,1240193[P].2000,01,05.
    [102]Song W, Justice R E, Jones C. A. et al. Synthesis, characterization, and adsorption properties of nanocrystalline ZSM-5[J]. Langmuir,2004,20 (19):8301-8306.
    [103]Weiping Zhang, Xiuwen Han, Xianchun Liu, et al. Investigation of the microporous structure and non-framework aluminum distribution in dealuminated nanosized HZSM-5 zeolite by 129Xe NMR spectroscopy[J]. Micropor. Mesopor. Mat.,2002,53:145-152.
    [104]杨付.超细HZSM-5的改性、表征及催化汽油改质催化剂的研制[D].大连:大连理工大学化工学院.2003.
    [105]V. S. Nayak, V. R. Choudhary. Acid strength distribution and catalytic properties of HZSM-5:effect of dealumination conditions of NH4-ZSM-5[J]. J. Catal.,1983(81):26-45.
    [106]V. R. Choudhary, A. K. Kinage. Methanol to aromatics conversion over H-gallosilicate(MFI): influence of Si/Ga ratio,degree of H+exchange, pretreatment conditions,and poisoning of strong acid sites[J]. Zeolites,1995(15):732-738.
    [107]V.S. Nayak, V.R. Choudhary. Selective poisoning of strong acid sites on HZSM-5 in the conversion of alcohols and olefin to aromatics[J]. Appl.Catal.,1984(9):251-261.
    [108]Yueqin Song, Xiangxue Zhu, Sujuan Xie, et al. The effect of acidity on olefin aromatization over potassium modified ZSM-5 catalystsfJ]. Catal. Lett.,2004,97:31-36.
    [109]Vasant R. Choudhary, Devadas Panjala, Subhabrata Banerjee. Aromatization of propene and rc-butene over H-galloaluminosilicate (ZSM-5 type) zeolitefJ]. Appl. Catal. A-Gen.,2002,231(1-2): 243-251.
    [110]Kunyuan Wang, Xiang sheng Wang, Gang Li. A study on acid sites related to activity of nanoscale ZSM-5 in toluene disproportionation[J]. Catal. Commun.,2007,8:324-328.
    [111]J. C. Vedrine, P. Dejaifve, C Naccache, et al. Aromatizatics formation from mthanol and light olefins conversions on H-ZSM-5 zeolite:mechanism and intermediate species[J]. Stud. Surf. Sci. Catal.,1980: 29-37.
    [112]G V Isaguliants, K M Gitis, D A Kondratjev, et al. On the formation of hydrocarbon chains in the aromatization of aliphatic olefins and dienes over high-silica zeolites[J]. Stud. Surf. Sci. Catal.,1984, 18:225-232.
    [113]C.S. Triantafillidis, A.G. Vlessidis, L. Nalbandian, et al. Effect of the degree and type of the dealumination method on the structural, compositional and acidic characteristics of H-ZSM-5 zeolites[J]. Micropor. Mesopor. Mat.,2001,47(2-3):369-388.
    [114]P. Jacobs, H.K. Beyer. Evidence for the nature of true Lewis sites in faujasite-type zeolites[J]. J. Phys. Chem.,1979,83(9):1174-1177.
    [115]张维萍.纳米分子筛的结构和性能[D].大连:中国科学院大连化学物理研究所物所,2000..
    [116]郑柯文,高金森,徐春明.噻吩及其衍生物裂化脱硫反应比较[J].化工学报,2004,55(2):198-201.
    [117]Nag N K, Sapre A V, Broderick D H, et al. Hydrodesulfurization of polycyclic aromatic catalyzed by sulfided CoO-MoO3/Al2O3:The relative reactivities[J]. J. Catal.,1979,57(3):509-512.
    [118]王文寿.FCC汽油中硫化物在改性纳米HZSM-5催化剂上的脱除[D].大连:大连理工大学化工学院,2009.
    [119]Kanai J, Martens J A, Jacous P A. On the nature of the active sites for ehtlene hydrogenation in metal-free zeolites[J]. J. Catal.,1992,133(2),527-543.
    [120]左广玲,王文寿,王刃.改性纳米HZSM-5催化剂上噻吩转化反应的研究[J].分子催化,2007,21(4):319-323.
    [121]李成林,曹竹安,陈希,等.加压下噻吩催化加氢脱硫反应动力学几个问题的研究[J].石油学报,1983,4(2):115—123.
    [122]王祥生,罗国华HZSM-5沸石上焦化苯的精制脱硫[J].催化学报,1996,17(6):530-534.
    [123]Saintigny X, Van Santen R, Clemendot S. A theoretical study of the solid acid catalyzed desulfurization of thiophene[J]. J. Catal,1999,183(1):107-118.
    [124]Chica A, Strohmaier K, Iglesia E. Adsorption, desorption and conversion of thiophene on H-ZSM5. Langmuir[J].2004,20(25):10982-10991.
    [125]Shan H, Li C, Yang C. Mechanistic studies on thiophene species cracking over USY zeolite[J]. Catal. Today,2002,77(1-2):117-126.
    [126]曹占国.纳米HZSM-5在FCC汽油中选择性加氢脱硫性能的研究[D].大连:大连理工大学化工学院,2011.
    [127]Yu S, Waku T, Iglesia E. Catalytic desulfurization of thiophene on HZSM-5 using alkanes as co-reactants[J]. Appl. Catal. A-Gen.,2003,242(1):111-121.
    [128]Yu S, Li W, Iglesia E. Desulfurization of thiophene via hydrogen transfer from alkanes on cation-modified H-ZSM-5[J]. J. Catal.,1999,187(2):257-261.
    [129]S. Hatanaka, M. Yamada, O. Sadakane. Hydrodesulfurization of catalytic cracked gasoline.1. inhibiting effects of olefins on HDS of alkyl(benzo)thiophenes contained in catalytic cracked gasoline[J]. Ind. Eng. Chem. Res.,1997,36:1519-1523.
    [130]S. Hatanaka, M. Yamada, O. Sadakane. Hydrodesulfurization of catalytic cracked gasoline.2. the difference between HDS active site and olefin hydrogenation active site[J]. Ind. Eng. Chem. Res., 1997,36:5110-5117.
    [131]郭锡坤,林树东.Cu/La/CeO2-Al2O3的制备及其对丙烯选择性还原NO的催化活性[J].催化学报,2008,29(3):221-227.
    [132]林明桂,杨成,吴贵升.锰和镧改性Cu/ZrO2合成甲醇催化剂的结构及催化性能[J].催化学报,2004,25(7):591—595.
    [133]Huang Y, Cant N M, Guerbois J T., et al. The preparation of thermally stable washcoat aluminas from low cost gibbsite[J]. Stud. Surf. Sci. Catal.,1995,96:431-437.
    [134]Moulder J F, Stickle W F, Bomben K D, et al. Eds. Handbook of X-ray Photoelectron Spectrosciopy[M] US:Perkin-Elmer Co.,1992.
    [135]Ono Y, Nakatani H, Kitagawa H. The role of metal cations in transformation of lower alkanes into aromatics hydrocarbons [J]. Stud. Surf. Sci. Catal.,1988,279-290.
    [136]刘兴云,李宣文,佘励勤.烃分子在锌改性的ZSM-5沸石上的芳构化I.活性中心的形成和表征[J].石油学报(石油加工),1988,4(4):36-43.
    [137]佘励勤,王多才,李宣文,等.锌在ZSM-5沸石中的形态及其催化作用[J].物理化学学报,1993,10(3):247-252.
    [138]陈军.锌改性HZSM-5丙烷芳构化催化剂的研究[D].天津:天津大学化工学院,1996.
    [139]B.Viswanathan,Alex C.Pulikottil. Surface properties of ZSM-5 modified by phosphorus[J]. Catal. Lett.,1993,22:373-379.
    [140]J.C.Vedrine, A.Auroux, P.Dejaifve. Catalytic and physical properties of phosphorus-modified ZSM-5 zeolite[J]. J.Catal.,1982,73:147-160.
    [141]Joseph A B, George D M, Enrique I. Structure and density of active Zn species in Zn/H-ZSM5 propane aromatization catalysts[J]. J. Catal.,1998,179(1):192-202.
    [142]Shimokawabe M, Asakawa H, Takezawa N. Characterization of copper/zirconia catalysts prepared by an impregnation method[J]. Appl. Catal.,1990,59(1):45-58.
    [143]J Rocha, S W Carr, J Klinowski.27Al quadrupole nutation and 1H 27Al cross-polarization solid-state NMR studies of ultrastable zeolite Y with fast magic-angle spinning[J]. Chem. Phys. Lett.,1991, 187(4):401-408.
    [144]G. A. H. Tijink, R. Janssen, W. S. Veenman. Investigation of the hydration of zeolite NaA by two-dimensional sodium-23 nutation NMR[J]. J. Am. Chem. Soc.,1987,109(24):7301-7303.
    [145]PA Casabella. Determination of Nuclear Quadrupole Coupling Constants from Nuclear Magnetic Resonances in Polycrystalline Solids[J]. J. Chem. Phys.,1964,40:149-152.
    [146]R. H. Meinhold, D. M. Bibby.27A1 and 29Si n.m.r. studies of HZSM-5:Part 1. The effect of sorbed molecules[J]. Zeolites,1990,10(2):74-84.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700