结肠微型机器人关键技术及实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以国家自然科学基金、国家高技术研究发展计划(863计划)、载人航天领域预先研究和上海市科委资助项目为依托,对结肠微型机器人进行详细研究和实验验证,力图探索出结肠主动微创诊疗的新途径。结肠主动微创诊疗对结肠微型机器人提出“动”、“能”、“诊”、“控”四项基本功能,它们分别对应于运动技术、供能技术、诊疗技术和通讯控制技术的研究。
     结肠微型机器人运动技术研究,以人体结肠的生理特性为出发点,详细分析了结肠的基本形态及生物力学特性,并通过综合分析确定了仿尺蠖运动方式和微型电机驱动方式。仿尺蠖运动机构主要包括两端径向钳位机构和中部轴向伸缩机构。径向钳位机构利用连杆机构伸缩腿实现60mm的钳位直径,轴向伸缩机构采用双向直线驱动机构实现45mm的轴向行程。通过力学特性分析,径向机构的理论最大输出为1.7N,轴向机构的理论最大输出为4.5N,它们都可以在无驱动下实现状态保持。结肠具有复杂的表面形态和粘弹的组织特性,使得结肠微型机器人的钳位接触效率较低,因此为了提高肠道接触效率和安全性,以肠道摩擦力模型为基础,通过实验验证和分析,设计并制造了适合肠道表面的接触装置。运动学、动力学、临界步距和运动效率的综合分析,进一步明确了结肠微型机器人的运动性能,为结肠微型机器人运动技术的发展提供了重要参考。
     结肠微型机器人的供能技术研究,以电磁感应原理为基础,通过无线方式来实现持续高功率能量供给。在无线供能系统中,Helmholtz发射线圈激励出均匀交变磁场从而提高了位置稳定性,三维接收线圈改进了姿态稳定性,并通过为发射线圈匹配补偿电容和可调电感解决频率稳定性。无线供能效率由发射系统、线圈耦合和接收系统共同影响,其深入研究为结肠微型机器人无线供能系统研制提供宝贵参考。本文研制出适合结肠微型机器人的无线供能系统,当系统输入功率为14.7W时,可以为结肠微型机器人提供最小378mW、最大705mW的能量。
     结肠微型机器人的诊疗技术研究,从临床诊疗需求出发对无线图像诊断和热疗进行详细研究。无线图像诊断借鉴胶囊内窥镜研究成果,并结合结肠诊疗需要,设计出双图像采集系统,可以实现30fps的连续图像采集,图像尺寸为320×240像素。热疗研究以肿瘤加热技术发展为出发点,并结合肠道生物组织导热特性,设计出了结肠腔内局部热疗线圈,并通过热疗线圈表面温度的详细实验,选择出了最优的线圈结构。热疗线圈装配了温度检测电路以实现41~45℃的结肠肿瘤热疗温域的精确控制。
     结肠微型机器人的通讯控制技术研究,以无线通讯为基础实现了医生对体内结肠微型机器人的实时监控。利用两块Si4420收发芯片并结合特定的通讯程序,在体内同体外间实现了半双工无线通讯。此外,为了提高结肠微型机器人对多任务和外设的管理能力,利用两片微控制器实现双硬核系统的同时,并为每个微控制器装配了具有四层优先级的软核程序构架。结肠微型机器人硬件电路和软件程序的设计,使其具有完备的协同运作和同步控制能力。
     结肠微型机器人关键技术研究同微机电系统加工的有机结合,研制出了结肠微型机器人样机,其直径17mm,收缩后轴向长度128mm,轴向行程44mm,最大径向钳位外径60mm。考虑到同结肠的生物相容性,结肠微型机器人样机壳体采用医用聚丙烯棒,利用数控机床加工而成,前后腔体间利用食品医用硅胶波纹管连接密封。为了降低样机重量,样机机架采用轻质航空铝材,并利用高精度线切割加工而成,最终样机净重53.5g。
     以结肠微型机器人样机作为实验对象,本文通过实验研究对结肠微型机器人关键技术给予充分评测。机器人样机的仿尺蠖运动机构具有简洁有效的运动步态,径向钳位机构的实际最大输出为1.5N,轴向伸缩机构的实际最大输出为4.2N,接近其理论输出值;此外,运动机构的运动过程符合结肠内主动运动需求。接触装置不仅使机器人样机的摩擦系数提高65%,而且使其在结肠中具有较为安全的主动接触特性。无线图像系统能够为医生提供连续而清晰的图像,便于结肠病灶点的诊出。机器人样机可在不同倾斜角度的刚性管道和柔性管道中有效运动,当随着运动环境的稳定性降低和倾斜角度的提高,机器人样机的运动速度也随之降低,但运动过程仍然连续平稳;机器人样机在离体肠道中具有复杂的运动特性,主要受到肠道形态和粘弹组织特性影响。在无线供能系统中,接收线圈会产生电热效应可能会提高结肠的局部温度,发射线圈激励谐振磁场也会影响人体的特定比吸收率和电流密度,而通过温度测定和人体数字模型分析,证明了无线供能系统对人体是相对安全的。最后,本文对机器人样机开展了活体实验,进一步验证了结肠微型机器人关键技术的应用价值,为实际临床应用提供了宝贵参考。
Under the supports of the National Natural Science Foundation ofChina, the National High Technology Research and Development Programof China (863Program), the Advanced Study of Manned Space Project andthe Program of Shanghai Science and Technology Commision, the keytechnologies and experiments of a colonic microrobot were researched withthe purpose of exploring a new way for colonic diagnosis and therapy withminimal invasion or non invasion. The colonic minimal invasive diagnosiand therapy make four basic functions to the colonic microrbot. The basicfunctions are locomotion, power, treat and manipulation respectivelycorresponding to locomotion technology research, wireless power supplytechnology research, diagnosis&therapy technology research andcommunication&control technology research.
     The research on locomotion technology of the colonic microrobotstarted from the characteristics of the colonic tract, and detailedly analysedthe basic form and biomechanical characteristics of the colonic environment. Based on comprehensive analyses, the inchworm like locomotion and themotor actuator were proposed for the active locomotion of the colonicmicrorobot. The inchworm like locomotion mechanism was composed ofradial clamping mechanisms at the two ends and axial telescopic mechanismin the middle section. The clamping mechanism was used to realize themaximum clamping diameter of60mm and the maximum clamping force of1.7N. Moreover, the telescopic mechanism was used to realize themaximum axial stroke of45mm and the maximum axial force of4.5N.These mechanisms could keep the locomotion state without extra powercomsumption. The colonic tract, with complicated surface morphology andviscelastic characteristiss, would reduce the locomotion contact efficiency.In order to effectively control the contact friction on the colonic surface, acontact device was designed and fabricated, based on the intestinal fricitionmodel, experiments and analyses. In addition, the colonic microrobot wasimplemented with kinematic analysis, dynamic analysis, critical stepanalysis and locomotion efficiency analysis in order to clearly acquise itslocomotion performance, which could improve the development of thelocomotion technology of the colonic microrobot.
     The research on wireless power supply technology of the colonicmicrorobot, based on the electromagnetic induction principle, foused on thewireless way to realize the continuous high power supply. Helmholtz coil was used to stimulate a uniform resonant magnetic field to improve positionstability;3D receiving coils improved the attitude stability; the frequencystability was improved by matching compensation capacitor and adjustableinductance for the Helmholtz coil. The efficiency researche of the wirelessspower supply relate to some influences caused by transmission system, coilscoupling and receiving system. A wireless power supply system wasdesigned and fabricated,which, with14.7W input, could provide theminimum378mW and the maximum705mW for the colonic microrobot.
     The diagnosis&therapy technology research of the colonic microrobotincludes wireless image diagnosis and hyperthermia. Considering therequirements of colonoscopy, the wireless image diagnosis based onwireless capsule endoscope proposed a double imge acquisition system,which can realize the continuous image acquisition at30fps for320×240pixels. The research on hyperthermia, based on the development of tumorhyperthermia, proposed a colonic heating coil, and exploited an optimalheating coil by testing the surface temperature of the experimental coils. Inorder to realize the precise temperature control, the heating coil wasequeiped with a temperature detection circuit. Therefore, the surfacetemperature of the heating coil could be maintained in the tumorhyperthermia region of41~45℃with a precise temperature control.
     The research on communication&control technology of the colonicmicrorobot, based on wireless communication, helped the doctor to monitorthe colonic microrobot in time. A half duplex communication between thein vivo and the in vitro was established under the use of two Si4420transceiver chips and combined with the specific communication program.In order to improve multitasking and multiperipheral management, a doublehard core was build up with two micro controllers. There was a four prioritysoft core in each hard core. The design of hardware and software make thecolonic robot have the abilities of collaboration operating andsynchronization control.
     The combination of the key technologies and MEMS developed aprototype of the colonic microrobot. The prototype has the diameter of17mm, the contracted axial length of128mm, the maximum axial stroke of44mm and the maximum clamping diameter of60mm. Consideringbiocompatibility of the colonic tract, the prototype’s shell was made ofmedical polypropylene material and fabricated with CNC. A bellows madeof food medicine silicone ruber was used as the sealing connection betweenthe two cavities of the prototype. In order to reduce the weight, the frame ofthe prototype was made of light aviation aluminum and fabricated with highaccuracy wire cutting machine. The total weight of the prototype was only53.5g.
     Some experiments were carried out to evaluate the key technologies ofthe colonic microrobot. The prototype of the colonic microrobot had theconcise and efficient locomotion gait. The actual output force of theclamping mechanism was1.5N, and the one of the telescopic mechanismwas4.2N. They were closed to their theory values, and the locomotionprocess was according to the locomotion requirements in the colonic tract.The customized contact device not only increased the friction coefficient65%, but also made the active contact with the colonic tract safer. Thewireless image system could provide the continuous and clear images for thevisual diagnosis. The prototype could move in the rigid or flexible tubeswith different oblique angles. With the decrease of the tube rigid and theincrease of the oblique angle, the locomotion speed of the prototype wasreduced, but its locomotion processes was still stable and continuous. Theprototype had the complicated locomotion characteristics in the in vitrocolonic tract, which was caused by colonic morphology and viscoelastictissue. In the wireless power supply system, the receiving coils couldproduce the heat to improve the environment temperature; in addition, theresonant magnetic field actuated by the transmission coil could affectspecific absorption rate and the current density of the human body. However,the temperate tests and the analyses of human digital model confirmed thatthat the wireless power supply system was relatively safe for the human body. It was worth nothing that some experiments were first carried out inthe living environment. Obviously, the key technologies have the goodactual application value in clinic, and will provid some valuable referencesfor the development of the colonic microrobot.
引文
[1]尹紫晋.威胁国人生命的十大疾病.医疗保健器具,2005,6:48.
    [2]丁生伟,陆松春.消化道内窥镜检查所致的教训分析.浙江临床医学,1999,1(2):131131.
    [3]许国铭.消化内镜的世纪回顾与展望.当代医学,2001,7(5):1012.
    [4]谢翔,王自强,姜汉钧,王志华.胶囊内窥镜系统原理与临床应用.北京:科学出版社.2010:29.
    [5]李励.医用内窥镜的发展历程.医用设备信息,1999,4:5153.
    [6]耿洁,李金禄,李娜等.医用超声内窥镜的研究现状与发展趋势.中国医学物理杂志,2010,27(5):21222124.
    [7]智发朝,山本博德.双气囊内镜学.北京:科学出版社.2008:34.
    [8] Iddan, G., Meron, G., Glukhovsky, A. et al. Wireless capsule endoscopy. Nature,2000,405(205):417417.
    [9] PillCam Capsule Endoscope products. http://www.givenimaging.com/en int/Patients/Pages/pagePatient.aspx[EB/OL].2011.
    [10] OMOM胶囊内窥镜系统. http://www.jinshangroup.com/产品中心/胶囊内镜/tabid/64/Default.aspxEB/OL].2011.
    [11] EndoCapsule. http://www.olympusamerica.com/msg_section/msg_endoscopy_capsulescopes.asp[EB/OL].2011.
    [12] MicroCam capsule endoscope. http://www.intromedic.com/en/product/productInfo.asp[EB/OL].2011.
    [13] RF SYSTEM Lab. The Next Generation Capsule Endoscope Sayaka. http://www.rfamerica.com/sayaka/index.html. Accessed on2011.11.08.
    [14] Johnson H. SmartPill hopes to expand use to the GI tract and beyond. Medical Device Daily,2003:12.
    [15] SmartPill. http://http://www.smartpillcorp.com[EB/OL].2011.
    [16] Wang L, Tang T B, Johannessen E, et al. Integrated micro instrumentation for dynamic gastrointestinal tract monitoring.2nd Annual International IEEE EMBS Special Topic Conference onMicrotechnologies in Medicine&Biology, Madison, USA,2002:219222.
    [17] Wang L, Johannessen E A, Hammond P A, et al. A programmable microsystem using system on chipfor real time biotelemetry. IEEE Transactions on Biomedical Engineering,2005,52(7):12511260.
    [18] Meng Max Q H, Mei T, Pu J, et al. Wireless robotic capsule endoscopy: State of the art and challenges.Proceedings of the World Congress on Intelligent Control and Automation,2004:55615565.
    [19] Carrozza M C, Lencioni L, Magnini B, Dario P. A microrobot for colonoscopy. Seventh InternationalSymposium on Micro Machine and Human Science,1996:223228.
    [20] Dario P, Carrozza M C, Magnini B, D'Attanasio. A microrobotic system for colonoscopy. IEEEInternational Conference on Robotics and Automation,1997:15671572.
    [21] Dario P, Carrozza M C, Pietrabissa A. Development and in vitro testing of a miniature robotic systemfor computer assisted colonoscopy[J]. Computer Aided Surgery,1999,4(1):114.
    [22] Phee, L, D. Accoto, Menciassim A, et al. Analysis and development of locomotion devices for thegastrointestinal tract. IEEE Transactions on Biomedical Engineering,2002,49(6):613616.
    [23] Dario P, Ciarletta P, Menciassim A, et al. Modelling and experimental validation of the locomotion ofendoscopic robots in the colon. International Journal of Robotica Research,2004,23(45):549556.
    [24] Liu W, Menciassi A, Scapellato S, et al. A biomimetic sensor for a crawling minirobot. Robotics andAutonomous Systems,2006,54(7):513528.
    [25] Quirini, M., A. Menciassi, et al. Design and Fabrication of a Motor Legged Capsule for the ActiveExploration of the Gastrointestinal Tract. IEEE/ASME Transactions on Mechatronics,2008,13(2):169179.
    [26] Valdastri P, Webster R J, Quaglia C, et al. A New Mechanism for Mesoscale Legged Locomotion inCompliant Tubular Environments. IEEE Transactions on Robotics,2009,25(5):10471057.
    [27] Tortora G, Caccavaro S, Valdastri P, et al. Design of an autonomous swimming miniature robot basedon a novel concept of magnetic actuation. IEEE International Conference on Robotics and Automation,Alaska, USA,2010:15921597.
    [28] Kim, B., Lee, S., Park, J.H. et al. Inchworm Like Microrobot for Capsule Endoscope. Proceedings ofthe2004IEEE International Conference on Robotics and Biomimetics, Shenyang, China,2004.
    [29] Kim, B., Lee, S., Park, J.H. et al. Design and fabrication of a locomotive mechanism for capsule typeendoscopes using shape memory alloys (SMAs). IEEE/ASME Transactions on Mechatronics,2005,10(1):7786
    [30] Park S, Park H, Park S, et al. Capsular Locomotive Microrobot for Gastrointestinal Tract. Proceedingsof the28th IEEE EMBS Annual International Conference, New York City, USA,2006.
    [31] Park H, Park S, Yoon E, et al. Paddling based Microrobot for Capsule Endoscopes.2007IEEEInternational Conference on Robotics and Automation,Roma, Italy,2007.
    [32] Wang X, Meng M Q H. An Inchworm like Locomotion Mechanism Based on Magnetic Actuator forActive Capsule Endoscope. Proceedings of the2006IEEE/RSJ International Conference on IntelligentRobots and Systems, Beijing, China,2006.
    [33] Wang X, Meng M Q H, Chen X. A locomotion mechanism with external magnetic guidance for activecapsule endoscope.2010Annual International Conference of the IEEE Engineering in Medicine andBiology Society (EMBC), Buenos Aires, Argentina,2010.
    [34]张永顺,姜生元,张学文等.肠道内可变直径胶囊机器人的动态特性.科学通报,2009,54(16):24082415.
    [35] Zhang Y S, Jiang S Y, Zhang X W, et al. Dynamic characteristics of an intestine capsule robot withvariable diameter. Chinese Science Bulletin,2010,55(17):18131821.
    [36] Wang K D, Yan G Z. An Earthworm Like Microrobot for Colonoscopy. Biomedical Instrumentation&Technology,2006,40(6):471478.
    [37] Wang K D, Yan G Z, Jiang P P, Ye D D. A Wireless Robotic Endoscope for Gastrointestine. IEEETransactions on Robotics,2008,24(1):206210.
    [38] Gao P, Yan G, Wang Z, et al. A robotic endoscope based on minimally invasive locomotion andwireless techniques for human colon. The International Journal of Medical Robotics and ComputerAssisted Surgery,2011,7(3):256267.
    [39] Versatile Endoscopic Capsule. http://www.vector project.com/press/[EB/OL].2011.
    [40] Nadafi R, Edalatfar F, Zomorodian P, et al. A comparative design study on in pipe inspectionmicro robots using AHP method. Symposium on Design Test Integration and Packaging ofMEMS/MOEMS (DTIP),2010.
    [41] Machado J A T, Silva M F. An overview of legged robots. International Symposium onMathematical,2006.
    [42] Trovato G, Shikanai M, Ukawa G, et al. Development of a colon endoscope robot that adjusts itslocomotion through the use of reinforcement learning. International Journal of Computer AssistedRadiology and Surgery,2010,5(4):317325.
    [43] Gao M, Hu C, Chen Z, et al. Finite Difference Modeling of Micromachine for Use inGastrointestinal Endoscopy. IEEE Transactions on Biomedical Engineering,2009,56(10):24132419.
    [44] Kassim I, Phee L, Wan S N, et al. Locomotion techniques for robotic colonoscopy. IEEEEngineering in Medicine and Biology Magazine,2006,25(3):4956.
    [45] Sreekumar M, Nagarajan T, Singaperumal M, et al. Critical review of current trends in shapememory alloy actuators for intelligent robots. Industrial Robot: An International Journal,2007,34(4):285294.
    [46] Kim B, Park S, Park J. Microrobots for a capsule endoscope. IEEE/ASME InternationalConference on Advanced Intelligent Mechatronics, Singapore,2009:729734.
    [47] Gu D Q, Zhou Y. An approach to the capsule endoscopic robot with active drive motion. Journalof Zhejiang University Science A,2011,12(3):223231.
    [48] Yan G, Lu Q, Ding G, et al. The prototype of a piezoelectric medical microrobot. InternationalSymposium on Micromechatronics and Human Science,2002:7377.
    [49] Lim J, Park H, Moon S, et al. Pneumatic robot based on inchworm motion for small diameter pipeinspection. IEEE International Conference on Robotics and Biomimetics, Sanya, China,2007:330335.
    [50] Adachi K, Yokojima M, Hidaka Y, et al. Development of multistage type endoscopic robot basedon peristaltic crawling for inspecting the small intestine. IEEE/ASME International Conference onAdvanced Intelligent Mechatronics, Budapest, Hngary,2011:904909.
    [51] Hosseini S, Mehrtash M, Knamesee M B. Design, fabrication and control of a magneticcapsule robot for the human esophagus. Microsystem Technologies2011:18.
    [52] Yim S, Sitti M. Design and analysis of a magnetically actuated and compliant capsule endoscopicrobot. IEEE International Conference on Robotics and Automation, Shanghai, China,2011:48104815.
    [53] Zhang Y, Jiang S, Zhang X, et al. A Variable Diameter Capsule Robot Based on Multiple WedgeEffects. IEEE/ASME Transactions on Mechatronics,2011,16(2):241254.
    [54] Glass P, Cheung E, Wang H, et al. A motorized anchoring mechanism for a tethered capsule robotusing fibrillar adhesives for interventions in the esophagus.2nd IEEE RAS&EMBS InternationalConference on Biomedical Robotics and Biomechatronics, Scottsdale, USA,2008:759764.
    [55] Wang K, Yan G, Ma G, et al. An Earthworm Like Robotic Endoscope System for Human Intestine:Design, Analysis, and Experiment. Annals of Biomedical Engineering,2009,37(1):210221.
    [56] Alonso O, Freixas L, Canals E, et al. Control electronics integration toward endoscopic capsulerobot performing legged locomotion and illumination. IEEE/RSJ International Conference onIntelligent Robots and Systems, Taipei, Taiwan,2010:27982803.
    [57] Liang H, Guan Y, Xiao Z, et al. A screw propelling capsule robot. IEEE International Conferenceon Information and Automation, Shenzhen, China,2011:786791.
    [58] Lv X, Qiu R, Liu G, et al. The Power and Propulsion of Medical Microrobots. Intelligence andAutomation,2011:451–459.
    [59] Nakamura T, Terano A. Capsule endoscopy: past, present, and future. Journal of Gastroenterology,2008,43(2):9399.
    [60] Lenaerts B, Puers R. Inductive powering of a freely moving system. Sensors and Actuators A:Physical,2005,123124:522530.
    [61] Toennies J L, Tortora G, Simi M, et al. Swallowable medical devices for diagnosis and surgery:the state of the art. Proceedings of the Institution of Mechanical Engineers, Part C: Journal ofMechanical Engineering Science,2009,224(7):13971414.
    [62]刘静,邓中山等.肿瘤热疗物理学.北京:科学出版社.2008.
    [63]刘静.低温生物医学工程学原理.北京:科学出版社.2007.
    [64]林世寅,李瑞英,毛慧生等.现代肿瘤热疗学原理、方法与临床.北京:学苑出版社.
    [65]李鼎九,胡自省,钟毓斌.肿瘤热疗学(第二版).郑州:郑州大学出版社.2003
    [66] Susilo E, Valdastri P, Menciassi A, Dario P. A miniaturized wireless control platform for roboticcapsular endoscopy using advanced pseudokernel approach. Sensors and Actuators A: Physical,2009,156(1):4958.
    [67] Tobergte A, Konietschke R, Hirzinger G. Planning and control of a teleoperation system forresearch in minimally invasive robotic surgery. IEEE International Conference on Robotics andAutomation, Kobe, Japan,2009:42254232.
    [68] http://baike.baidu.com/view/26845.htm
    [69]樊艳华等主译.胃肠道生物力学胃肠动力新视角.北京:人民卫生出版社.2006.
    [70] Arhan P, Devroede G, Denis K, et al. Viscoelastic properties of the rectal wall in Hirschsprung's disease.J Clin Invest,1978,62:8287.
    [71] Fung YC. Biomechanics. Its scope, history, and some problems of continuum mehanics in physiology.Applied Mechanics Reviews,1968,21:120.
    [72]冯元桢.生物力学.北京:科学出版社.1983.
    [73] Fung YC. Biomechanics. Mechanical properties of living tissues, second edition. New York:Springer Verlag.1993.
    [74] S. Masuda. Apparatus for feeding a flexible tube through a conduit. UK, Patent1,534,441,1978.
    [75] Yamamoto H, Sugano K. A new method of enteroscopy: the double ballon method. Can JGastroenterol,2003,17:273274.
    [76]智发朝,山本博德.双气囊内镜学.北京:科学出版社.2008.
    [77] Carpi F, Galbiati S, Carpi Aet. Controlled Navigation of Endoscopic Capsules: Concept andPreliminary Experimental Investigations. IEEE Transactions on Biomedical Engineering,2007,54(11):20282036.
    [78] Lee JS, Kim B, Hong YS. A flexible chain based screw propeller for capsule endoscopes. InternationalJournal of Precision Engineering and Manufacturing,2009,10(4):2734.
    [79] Gao M, Hu C, Chen Z, et al. Design and Fabrication of a Magnetic Propulsion System forSelf Propelled Capsule Endoscope. IEEE Transactions on Biomedical Engineering,2010,57(12):28912902.
    [80] Zhang Y, Jiang S, Zhang X, et al. A Variable Diameter Capsule Robot Based on Multiple WedgeEffects. IEEE/ASME Transactions on Mechatronics,2011,16(2):241254.
    [81] Ikuta K, Masahiro T, Hirose S. Shape memory alloy servo actuator system with electric resistancefeedback and application for active endoscope. IEEE Int. Conf. Robotics Automation, Philadelphia, PA,1988:427–430.
    [82] Hu H, Wang P, Zhao B, et al. Design of a novel snake like robotic colonoscope. IEEE InternationalConference on Robotics and Biomimetics, Guilin, China,2009:19571961.
    [83] Utsugi M. Tubular medical instrument having a flexible sheath driven by a plurality of cuffs. U.S.Patent4,148,307,1979.
    [84] Allred JB. Self advancing endoscope. U.S. Patent5,345,925,1994.
    [85] Treat MR, Trimmer WS. Self propelled endoscope using pressure driven linear actuators. U.S. Patent5,595,565,1997.
    [86] Mosse CA, Mills TN, and Swain CP. A water jet propelled colonoscope.6th United EuropeanGastroenterology Week,1997:41.
    [87] Mosse CA, Swain CP, Bell GD, and Mills TN. Water jet propelledcolonoscopy A new method ofendoscope propulsion. Gastrointest. Endosc,1998,47:AB40.
    [88] Drapier M, Steenbrugghe V, and Successeurs B. Perfectionnements auxcathéters médicaux. FrancePatent1,278,965,1961.
    [89] Frazer RE. Apparatus for endoscopic examination. U.S. Patent4,176,662,1979.
    [90] Fukuda T, Hosokai H, and Uemura M. Rubber gas actuator driven by hydrogen storage alloy forin pipe inspection mobile robot with flexible structure. Proc. IEEE Int. Conf. Robotics Automation,Scottsdale, AZ,1989:1847–1852.
    [91]彭文生,李志明,黄华梁.机械设计(第二版).北京:高等教育出版社.2008.
    [92] Fung Y C. Biomechanics Mechanical Properties of Living Tissues. Berlin: Springer.1993.
    [93] Gregersen H and Kassab G. Biomechanics of the gastrointestinal tract. Neurogastroenterology&Motility1996,8(4):277297.
    [94] Accoto D, Stefanini C, Phee L. Measurement of the frictional properties of the gastrointestinal tractProc.2nd Int. Conf. on Tribology vol1(Vienna: AIMETA),2001:153–158.
    [95] Jiwoon K, Park S, Lee M G, et al. Design and fabrication of a biomaterial property measurementsystem Proc. IEEE/RSJ Intell. Robots Syst.(Sendai, Japan),2004:1299–1304.
    [96] Jiwoon K, Sukho P, Kim B, Park J. Bio material property measurement system for locomotivemechanism in gastro intestinal tract Proc. IEEE Int. Conf. on Robotics and Automation (Barcelona),2005:1303–1308.
    [97] Li J, Huang P, Luo H T. Research on frictional experiments on micro mechanism and intestine Lubr.Sealing,2005,13:119–122.
    [98] Dodou D, Delphine G, Paul B. Intestinal locomotion by means of muco adhesive films. IEEE Int. Conf.on Robotics and Automation (Barcelona),2005:352–359.
    [99] Wang X, Meng M. Study of Frictional Properties of the Small Intestine for Design of Active CapsuleEndoscope.1st IEEE/RAS EMBS Int. Conf. on Biomedical Robotics and Biomechatronics,2006.
    [100] Wang K, Yan G. Research on measurement and modeling of the gastro intestine's frictionalcharacteristics. Measurement science and technology,2009, MST20(2009)015803.
    [101] Kim J S, Sung I H, Kim Y T, et al. Analytical model development for the prediction of the frictionalresistance of a capsule endoscope inside an intestine. Proceedings of the Institution of MechanicalEngineers, Part H: Journal of Engineering in Medicine,2007,221(8)837845.
    [102] Martini F H. Fundamentals of Anatomy&Physiology (Prentice Hall, New Jersey),1995.
    [103] Kim J S, Sung I H, Kim Y T, et al. Experimental investigation of frictional and viscoelastic propertiesof intestine for microendoscope application. Tribology Letters,2006,22(2):143149.
    [104] Dodou D, Breedveld P, Wieringa P A. Friction manipulation for intestinal locomotion MinimallyInvasive Therapy,2005,14(3):188197.
    [105] Gregersen H, Kassab G. Biomechanics of the gastrointestinal tract Neurogastroenterology&Motility,1996,8(4):277297
    [106]丁学恭.机器人控制研究.浙江:浙江大学出版社.2006.
    [107] Glass P, Cheung E, Sitti M. A Legged Anchoring Mechanism for Capsule Endoscopes UsingMicropatterned Adhesives. IEEE Transactions on Biomedical Engineering,2008,55(12):27592767.
    [108]冯元桢.生物力学.长沙:湖南科学技术出版社.1983:320324.
    [109]冯元桢.生物力学.北京:科学出版社.1986:115.
    [110] Fang Y C, Patitocci P. Pseudoelnsticity of arteries and the choice of its mathematical expression.Amencan Journal of Physiology Society,1979,237:620631.
    [111] Gregersn H. Bionkchanics ofthe gastrointestinal tract. Neuro gastroenterol,1996,8:277297.
    [112] Menciassi A,Quirini M, Dario P. Microrobotics for future gastrointestinal endoscopy. MinimallyInvasive Therapy&Allied Technologies,2007,16(2):91100.
    [113] Toennles J L, Tortora G, Simi M, et al. Swallowable medical devices for diagnosis and surgery: thestate of the art. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of MechanicalEngineering Science,2009,224(7):13971414
    [114] Puers R, Carta R, Thone J. Wireless power and data transmission strategies for next generation capsuleendoscopes. Journal of Micromechanics and Microengineering,2011,21(5):054008.
    [115] Amirtharajah R, Chandrakasan A P. Self powered signal processing using vibration based powergeneration. IEEE Journal of Solid State Circuits,1998,33(5):687695.
    [116] Sterken T, B.K., Puers R, Borghs S. Power extraction from ambient vibration. SeSens (Workshop onSemiconductor Sensors),2002:680683.
    [117] Guyomar D, Sebald G, Pruvost S, et al. Energy Harvesting from Ambient Vibrations and Heat. Journalof Intelligent Material Systems and Structures,2009,20(5):609624.
    [118] MIT. Human Powered. https://www.media.mit.edu/search/node/Human%20Powered.2011.
    [119] Thumim A, Reed G, Lupo F, et al. High power electromagnetic energy transfer for totally implanteddevices. IEEE Transactions on Magnetics,1970,6(2):326332.
    [120] Schuder J C, Gold J H, Stephenson H E. Ultrahigh power electromagnetic energy transport into thebody. Transactions American Society for Artifical Internal Organs,1971,17:406410.
    [121] Ghahary A, Cho B H. Design of transcutaneous energy transmission system using a series resonantconverter. IEEE Transactions on Power Electronics,1992,7(2):261269.
    [122] Nishimura T H, Eguchi T, Kubota A, et al. An improved transmission energy transformer for a noninvasive rechargeable battery to artificial organs. Conference Proceedings on8th Ieee InternationalConference on Electronics, Circuits and Systems,2001:12091214.
    [123] Wang G, Liu W., Sivaprakasam M, et al. Design and analysis of an adaptive transcutaneous powertelemetry for biomedical implants. IEEE Transactions on Circuits and Systems I,2005,52(10):21092117.
    [124] Miura H, Arai S, Kakubari Y, et al. Improvement of the transcutaneous energy transmission systemutilizing ferrite cored coils for artificial hearts. IEEE Transactions on Magnetics,2006,42(10):35783580.
    [125] Fang W, Liu W, Qian J, et al. Modeling and Simulation of a Transcutaneous Energy TransmissionSystem Used in Artificial Organ Implants. Artificial Organs,2009,33(12):10691074.
    [126] Kustosz R, Brandt J, Szczurek Z, et al. Charging and discharging backup battery for artificial heart.14th International Power Electronics and Motion Control Conference (EPE/PEMC),2010:162164.
    [127] Lee S W, Kim J D, Son J H, et al. Design of two dimensional coils for wireless power transmission toin vivo robotic capsule.27th Annual International Conference of the IEEE Engineering in Medicineand Biology Society,2006,17:66316634.
    [128] Ryu M, Kim J D, Chin H U, et al. Three dimensional power receiver for in vivo robotic capsules.Medical and Biological Engineering and Computing,2007,45(10):9971002.
    [129] Gimm Y M, Yoo H S, Kia M J, et al. Receiving Coil Analysis of Wireless Power Transmission withInductive Coupling. Korea Japan Microwave Conference,2007:117120.
    [130] Carta R, Thoné J, Puers R. A3D Ferrite Coil Receiver for Wireless Power Supply of EndoscopicCapsules. Procedia Chemistry2009,1(1):477480.
    [131] Xin W H, Yan G Z, Wang W X. Study of a wireless power transmission system for an active capsuleendoscope. The International Journal of Medical Robotics and Computer Assisted Surgery,2010,6(1):113122.
    [132] Gao P, Yan G Z, Wang Z W, et al. A robotic endoscope based on minimally invasive locomotion andwireless techniques for human colon. The International Journal of Medical Robotics and ComputerAssisted Surgery,2011,7(3):256267.
    [133] Jia Z W, Yan G Z, Jiang P P, et al. Efficiency optimization of wireless power transmission systems foractive capsule endoscopes. Physiological Measurement,2011,32(10):1561.
    [134] Lenaerts B, Peeters F, PuersR. Closed loop transductor compensated class E driver for inductive links.4th International Conference on Solid State Sensors, Actuators and Microsystems,2007.
    [135] Carta R, Tortora G, Thone J, et al. Wireless powering for a self propelled and steerable endoscopiccapsule for stomach inspection. Biosensors and Bioelectronics,2009,25(4):845851.
    [136] Puers R, Carta R, Thon J. Wireless power and data transmission strategies for next generation capsuleendoscopes. Journal of Micromechanics and Microengineering,2011,21(5):115.
    [137] Ma G, Yan G, He X. Power transmission for gastrointestinal microsystems using inductive coupling.Physiological Measurement,2007,28(3):918.
    [138] Xin W, Yan G, Wang W. A stable wireless energy transmission system for gastrointestinalMicrosystems. Journal of Medical Engineering&Technology,2010,34(1):6470.
    [139] Roemer R B. Engineering aspects of hyperthermia therapy. Annual Review of Biomedical Engineering,1999,1:347376.
    [140]徐钤,王杰.基于IA4420的无线数据采集系统.单片机与嵌入式系统应用,2009,1:6263.
    [141]潘园园,颜国正,黄标.基于IA4420微型双向射频通信系统.测控技术,2006,25(5):8186.
    [142] International Commission on Non ionizing Radiation Protection (ICNIRP). Guidelines for limitingexposure to time varying electric, magnetic, and electromagnetic fields (up to300GHz). ICNRP:Oberschleissheim,1997.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700