液压电机叶片泵样机的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文针对研制出的液压电机叶片泵样机,建立了电机泵性能测试系统,采用与同等功率液压电机油泵组进行对比的测试方法,对样机进行测试,获得了样机的输入电量参数、输出液压能参数及内部转子转速和壳体内部压力等参数,得到了液压电机叶片泵样机的转速、噪声、功率和效率等随输出压力变化的特性。相比于电机油泵组,电机叶片泵样机的体积减小50%、轴向尺寸减小61%,噪声减小约7dB,液压电机叶片泵内部转子转速随输出压力升高呈线性下降;经试验分析出高压下泵芯座与泵芯的配合间隙偏大和聚四氟乙烯密封圈密封性能失效是导致样机容积效率下降幅度较大的主要原因;样机存在内部流道狭窄引起的气泡析出和内部密封不良引起额外泄漏的问题;同时,试验还发现样机存在气穴噪声,在进油口处可以清楚的看到气泡析出,其原因为内部流道狭窄和壳体尺寸未按图纸要求加工,使得定子绕组距进油口太近,造成电机叶片泵样机吸油不畅,从而在叶片泵泵芯吸油口处产生负压,油液中的气泡析出,导致了该气穴噪声。此研究为电机泵的发展提供了直接指导。
     论文的主要内容如下:
     第1章,阐述了本课题研究的背景和意义;概述了液压电机泵国内外的研究及发展概况,并介绍了兰州理工大学关于液压电机叶片泵的研究现状及取得的研究成果;概括了本论文的主要研究内容。
     第2章,介绍了液压电机叶片泵的基本结构,将液压叶片泵的泵芯插装在电机转子内部,使整个电机和泵在一个壳体中,并阐述其工作原理。并对研制出的液压电机叶片泵样机的结构及其零部件进行了介绍。
     第3章,基于研制出的液压电机叶片泵样机,建立了试验系统,简述了液压电机叶片泵样机的试验原理及其测试装置;采用与同等功率的电机油泵组进行性能测试对比的方法,进行了转速特性、流量特性、噪声特性、噪声频谱特性、温度特性、压力特性、容积效率、总效率、功率因数、电流、电压等参数的测试。
     第4章,经过对样机和电机油泵组进行的性能对比测试试验,获得了效率、转速、流量特性、噪声、功率因数及输出功率等随输出压力变化的特性,得出样机在运行过程中的主要性能指标和主要参数的变化规律。同时,对样机的容积效率下降幅度较大的主要原因和造成样机气穴噪声的原因进行了分析。
An experimental system was established for the performance test of the developed prototype of electric motor pump. The parameters consisting of the electric power input, hydraulic power output, rotor speed and internal pressure in the electric motor pump were measured. The characteristic of the rotor speed, noise, power and efficiency changing with the outlet pressure of the prototype was obtained. Compared with the traditional hydraulic power unit which is the same power as the prototype, the volume of the prototype is reduced 50%, the dimension in axial direction shortened 61% and the noise level lowered 7dB, and the speed of rotor in the prototype decreases apparently with the increase of the output pressure. Furthermore, the bubble separation as a result of the narrow channels and the extra leakage due to the ineffectual seal in the prototype were discussed, and the corresponding solutions were proposed.
     The main contents of the thesis:
     In chapter 1, the background and significance of this thesis is presented. The history and current research progress on hydraulic motor pump are reviewed. Introducing the hydraulic motors on pumps for Research and research achievements of Lanzhou University of Technology, the main research subjects are presented.
     In chapter 2, a new design of Hydraulic motor vane pump is put forward, and its principle is also presented. Hydraulic motor vane pump is specially designed with motor and vane pump integrated in a housing and the Hydraulic motor vane pump basic structure is introduced. This chapter provided theoretical guidance for the hydraulic motor vane pump design of the structure.
     In chapter 3, based on the hydraulic motor vane pump, the prototype has been produced. An experimental system was established for the performance test of the developed prototype of electric motor pump. the hydraulic motor vane pump prototype test theory and test equipment is described. Compared with the traditional hydraulic power unit which is the same power as the prototype, such as rotor Speed, noise, Noise spectrum, temperature, Pressure characteristics, Volumetric efficiency, efficiency, Power Factor (cosf), electric current, Voltage and other parameters. The performance test of the hydraulic motor vane pump prototype provide theoretical guidance and practical guidance for the Hydraulic motor vane pump performance tests.
     In chapter 4, Aiming at the developed hydraulic motor vane pump prototype and test system, Compared with the traditional hydraulic power unit which is the same power as the prototype, the performance parameters of the prototype are analyzed such as the efficiency of the prototype, output pressure, speed of rotation, and power factor varying with output power, etc. At the same time, analyzed experimental data of the traditional hydraulic power unit is picked up,which is the same power as the prototype. Furthermore, an experimental method was established for the performance test of the developed hydraulic motor pump prototype.
引文
[1]Bernd Schreiber.齿轮泵嫁接电动机[J].现代制造2005(2):36-37.
    [2]D.Wehner, S.Helduser. Integrated electric-hydraulic drives for power and motion control [C]. In: Proceedings of the 6th international conference on fluid power transmission and control, Hanzghou, China,2005,81-84.
    [3]江木正夫,萧欣志.日本液压技术动向[J].液压气动与密封,2004(1):11-14
    [4]黄閩宗,吴有章,謝聖平.電液複合泵浦氣隙油膜效應模凝分析[J].機械月刊,2005,31(8):143-150.
    [5]Ji Hong, Qi Qi.Wang Zheng-rong, etc. A Novel Design of Hydraulic Motor-Vane Pump with Auxiliary Centrifugal Pump[J]. In:Proceedings of the 5th International Symposium on Fluid Power Transmission and Control, BeiDaiHe,2007,141-144
    [6]杨尔庄.液压系统拒绝泄漏[C].现代制造,2007(34):12
    [7]Qing Lei, Xu Lizheng, Liu Ping. Energy Conservation and Emissions Reduction:Experiences from Three Provincial Power Companies and One Regional Power Grid Company[J]. Electricity,2008, (2):23-32
    [8]Qing Lei. Major Changes in Coal Industry. Electricity[J],2008, (2):19-22
    [9]杨尔庄.环保节能、电子化和液压技术[M].机电产品市场,2007(4):49-53
    [10]Sha Yiqiang. Chinese Power Industry[D]:Looking Back to 2005. Electricity,2006, (1).
    [11]Xiong Yangheng, Research on Comparisons of New Clean Power Generation Technologies[J]. Electricity,2005, (4):24-31
    [12]Zhou Dabing. Exploitation of Renewable Energy—A Strategic Choice for Sustainable Development of Power Industry. Electricity[J],2005, (1):9-11
    [13]杨尔庄.环保节能和液压技术[J].液压气动与密封,2005(5):7-15
    [14]许亚非.电动机的节能途径[J].大众用电,2003(8):41-42
    [15]杨尔庄.现代运传动技术展望[J].机电产品市场,2006(10):28-29
    [16]杨尔庄.美国流体动力工程研究中心简介[J].液压气动与密封,2008(2):1-3
    [17]彭熙伟,陈建萍.液压技术的发展动向[J].液压与气动,2007(3):1-5
    [18]许仰曾.21世纪液压泵的发展[J].现代制造,2001(5):72-73
    [19]路甬祥.对流体传动与控制技术的系统哲学思考[J].液压气动与密封,2005(5):1-6
    [20]俞云飞.液压泵的发展展望[J].液压气动与密封,2002(1):2-6
    [21]祁冠芳,虞万海.日本液压技术的发展与新动向[J].液压气动与密封,2004(1):34-36
    [22]http://bbs.cmiw.cn[Z]
    [23]FD 008-FAN DRIVE SYSTEMS/QH008[Z]. BANDIOLI&PAVESI,1-28
    [24]http://www.moog.com/Industrial/RKPDigital/%2D/lng%5F17[Z]
    [25]海老原大树(日本).电动机技术实用手册[S].王益全,刘军,秦小平等译.北京:科学出版社,2005,18-19
    [26]赵凯,周胜.中国高效电动机市场现状与发展(下)[J].电气时代,2008(7):28-32
    [27]建立节约型企业电机节能发展趋势[M].电器工业,2006(4):50-52
    [28]胡虔生,黄平林.变频调速异步电动机设计研究[J].电机技术,2005(1):3-7
    [29]傅丰礼,.高效异步电动机国内外发展概况[J].大众用电,2006,(4):19-21
    [30]李明贤,石雪松,张升.中小型异步电动机稀土永磁同步化是实现高效节能的优选方案[J].通用机械,2008(10):100-102
    [31]唐任远,安忠良,赫荣富.高效永磁电动机的现状与发展[J].电气技术,2008(9):1-6
    [32]黄苏融,钱慧杰,张琪等.现代永磁电机技术研究与应用开发.电机与控制应用[J],2007(1):1-6
    [33]青谷知昭.电机一体型内接叶片泵[M]:日本:2—212056.1992-3-30
    [34]Power units/systems,Integrated Motor pump. Vickers[Z].
    [35]Power units.Vickers.April[Z],2002.
    [36]Integrating AC motor and Pump Mechanical Engineering[M].ProQuest Science Journals,1994,116(8): 32
    [37]L·M·克拉尔,R·C·霍奇斯.一体化的电动机驱动连接的液压泵[P]:美国专利.682302.2002-6-5
    [38]王益群,张伟.流体传动及控制技术的评述[J].机械工程学报,2003,39(10):95-99
    [39]Vickers Inc (US), Product News, New integrated Motor pump[M], PN 630/15/91
    [40]Sauer Bibus, Electric motor with integrated axial piston pump Series J-RP Rotor pump[M]. leaflet, 1998
    [41]FRANZ ARBOGAST, GERD HUNDT, THOMAS NEUBERT. Motor-pump unit with pump shaft pinion enmeshed with motor pump:US,6585498[P].2003-1-1
    [42]日本油研(YUKEN)工業油壓楼器[X],産品樣本,2004年6月
    [43]程俊兰,吴晓明.21世纪的液压技术发展展望[J].通用机械,2003(3):13-14
    [44]Http://www.voith-turbo.de/hydrostatics_products_hybridsystem_EPAI_characteristic.htm[Z]
    [45]台灣油晟液壓有限公司檬本[X].電液複合泵浦
    [46]布雷维尼集团公司动力单元样本[X].
    [47]Park公司动力单元样本[X].
    [48]TP Twin Power by Oleodinamica Reggiana[M].2001,9
    [49]500 Series Hydraulic Power Units[M].2001
    [50]力士乐公司液压动力单元样本[X].
    [51]龟谷裕敬,中西正人.电机一体型内接齿轮泵及电子设备[J].日本:200510074397.X,2005-05-26
    [52]http://www.kelake.cn/cpxx/002/2005080743.shtml[Z].
    [53]李大,柯坚,邓斌,于兰英.基于一体化的电机泵装置的研究[J],机械研究与应用,2007,20(2):55-56
    [54]张大杰,高殿荣,王有杰,郭明杰.基于ANSYS的轴向柱塞液压电机泵电磁场数值计算与分析[J],机械工程学报,2008,44(12):69-74.
    [55]祁琦.液压电机叶片泵能量转化效率的分析:[硕士学位论文].兰州:能源与动力工程学院,2008
    [56]孙磊.液压电机叶片泵的气隙负载效应及样机性能试验:[硕士学位论文].兰州:能源与动力工程学院,2009
    [57]许丹丹.液压电机叶片泵的电磁场及电磁场的数值解析:[硕士学位论文].兰州:能源与动力工程学院,2009
    [58]冀宏.液压气压传动与控制[M].武汉:华中科技大学出版社,2009
    [59]胡虔生,胡敏强.电机学[M].第二版.北京:中国电力出版社,2005,139
    [60]傅丰礼,唐孝镐.异步电动机设计手册[S].北京:机械工业出版社,2006,23
    [6l]冀宏,丁大力,王峥嵘,等.液压电机泵内置孔板离心泵的流场解析与优化[J].机械工程学报,2009,45(6):199-205
    [62]陈晓玲,张武高,黄震.离心油泵的性能与相似准则的关系[J].上海交通大学学报,2003,37(5):686-689.
    [63]仇宝云,黄季艳,袁其寿,等.轴流泵出水流道水力损失试验研究[J].机械工程学报,2006,42(5):39-44.
    [64]才家刚.电机试验手册[M].北京:中国电力出版社,1997,228-270,40-46
    [65]雷天觉.新编液压工程手册[M].下册.北京:北京理工大学出版社,1998,2158-2160,2097-2107
    [66]王益全,张炳义,等.电机测试技术[M].北京:科学出版社,2004.
    [67]中国标准出版社,全国液压气动标准化技术委员会.中国机械工业标准汇编-液压与气动卷[M].北京:中国标准出版社,1999.12
    [68]冀宏.液压阀芯节流槽气穴噪声特性的研究:[博士学位论文].杭州:浙江大学机械与能源学院,2004,12.
    [69]钟英杰,都晋燕,张雪梅.CFD技术在现代工业中的应用[J].浙江工业大学学报,2003,31(3):284~289.
    [70]GAMBIT 2.3 User's Guide[M],2006
    [71]王福军.计算流体动力学分析-CFD软件原理与应用[M].北京:清华大学出版社,2004
    [72]韩占忠.流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004
    [73]FLUENT 6.3User's Guide[M].Fluent Inc.,2006
    [74]Hong JI, Zhifeng LI. Flow analysis and performance test of an electric motor pump [J]. The Japan Fluid Power System Society, JFPS.2009.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700