窄进料旋风分离器分级性能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为了探索新型清晰切割分级方法,本文以Stairmand型旋风分离器为对象进行了窄进料分级性能的模拟与实验研究。模拟软件采用FLUENT6.2,气相流场选用k-εRealizable模型,颗粒相采用随机轨道模型。实验设备直径0.1m,进口气速6~15m/s,物料选用碳酸钙颗粒,粒径在0.1~36μm之间。本文所做主要研究工作如下:
     ⑴以切割粒径理论为基础,建立了求解d50的理论模型,其计算结果与实验结果的变化趋势基本一致。
     ⑵利用FLUENT6.2对其内部流场进行了数值模拟,分析了窄进料轴向位置、径向位置、进料速率、主体气速、湍流模型、湍流度对采用窄进料操作的旋风分级器分级的影响。结果表明:与全进料方式相比,窄进料能够得到更高的分级效率和更好的分级精度,但提高不大。
     ⑶利用相间耦合的随机轨道模型对窄进料操作的旋风分级器内的颗粒运动行为进行模拟,预测了不同粒径颗粒的运动轨迹,寻找颗粒相运动行为与流场的相互影响规律,阐述了窄进料分级的原理。结果表明,“短路流”、灰斗颗粒“返混”、“上灰环”等非理想因素是造成窄进料操作分级精度不高的主要原因。
     ⑷实验考察了主体气速、进料方式及入口质量浓度等参数对分级的影响。结果表明:主体气速与进料速率差别不大时,分级效率和分级精度较高。就分级精度与分级效率而言,窄进料比全进料略好,而点进料最好。随着入口质量浓度的增大,分级精度与分级效率降低。分级次数的增加可以提高分级效果。
     ⑸介绍了文丘里管进料的结构及分散机理,理论分析了文丘里管的进料原理,并且采用FLUENT软件对文丘里管内部的速度矢量、静压分布进行了模拟,进一步揭示了文丘里管进料原理。
     ⑹改进了原有分级设备,对其内部流场进行简单模拟,分析了其y=0纵剖面的静压、动压、速度等高线分布图及速度矢量、颗粒运动轨迹分布图。
     ⑺模拟了DS型、MC型与日本专利粉体分级机的内部流场与颗粒运动行为,分析了三种分级机y=0纵剖面的静压、动压、速度等高线分布图及速度矢量、流体迹线、颗粒运动轨迹分布图。
In order to develop new-type clear-cut classification method,the classification performance of a stairmand cyclone separator was studied with narrow feeding by simulation and experimentation.The gas flow field and particle track were simulated using FLUENT6.2 by k-εRealizable model and discrete random walk model respectively.The diameter of equipment is 0.1m,and gas velocity of inlet is 10m/s with the particle size range from 0.1μm to 36μm.The works are as following:
     (1) It was derivated the model of solving d50 on the basic of cut size theory. Theoretic computation and experimental results was inconsistent. The reason was that the influence of cone height on the critical size was not considered and the internal flow field of classifier was considered incompletely enough.
     (2) The internal flow field was simulated with FLUENT6.2.It was analyzed that the influence of the narrow feeding position and feeding rate and the main gas velocity and turbulence model and turbulence intensity on the collection efficiency in cyclone-classifier with narrow feeding operation. The computational and experimental results illustrated that the collection efficiency and classification precision of narrow feeding is higher than that of total feeding,but the change is small.
     (3) The moving behavior of solid particles in the cyclone-classifier with narrow feeding operation was simulated with discrete random walk model.The tracks of particles of different sizes was predicted.The interaction law between particles moving behavior and field was found.The classification principle with narrow feeding and the main reason of low classification precision were elaborated vividly. It was shown by particle track simulation results that the upside short circuit flow near vortex finder and the downside dust whirl in dust duct reduce classification precision and collection efficiency.
     (4) The influence of the main gas velocity and feeding method and inlet concentration on classification precision and collection efficiency were experimental studied.The results showed that classification precision and collection efficiency were high when the main gas velocity was close to feeding rate. Compared with classification results,the point feeding was best and the narrow feeding was better and the total feeding was worst. With inlet concentration increasing,the classification precision and collection efficiency were reducing.The bigger number of classifying times improves the classification effect.
     (5) The feeding structure and dispersion mechanism of the Venturi tube was Introduced.The internal velocity vectors and static pressure distribution in the Venturi tube were simulated used by Software of FLUENT6.2.The feeding Principle of Venturi tube was further revealed.
     (6) The original equipment was improved.Its internal flow field was simulated simply.The static pressure and dynamic pressure and velocity contours and velocity vector and particles moving trajectory distribution were analyzed simply at y=0 section.
     (7) The internal flow field and particles moving behavior of the DS-type classifier and MC-type classifier and powder classifier of Japanese patent were introduced and simulated simply.The static pressure and dynamic pressure and velocity contours and velocity vector and path lines and particles moving trajectory distribution in the three type classifiers above were analyzed simply at y=0 section.
引文
[1]李秋萍,邵国兴.气流分级技术的进展[J].化工装备技术,2002,23(5):10-15.
    [2]党君祥,李刚,钟圣俊.超细粉体在微型旋风分离器中的分级性能研究[J].中国粉体技术,2006,4(4):23-26.
    [3](日)小川明.气体中颗粒的分离[M].周世辉,刘隽人.北京:化学工业出版社出版, 1991:200-202 .
    [4]陶珍东,郑少华.用旋风分离器进行微细粉分级的可行性[J].化工装备技术, 1995,16(1):14-16.
    [5] Okano Satoru. Pneumatic classifier [P].JP Patent:11290783,1999-10-26.
    [6]董海生,阮孟法.旋风分离器[P].中国专利:ZL200520100256.6,2006-02-22.
    [7] Iwao Ikebuchi,Mamoru Nakano,Kazuo Fuse,Akira Ganze. Cyclone classifier[P].US Patent:4872973A1,1989-10-10.
    [8] Karl-Heinz Schwamborn,Ing. H.J. Smigerski. Cyclone collector and cyclone classifier[P].US Patent:5958094A1,1999-02-28.
    [9] Furuhata Toshikazu,Agawa Setsuo,Chin Koha. Air current classifier [P].JP Patent:2004230313,2004-08-19.
    [10] Kadota Takahiro,Uehara Kenichi,Kuroda Noboru. Cyclone classifier, flash drying system and toner [P].JP Patent:2007160298,2007-06-28.
    [11]门田孝洋,上原贤一,黑田升,小林正人.旋风分级器、气流干燥系统及由其制备的调色剂[P].CN:1966156A,2007-05-23.
    [12] John P. Whaley,Carl J. Gaul. Cyclone classifier[P].US Patent:4477339A1,1984-10-16.
    [13]陶珍东,郑少华,刘福田,王金祥,匡琦.双风道旋风式微细粉分级机的设计和研制[J].流体机械,1999,27(7):26-29.
    [14] Miura Satoru,Tamagaki Masashi,Nishida Akinori. Classifier[P].JP Patent:8131958,1996-05-28.
    [15] Lincoln T. Work. Cyclone classifier[P].US Patent:3042202A1,1962-07-03.
    [16] Fukui Haruo,Takashima Tateo. Cyclone type classifier[P].JP Patent:60183054,1985-09-18.
    [17] Nakagawa Koichiro,Takaoki Susumu,Sato Yoshiaki,Kiyohara Chizuru,Kikuchi Hisao. Cyclone classifier [P].JP Patent:2005205267,2005-08-04.
    [18] Ito Tomiaki, Makino Nobuyasu,Uehara Kenichi. Air classifier [P].JP Patent:7171504,1995-07-11.
    [19] Okano Satoru,Makino Nobuyasu,Uehara Kenichi,Watanabe Keiko. Pneumatic classifier [P].JP Patent:9225407,1997-09-02.
    [20] Okano Satoru. Powder classifier[P].JP Patent:2000176379,2000-06-27.
    [21] Okano Satoru. Powder classifier[P].JP Patent:2000202367,2000-07-25.
    [22] Albert H. Stebbins. Cyclone classifier[P].US Patent:1595259A1,1926-08-10.
    [23]汤义武,余加耕.新型旋流分级机的分级研究[J].化工装备技术,1996,17(5):1-4.
    [24]李秋萍,邵国兴.气流分级技术的进展[J].化工装备技术,2002,23(5):10-15.
    [25]蔡安江,张晓钟.超细粉碎旋风分级系统的设计[J].化工矿物与加工,2002,3(11):12-14.
    [26] Yamada Yukiyoshi,Fuyuki Tadashi,Iitani Koichi. Dry classifier of cyclone type [P].JP Patent:1075054,1989-03-20.
    [27] Makarenko V G,Makarenko M G,Borisova T V,Sotnikov V V. Cyclone-classifier[P].RU Patent:2209122,2003-07-27.
    [28]吴其胜,王京刚.超细气力分级机的发展[J].陶瓷,1996(2):16-20.
    [29] Matsuda Yuuichi. Cyclone classifier [P].JP Patent:52149666,1977-12-12.
    [30] Kakimoto Masayuki,Koyama Yuichi,Kobayashi Masato,Nishide Akio,Idekura Kenko,Yamanaka Hirofumi,Watanabe Masashi,Tazaki Ikuo. Air current type classifier, apparatus for producing small particle, and method for producing small particle [P].JP Patent:2006055838,2006-03-02.
    [31] Uehara Kenichi,Makino Nobuyasu,Sato Satoyuki. Pneumatic classifier [P].JP Patent:11290785,1999-10-26.
    [32]Makino Nobuyasu,Uehara Kenichi,Sugisawa Eisuke,Okano Satoru,Matsui Kazuyuki,Watanabe Keiko. Air current type classifier[P].JP Patent:10043692,1998-02-17.
    [33] Kado Masayuki,Kamura Yusuke,Kawashita Norio. Classifier and flow straightening device[P].JP Patent:2000157933,2000-06-13.
    [34] Inoue Atsushi.Air classifier[P].JP Patent:11216426,1999-08-10.
    [35] Sojo Yoshihiro.Classifier[P].JP Patent:2000107698,2000-04-18.
    [36] Morimoto Yoji,Oda Nozomi,Terada Hiroshi. Pneumatic classifier [P].JP Patent:11138103,1999-05-25.
    [37] Makino Nobuyasu,Uehara Kenichi,Sato Satoyuki.Air flow type classifier[P].JP Patent:10323623,1998-12-08.
    [38] Sugiyama Hiroyuki. Air classifier[P].JP Patent:2000189897,2000-07-11.
    [39] Shihara Shinichi . Cyclone classifier[P].JP Patent:2003225617,2003-08-12.
    [40] Makino Nobuyasu. Air current type classifier, vibrating device [P].JP Patent:2006289349,2006-10-26.
    [41] Tanaka Tetsuya,Saito Yoshihiro,Morii Kazuyoshi. Classifier [P].JP Patent:2000218236,2000-08-08.
    [42] Omatsu Shinichiro,Hattori Toshihiro. Airflow type classifier[P].JP Patent:2005193089,2005-07-21.
    [43] Tanaka Tetsuya,Saito Yoshihiro,Morii Kazuyoshi,Sugisawa Eisuke. Classifier and production of toner using IT [P].JP Patent:2000254589,2000-09-19.
    [44]鲁林平,叶京生,李占勇,刘玲.超细粉体分级技术研究进展[J].化工装备技术,2005,26(3):19-26.
    [45] Morimoto Yoji,Oda Nozomi,Terada Hiroshi . Pneumatic classifier [P].JP Patent:11138104,1999-05-25.
    [46] Morimoto Yoji,Oda Nozomi,Terada Hiroshi . Pneumatic classifier [P].US Patent:6269955B1,1999-05-25.
    [47] Boysan F.,Swithenbank J.,Ayers.W.H..Mathematical modeling of gas-particle flows in cyclone separators.In: Cheremisinof ed.Encyclopedia of Fluid Mechanics.vol.4. Houston:Gulf Pub.Co,1986.1307-1329.
    [48] B.Wang,D.L.Xu,K.W.Chu.Numerical study of gas–solid flow in a cyclone separator[J].Journal of Applied Mathematical Modelling,2006,30:1326-1342.
    [49]吴飞雪等.PV型旋风分离器内颗粒轨迹计算的初步探讨[J].石油化工设备技术, 1998,19(2):14-17.
    [50] Lim,K.S.,Kwon,S.B.and K,W.Lee.Characteristics of the collection efficiency for a double inlet cyclone with clean air[J].Aerosol Science,2003,34:1085-1095.
    [51]易林,王灿星.螺旋型旋风分离器两相流场的数值模拟[J].应用数学和力学, 2006,27(2):223-229.
    [52]魏新利,张海红,王定标,孟祥睿.旋风分离器内颗粒轨迹的数值模拟[J].郑州大学学报(工学版),2004,25(3):14-17,59.
    [53] Fluent Inc..Fluent User’s Guide[X].Fluent Inc.,2003.
    [54]韩占忠,王敬,兰小平.FLUENT:流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004.
    [55]陆厚根编著.粉体技术导论[M].第二版.上海:同济大学出版社,1998:163-165.
    [56](丹)A.C.霍夫曼,(美)L.E.斯坦因著.旋风分离器?原理、设计和工程应用[M].彭维明,姬忠礼译.北京:化学工业出版社出版, 2004:71-72 .
    [57](日)小川明.气体中颗粒的分离[M].周世辉,刘隽人.北京:化学工业出版社出版, 1991:200-202 .
    [58]陈明绍.除尘技术的基本理论与应用[M].北京:化学工业出版社出版, 1981:164-165.
    [59]倪文龙,周厚亮.双出风口旋风分离器的研究与应用[J].矿山机械,2006,34(10):53-55.
    [60]吴小林,严超宇等.双入口直切式旋风分离器流场内旋进涡核现象的研究[J].化工机械,2002,29(1):1-4,7.
    [61]沈恒根,党义荣等.双进口旋风器内流场的实验研究[J].西安建筑科技大学学报,1997,29(3): 275-277.
    [62]沈恒根,刁永发等.多进口旋风分离器单体性能的试验研究[J].环境工程,1998,16(4): 33-34,52.
    [63]郑安桥,苏亚欣,万鑫.不同进口形式方形分离器的试验研究[J].热能动力工程,2008,23(3): 293-297.
    [64]嵇鹰,张红波,田耀鹏,刘辉.进口位置对旋风分离器特性影响的数值模拟[J].金属矿山,2008(3): 127-129,140.
    [65] Ji Ying,Zhang Hongbo,Tian Yaopeng,Liu Hui.Numerical simulation of inlet position effect on cyclone separator performance[J].Metal Mine,2008(3): 127-129,140.
    [66]宋贤良,朱利.轴对称进口旋风分离器性能的研究[J].郑州工程学院学报,2000,21(4): 34-37.
    [67]张颖,高志.单、双进口旋风分离器颗粒相流场的数值模拟[J].机械工程师,2006,(2): 110-112.
    [68] Zhang Ying,Gao Zhi.Numerical modelling of the particle penetration through a single inlet and a double inlet cyclone[J].Mechanical Engineer,2006(2): 110-112.
    [69]倪文龙,徐玉哲.双出风口旋风分离器测试分析与应用[J].矿业工程,2006,4(4): 46-48.
    [70] NI Wenlong, XU Yuzhe.Testing and application of double-outlets cyclone separator [J].Mining Engineering,2006,4(4): 46-48.
    [71] WU Xaolin,YAN Chaoyu,SHI Mingxian. Research on the precession vortex core in the flow field of cyclone separators w ith double tangential inlet[J].Chemical Engineering & Machinery,2002,29(1):1-4,7.
    [72] YI Lin,WANG Canxing.Numerical simulation of three dimensional gas-particle flow in a spiral cyclone[J].Applied Mathematics And Mechanics, 2006,27(2):223-229.
    [73] Wei Xinli,Zhang Haihong,Wang Dingbiao,Meng Xiangrui. Numerical simulation of the paticles’track in a cyclone separator [J].Journal of Zhengzhou University:Eng Sci,2004,25(3):14-17,59.
    [74]倪文龙,王文杰.应用双出风口旋风分离器改造旋风选粉机[J].水泥,2003(2): 41-42.
    [75]刁永发,金巍巍.轴对称进口回转通道对旋风分离器分离特性影响的研究[J].化工机械,1999,26(3): 130-132,129.
    [76]沈恒根,张玮.旋风分离器进口回转通道气尘分离模型[J].西安建筑科技大学学报,1998,30(1): 44-46.
    [77]黄星玮,钱付平.旋风分离器入口结构改进及其对“短路流量”的影响[J].过滤与分离,2008(1): 8-10.
    [78] Huang Xinwei,Qian Fuping.Effect of the improvement of inlet geometry of cyclone separators on shortcut flow rate[J].Journal Of Filtration & Separation,2008(1): 8-10.
    [79]张立强,马春元,宋占龙,黄盛殊,潘光,张淼,李恒庆.浓缩型入口下排气旋风分离器流场和性能的数值计算[J].环境工程,2007,25(6): 43-46.
    [80]王宏伟,王建军,金有海.导叶式旋风管入口环形空间内气相流场数值模拟[J].石油化工设备,2006,35(2): 33-36.
    [81] Wang Hongwei, Wang Jianjun, Jin Youhai.Numerical simulation of the gas phase flow field in inlet annular space of a guide vane cyclone tube[J].Petro-Chemical Equipment,2006,35(2): 33-36.
    [82]罗晓兰,陈建义.入口含尘浓度对旋风分离器效率影响规律的研究[J].石油化工设备技术,1999,20(2): 8-10.
    [83]罗晓兰,陈建义.入口含尘浓度对PV型旋风分离器分离效率的影响及其计算方法[J].石油大学学报:自然科学版,1998,22(3): 63-66.
    [84]陈雪莉,吕术森,周增顺,张翎,于遵宏.一种新型旋风分离器气相流场实验研究和数值模拟[J].化学反应工程与工艺,2004,20(2): 139-145.
    [85] Chen Xueli,Lu Shusen,Zhou Zengshun,Zhang Ling,Yu Zunhong.Experimental study and numerical simulation of the flow field in a new cyclone—type separator[J].Chemical Reaction Engineering And Technology,2004,20(2): 139-145.
    [86]崔新立,金涌.超细粉分级技术综述[J].化学工程,1992(1):22-26.
    [87]陶珍东,郑少华.粉体工程与设备[M].化学工业出版社,2003,222-224.
    [88]Rosin P.,Rammler E.,Intelmann W.,“Grundlagen and Grenzen der Zyklonentstaubung”.Z ,Ver. Dtsch. Ing.,76,16,433(1932).
    [89] Lapple C. E.,“Gravity and Centrifugal separation”,Ind. Hyg., Quart.,11,40(1950).
    [90]Barth W.,“Berechnung und Auslegung von Zyklonab-scheidern auf Grund neuerer Untersuchungen”,Brennstoff-W?rme-Kraft,8,1(1956).
    [91]Muschelknautz.,“Auslegung von Zyklonabscheidern in der Technischen praxis”,Staub-Reinhalt der Luft,30,5,1(1970).
    [92] Stairmand C. J.,“The Design and Performance of Cyclone Separators”,Trans. I.Chem .,Eng., 29, 356-383(1951).
    [93]谭天佑等编著.工业通风除尘技术[M].北京:中国建筑工业出版社,1984年.
    [94] Leith D.,Licht W.,“The Collection Efficiency of Cyclone Type Particle Collectors-A new Theoretical Approach”,A.I.Ch.E.Symp.,Series No.126,68,196(1972).
    [95]卢寿慈,粉体加工技术,中国轻工业出版社,1999.
    [96]鲁林平,叶京生等,超细粉体分级技术研究进展,化工装备技术,26(3)2005.
    [97] Hiroshi,Morimoto, Toshihiko Shakouchi. Classification of ultra fine powder by a new pneumatic type classifier.Powder Technology, 2003, 131: 71- 79.
    [98]孙成林,我国超细粉碎与超细分级发展及问题,中国非金属矿工业导刊,2003,1: 42-44.
    [99]吴其胜,张少明,马振华,超细分级技术的现状与发展.硅酸盐通报,1997,6: 46-47.
    [100]冯平仓,气流分级原理及分级设备的最新进展,非金属矿, 1997,6: 37-39.
    [101]刘家祥,高效涡流空气分级机分级机理及开发,西安交通大学博士学位论文,2001.
    [102]韩英,尤官林,关于超细分级机几个问题的探讨,武汉化工学院学报,1999, 2: 40-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700