用户名: 密码: 验证码:
机械活化攀枝花钛铁矿精矿中主要矿物的结构与性质变化规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文综述了国内外钛铁矿精矿生产富钛料的研究现状和机械活化在强化矿物浸出方面的应用现状。针对我国攀枝花钛铁矿精矿的结构及矿物组成特点、及其机械活化研究现状,本工作系统探索了攀枝花钛铁矿精矿中的钛铁矿、钛辉石和斜长石等单矿物的机械活化效果与其结构变化之间的规律。
     采用QM-1 SP型行星式球磨机对攀枝花钛铁矿精矿中的钛铁矿、钛辉石和斜长石等单矿物进行机械活化,并采用XRD、粒度分析、SEM等分析手段对机械活化前后各单矿物进行表征,考察机械活化时间对各单矿物结构的影响。研究发现,随着机械活化时间的增加,钛铁矿的晶格畸变率逐渐增大,而晶粒尺寸和粒度不断下降;钛辉石的晶格畸变随着机械活化时间的延长不断增大,而其晶粒尺寸和粒度则都先减小后增大;而斜长石在机械活化过程中,其晶格畸变先增大后减小,而晶粒尺寸先减小后增大,粒度则不断变小。
     采用热重分析法(TGA)研究了机械活化前后钛铁矿、钛辉石和斜长石等单矿物的热重行为。在氧气气氛下的TGA分析发现,机械活化前后的钛铁矿在303~1273 K之间发生了氧化,导致其质量增加。随机械活化时间的延长,钛铁矿的起始增重温度不断降低,而最大增重率不断减小。这表明钛铁矿的晶格畸变是导致机械活化钛铁矿的起始增重温度提前、最大增重率减小的主要原因。在氮气气氛下的TGA分析发现,机械活化前后钛辉石和斜长石在303~1473 K间均发生热失重,且它们的最大失重率都是随机械活化时间的延长先增大后减小。这说明机械活化前后的钛钛辉石和斜长石的热重行为差异是由机械活化导致的晶格畸变和粒径变化共同引起的。
     系统研究了机械活化前后的钛铁矿、钛辉石和斜长石的盐酸浸出行为。结果表明,钛铁矿和钛辉石的浸出效果的提高主要与机械活化导致的晶格畸变增大有关,而机械活化前后斜长石的盐酸浸出行为差异是机械活化作用导致晶格畸变变化和粒度下降共同作用的结果。
     首次将钛铁矿与钛辉石,或与斜长石以一定比例混合,并对这些混合样品进行机械活化,研究了盐酸浸出过程中这些混合样品的浸出行为。结果表明,在盐酸浸出过程中,钛辉石或斜长石等杂质矿物的存在会对钛铁矿的盐酸浸出起抑制作用,而且此时机械活化对钛铁矿浸出的强化效果也会受到抑制,且杂质含量越高,抑制作用越明显;这是因为钛辉石或斜长石在浸出过程中生成的硅胶覆盖在未反应的钛铁矿的表面,从而阻止了钛铁矿内部钙、镁和铁等元素的浸出。
In this paper, the researches on the manufactures of high-grade titanium-rich materials from ilmenite concentrates and on the effects of mechanical activation on the accelerating the dissolution rate of different minerals were reviewed. In the face of the structural and mineralogical properties of Panzhihua ilmenite concentrate of China and the disadvantage of its mechanical activation researches, this work focused on the effects of structural changes of ilmenite, plagioclase and titanaugite single minerals in the Panzhihua ilmenite concentrate on the reactivities resulted by mechanical activation.
     The structural changes of unactivated and mechanically activated ilmenite, titanaugite and plagioclase were investigated using XRD, particle size analysis, and SEM, etc. The results show that with the increase of mechanically activation time, the lattice strain of ilmenite increased gradually, and its crystallite size and particle size decreased constantly; and the lattice strain of titanaugite increased gradually, its crystallite size and particle size first decreased then increased; while the lattice strain of plagioclase first increased then decreased, its crystallite size first decreased then increased, and the particle size reduced regularly.
     The thermal behaviours of unactivated and mechanically activated ilmenite, titanaugite and plagioclase were studied by thermogravimetry method (TGA). Unactivated and mechanically activated ilmenite underwent thermal oxidation, resulting to a mass increase, from 303 to 1273 K under oxygen atmosphere. With the increase of mechanically activation time, the initial oxidation temperature of ilmenite decreased gradually, and the maximum mass gain ratio in the TGA curve reduced regularly. The results indicate that these phenomena mostly are attributed to the increase of the lattice strain of ilmenite. Unactivated and mechanically activated titanaugite and plagioclase underwent mass losses from 303 to 1473 K under nitrogen atmosphere. And the maximum mass loss ratio of titanaugite and plagioclase both first increase and then decrease which imply that the differences of thermal behaviors between the mechanically activated and unactivated titanaugites or plagioclases were the mutual effects of the change of lattice disorder and the decrease of particle size during the mechanical activation.
     Effects of mechanical activation on the hydrochloric acid leaching behaviors of ilmenite, titanaugite and plagioclase were investigated. The results show that mechanical activation improved the leaching reactivity of these three minerals. The results indicate that the accelerating leaching capability of ilmenite and titanaugite mostly ascribe to the lattice disorder of the minerals after mechanical activation, while the leaching differences between unactivated and mechanically activated plagioclases are attributed to both the change of lattice disorder and the decrease of particle size.
     Hydrochloric acid leaching behavior of unactivated and 4 h mechanically activated of mixture samples of ilmenite and titanaugite/ plagioclases were studied. The results show that the leaching of ilmenite was inhibited when titanaugite/plagioclase was present in the sample due to silica gel produced from the titanaugite/plagioclase covering the surface of unleached ilmenite, then impeding the iron, magnesium and calcium of ilmenite being leached.
引文
[1]杜鹤桂编著.高炉冶炼钒钛磁铁矿原理.北京:科学出版社,1996.1-10
    [2]王志,袁章福,中国钛资源综合利用技术现状与新进展.化工进展,2004,4(23):349-352
    [3]王濮,潘兆橹,翁玲宝.系统矿物学(上册).北京:地址出版社,1982.463-466
    [4]张渊.攀枝花选铁尾矿中钛铁矿回收利用工艺技术研究:[工程硕士学位论文].成都:四川大学,2003
    [5]王濮,潘兆橹,翁玲宝.系统矿物学(中册).北京:地址出版社,1982.291-301,345-367
    [6]杨佳,李奎,汤爱涛,等.钛铁矿资源综合利用现状与发展.材料导报,2003,17(8):44-46
    [7]Liang Bin, Li Chun, Zhang Chenggang, et al. Leaching kinetics of Panzhihua ilmenite in sulphuric acid. Hydrometallurgy,2005,76(3-4):173-179
    [8]邓国珠.富钛料生产现状和今后的发展.钛工业进展,2000,(4):1-5
    [9]孙康编著.钛提取冶金物理化学.北京:冶金工业出版社,2001.25-56
    [10]邓国珠,黄北卫,王雪飞.制取人造金红石工艺技术的新进展.钢铁钒钛,2004,25(1):44-50
    [11]胡克俊,锡淦,姚娟等.还原-锈蚀法生产人造金红石技术现状及攀钢采用该工艺可行性分析.钛工业进展,2006,23(4):17-22
    [12]株洲东风冶炼厂,长沙矿冶研究所,贵阳铝镁设计院.用还原-锈蚀法处理广西北海钛铁矿制取富钛料及金红石.稀有金属,1980,(2):51-59
    [13]吉越英之.人造金红石的制备方法.钒钛(转引),1996,3:23-28
    [14]陈朝华编著.钛白粉生产技术问答.北京:化学工业出版社,1998.87
    [15]Walpole E A, Winter J D. The Austpac ERMS and EARS Processes for the manufacture of high-grade rutile by the hydrochloric acid leaching of ilmenite. In Proceedings Chloride Metallurgy 2002-International Conference on the Practice and Theory of Chloride/Metal Interaction,2002,401-406
    [16]Mahmond M H H, Afifi A A I, Ibrahim I A. Reductive leaching of ilmenite ore in hydrochloric acid for preparation of synthetic rutile. Hydrometallurgy,2004, 73:99-109
    [17]Marshall R Lanyon, Thaung Lwin, Richard R. Merritt. The dissolution of iron in the hydrochloric acid leach of an ilmenite concentrate. Hydrometallurgy, 1999,51(3):299-323
    [18]Tsuneharu Ogasawara, Ramon Veras Veloso de Araujo. Hydrochloric acid leaching of a pre-reduced Brazilian ilmenite concentrate in a autoclave. Hydro-metallurgy,2000,56:203-216
    [19]Hail Arial. Leaching of Titaniferrous Materials. U. S. A. Patent,5826162, 1998
    [20]Macdonald Charles A. Method for Production of Synthetic Rutile. U. S. A Patent,5885324,1999
    [21]Krizyaztof Borrowiec. Method to Upgrade Titania Slag and Resulting Product. U.S.A. Patent,5830420,1998
    [22]《稀有金属手册》编委会.稀有金属手册(下册).北京:冶金工业出版社,1995.104-223
    [23]邓国珠,王雪飞.用攀枝花钛铁矿制取高品位富钛料的途径.钢铁钒钛,2002,23(4):14-17
    [24]马勇.人造金红石生产路线的探讨.钛工业进展,2003,(1):20-23
    [25]滕大为,赵文.盐酸直接浸取钛铁矿制取我造金红石.青岛化工学院学报,1994,4(5):301-305
    [26]刘子威,黄焯枢,王康海.攀枝花钛铁矿流态化盐酸浸出的动力学研究.矿冶工程,1991,11(2):48-52
    [27]程洪斌,王达健,黄北卫等.钛铁矿盐酸法加压浸出中人造金红石粉化率的研究.有色金属,2004,56(4):82-85
    [28]Rado, Theodore A. Process for the production of synthetic rutile. U.S.A. Patent,4199552,1989
    [29]莫畏,邓国珠,罗方承等.钛冶金.北京:冶金工业出版社,2001.192-193
    [30]陈正学,叶彦,胡国英.提高人造金红石品位的研究.矿冶工程,1983,8(8):27-29
    [31]魏诗榴.粉体机械力化学.上海:华南理工大学出版社,1986.1-23
    [32]李冷,曾宪滨.粉碎机械力化学的进展及其在材料开发中的应用.武汉工业大学学报,1993,15(1):23-26
    [33]Filio J, Sugiyama K, Kasai E, et al. Effect of dry mixed grinding of talc, kaolinite and gibbsite on preparation of cordierite ceramics. Journal of Chemical Engieering of Japan,1993,26(5):565-569
    [34]Lin I J, Nadiv S. Review of the phase transformation and synthesis of inorganic solids obtained by mechanical treatment (mechanochemical reactions). Materials Science and Engineering,1979,39(2):193-209
    [35]Osawaru A, Orumwense, Forssberg E. Surface and structural changes in wet ground minerals. Powder Technology,1991,68(1):23-29
    [36]秦景燕,王传辉.超细粉碎中的机械力化学效应.矿山机械,2005,33(11):6-7
    [37]Kalinkin A M, Politov A A, Boldyrev V V, et al. Study of Mechanical Activation of Diopside in a CO2 Atmosphere. Journal of Materials Synthesis and Processing,2002,10(1):61-67
    [38]Kinkina E V, Kalinkin A M, Forsling W, et al. Sorption of atmospheric carbon dioxide and structural changes of Ca and Mg silicate minerals during grinding Ⅰ. Diopside. International Journal of Mineral Processing,2001,61:273-288
    [39]Kinkina E V, Kalinkin A M, Forsling W, et al. Sorption of atmospheric carbon dioxide and structural changes of Ca and Mg silicate minerals during grinding Ⅱ. Enstatite, akermanite and wollastonit. International Journal of Mineral Processing, 2001,61:289-299
    [40]任俊,沈健,卢寿慈.颗粒分散科学与技术.北京:化学工业出版社,2005.158-164
    [41]Tkacova K, Balaz P. Reactivity of mechanically activated chalcopyrite. International Journal of Mineral Processing,1996,44-45:197-208
    [42]Balaz P. Mechanical activation in hydrometallurgy. International Journal of Mineral Processing,2003,72(1-4):341-354
    [43]Balaz P, Achimovicova M. Mechano-chemical leaching in hydrometallurgy of complex sulphides. Hydrometallurgy,2006,84(1-2):60-68
    [44]Hu Huiping, Chen Qiyuan, Yin Zhoulan, et al. Effect of grinding atmosphere on the leaching of mechanically activated pyrite and sphalerite. Hydrometallurgy,2004,72:79-86
    [45]Hu Huiping, Chen Qiyuan, Yin Zhoulan, et al. Mechanism of mechanical activation for sulfide ores. Transactions of Nonferrous Metals Society of China, 2007,17:205-213
    [46]Fernandez-Bertran J F. Mechano-chemistry:an overview. Pure and Applied Chemistry,1999,71(4):581-586
    [47]Sasikumar C, Srikanth S, Mukhopadhyay N K, et al. Energetics of mechanical activation-Application to ilmenite. Minerals Engineering,2009, 22(6):572-574
    [48]李运娇,李洪桂,刘茂盛等.平果铝土矿机械活化溶出的研究.中南矿冶学院学报,1994,25(1):49-54
    [49]Balaz P, Sekula F, Jakabsky S, et al. Application of attrition grinding in alkaline leaching of tetrahedrite. Minerals Engineering,1995,8(11):1299-1308
    [50]Balaz P, Briancin J, Sepelak V, et al. Non-oxidative leaching of mechanically activated stibnite. Hydrometallurgy,1992,31(3):201-212
    [51]Balaz P. Influence of solid state properties on ferric chloride leaching of mechanically activated galena. Hydrometallurgy,1996,40:359-368
    [52]赵中伟.含金硫化矿的机械化学及其浸出工艺研究:[博士学位论文].长沙:中南工业大学,1995
    [53]李洪桂,赵中伟,赵天从.机械活化黄铁矿的物理化学性质.中南工业大学学报,1995,26(3):349-352
    [54]胡慧萍.机械活化硫化矿结构与性质变化规律的基础研究.[博士学位论文].长沙:中南大学,2003
    [55]肖忠良.机械活化硫化矿能量学研究.[博士学位论文].长沙:中南大学,2003
    [56]李军,李洪桂,刘茂盛等.氢氧化钠与黑钨矿反应动力学研究.中南矿冶学院学报,1985,16(4):128-136.
    [57]李洪桂,刘茂盛,戴朝嘉等.钨矿物原料碱分解的新工艺研究.稀有金属,1988,7(3):190-194
    [58]刘茂盛,李洪桂,孙培梅等.机械活化苏打溶液分解白钨中矿试验研究.中南矿冶学院学报,1994,23(3):321-325
    [59]李洪桂,刘茂盛,思泽全等.白钨精矿及黑白钨混合矿碱分解工艺及设备.中国专利,CN85100350.8,1985
    [60]陈天鸽.热球磨碱分解高钙黑钨矿及白钨精矿技术在我厂的应用.江西冶金,1998,18(3):11-12
    [61]赵中伟,李洪桂,刘茂盛等.柿竹园钨中矿处理方法选择.稀有金属与硬质合金,1996,1:1-3
    [62]张贵清,张启修,肖连生等.处理高钼白钨精矿生产APT的新工艺.中国有色金属学报,1998,8(增刊2):472-474
    [63]孙培梅,李洪桂,李运娇等.机械活化苛性钠分解柿竹园白钨矿的研究.中南工业大学学报,1999,30(3):248-251
    [64]Vorobeichik A I, Pryakhina T A, Boldyrev V V, et al. Mechanical activation of titanium-containing products. Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR, Seriya Khimicheskikh Nauk,1979,3:37-45
    [65]Pryakhina T A, Vororobeichik A I, Avvakumov E G, et al. Mechanical activation-apromising method for increasing the reactivity of titanium-containing raw material. Izvestiya Sibirskogo Otdeleniya Akademii Nauk SSSR, Seriya Khimicheskikh Nauk,1985,4:34-41
    [66]Millet P, Calka A, Ninham B W. Reduction of ilmenite by surfactant-assisted mechanochemical treatment. Journal of Materials Science Letters, 1994,13(19):1428-1429
    [67]Chen Y. Low-temperature oxidation of ilmenite (FeTiO3) induced by high energy ball milling at room temperature. Journal of Alloys and Compounds,1997, 257(1-2):156-160
    [68]Chen Y. Different oxidation reactions of ilmenite induced by high energy ball milling. Journal of Alloys and Compounds,1998,266(1-2):150-154
    [69]Chen Y, Williams J S, Campbell S J. Mechanochemical reactions of ilmenite. Materials Science Forum,1998,269-272(2):269-272
    [70]Chen Y, Williams J S, Campbell S J, et al. Increased dissolution of ilmenite induced by high-energy ball milling. Materials Science & Engineering A,1999, A271(1-2):485-490
    [71]Chen Y, Williams J S, Ninham B. Mechanochemical reactions of ilmenite with different additives. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1997, (129-130):61-66
    [72]Chen Y, Williams J S. Application of high energy ball milling in mineral materials:Extraction of TiO2 from mineral FeTiO3. Materials Science Forum,1997, 265-278(2):235-238
    [73]Chen Y, Marsh M, Williams J S, Ninham B. Production of rutile from ilmenite by room temperature ball-milling-induced sulfurization reaction. Journal of Alloys and Compounds,1996,245(1-2):54-58
    [74]Chen Y, Hwang T, Marsh M, Williams J S. Mechanically activated carbothermic reduction of ilmenite. Metallurgical and Materials Transactions A, 1997,28A(5):1115-1121
    [75]Chen Y, Hwang T, Marsh M. Influence of high energy ball milling on carbothermic reduction of ilmenite. Ironmaking and Steelmaking,1997,24(2): 144-149
    [76]Chen Y, Hwang T, Marsh M, Williams J S. Study on mechanism of mechanical activation. Materials Science & Engineering A,1997, A226-228:95-98
    [77]Chen Y. Ball milling assisted low temperature formation of iron-TiC composite. Scripta Materialia,1997,36(9):989-993
    [78]Chen Y. Ball milling assisted low temperature formation of iron-TiN composite. Journal of Materials Science Letters,1997,16(1):37-39
    [79]Chen Y, Hwang T, Williams J S. Ball milling-induced low-temperature carbothermic reduction of ilmenite. Materials Letters,1996,28(1-3):55-58
    [80]Welham N J, Llewellyn D J. Mechanical enhancement of the dissolution of ilmenite. Minerals Engineering,1998,11(9):827-841
    [81]Sasikumar C, Rao D S, Srikanth S, et al. Effect of natural weathering and mechanical activation on the acid dissolution kinetics of Indian beach sand ilmenites. Metals, Materials and Processes,2006,18(3-4):211-224
    [82]Sasikumar C, Rao D S, Srikanth S, et al. Dissolution studies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4. Hydrometallurgy,2007,88(1-4):154-169
    [83]李春,梁斌,梁小明.钛铁矿的机械活化及其浸出动力学.四川大学学报(工程科学版),2005,37(1):35-39
    [84]李春,梁斌,石慧.钛铁矿的机械活化与失活.矿冶工程,2005,25(1):37-39
    [85]张雪轻,李春,梁斌.钛铁矿机械活化强化浸出的研究.钢铁钒钛,2005,26(2):11-15
    [86]Li Chun, Liang Bin, Chen Sheng-Pin. Combined milling-dissolution of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy,2006,82(1-2):93-99
    [87]李春,陈胜平,吴子兵等.机械活方式对攀枝花钛铁矿浸出强化作用.化工学报,2006,57(4):823-828
    [88]Li Chun, Liang Bin. Study on the mechanochemical oxidation of ilmenite. Journal of Alloys and Compounds,2007,459(1):354-361
    [89]Li Chun, Liang Bin, Guo Ling-hong. Dissolution of mechanically activated Panzhihua ilmenites in dilute solutions of sulfuric acid. Hydrometallurgy,2007, 89(1-2):1-10
    [90]Li Chun, Liang Bin, Song Hao, et al. Preparation of porous rutile titania from ilmenite by mechanical activation and subsequent sulfuric acid leaching. Microporous and Mesoporous Materials,2008,115(3):293-300
    [91]Li Chun, Liang Bin, WangHaiYu. Preparation of synthetic rutile by hydrochloric acid leaching of mechanically activated Panzhihua ilmenite. Hydrometallurgy,2008,91(1-4):121-129
    [92]李春,梁斌,宋昊.多孔金红石型二氧化钛的制备方法.中国专利,200710050328.4,2007
    [93]李春,梁斌,王海玉.以钛铁矿精矿制造高品位人造金红石的方法.中国专利,200710050327.X,2007
    [94]Kalinkin A M, Kalinkina E V, Politov A A, et al. Mechanochemical interaction of Ca silicate and aluminosilicate minerals with carbon dioxide.Journal of Materials Science.2004,39(16-17):5393-5398
    [95]Ablesimov N E, Makarevich K S, Kulebakin V G, et al. Study of mechanochemical transformations of various basalt-type polysilicates. Khimicheskaya Tekhnologiya (Moscow, Russian Federation),2005, (1):2-7
    [96]Li Chun, Bin Liang, Sheng-Pin Chen. Combined milling dissolution of Panzhihua ilmenite in sulfuric acid. Hydrometallurgy,2006,82(1-2):93-99
    [97]Li Chun, Liang Bin, Guo Ling-hong, et al. Effect of mechanical activation on the dissolution of Panzhihua ilmenite. Minerals Engineering,2006,19:1430-1438
    [98]Chen Y, Williams J S, Campbell S J, et al. Increased dissolution of ilmenite induced by high-energy ball milling. Materials Science & Engineering A, 1999,271(1-2):485-490
    [99]Sasikumar C, Rao D S, Srikanth S. Dissolution studies of mechanically activated Manavalakurichi ilmenite with HCl and H2SO4. Hydrometallurgy,2007, 88:1543-1569
    [100]胡红英,胡慧萍,陈启元.非水环境中球磨作用对改性SiO2晶体结构、粒度和Zeta电位的影响.过程工程学报,2007,7(4):827-831
    [101]Balaz P, Achimovicova M. Selective leaching of antimony and arsenic from mechanically activated tetrahedrite, jamesonite and enargite. International Journal of Mineral Processing,2006,81(1):44-50
    [102]Pourghahraman P, Forssberg E. Effects of mechanical activation on the reduction behavior of hematite concentrate. International Journal of Mineral Processing,2007,82(2):96-105
    [103]Hu Huiping, Chen Qiyuan, Zhoulan Yin, et al. The thermal behavior of mechanically activated galena by thermogravimetry analysis. Metallurgical and Materials Transactions A,2003,34:793-797
    [104]Hu Huiping, Chen Qiyuan, Yin Zhoulan, et al. Thermal behaviors of mechanically activated pyrites by thermogravometry (TG). Thermochimica Acta, 2003,398:233-240
    [105]胡红英,胡慧萍,陈启元等.球磨作用对改性二氧化硅热行为的影响.功能材料,2007,4(38):619-622
    [106]陈国玺,张月明.矿物热分析粉晶分析相变图谱手册.成都:四川科学技术出版社,1989.429,438-446,471-474,494
    [107]周忠华,黄焯枢,王康海等.予氧化-流态化酸浸法从攀枝花钛铁矿制取人造金红石扩大试验.钢铁钒钛,1982,(4):11-19
    [108]Landers M, Gilkes R J, Wells M. Dissolution kinetics of dehydroxylated nickeliferous goethite from limonitic lateritic nickel ore. Applied Clay Science,2009,42:615-624
    [109]Liu Kui, Chen Qiyuan, Hu Huiping. Comparative leaching of minerals by sulphuric acid in a Chinese ferruginous nickel laterite ore. Hydrometallurgy, 2009,98(3-4):281-286
    [110]Landers M, Gilkes R J. Dehydroxylation and dissolution of nickeliferous goethite in New Caledonian lateritic Ni ore. Applied Clay Science, 2007,35:162-172
    [111]Saye S, Mallet J, Guillon E. Aging effect on the copper sorption on a vineyard soil:Column studies and SEM-EDS analysis. Journal of Colloid and Interface Science,2009,331:47-54
    [112]Salviulo G, Secco L, Antonini P, et al. C2/C pyroxene from two alkaline sodic suites (western ross embayment:antarctica):crystal chemical characterization and its petrologic signtficance. Mineralogical Magazine,1997,61(3):423-439
    [113]Muir I J, Bancroft G M, Nesbitt H W. Characteristics of altered labradorite surfaces by SIMS and XPS. Geochimica et Cosmochimica Acta,1989, 53(6):235-1241
    [114]Muir I J, Bancroft G M, William S, et al. A SIMS and XPS study of dissolving plagioclase. Geochimica et Cosmochimica Acta,1990,54(8):2247-2256
    [115]Seyama H, Kinoshita K, Soma M. Surface alteration of plagioclase during acid dissolution. Surface and Interface Analysis,2002,34:289-292
    [116]William S, Nesbitt H W. Incongruent and congruent dissolution of plagioclase feldspar:effect of feldspar composition and ligand complexation. Geoderma,1992,55(1-2):55-78
    [117]Walpole E A. Process for separating ilmenite. World Patent, WO9204121,1995
    [118]谢亚汉,谢炳元,刘朴衡等.盐酸法制取金红石型钛白粉.中国专利,CN98113128.X,1998

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700