WL3200T压机液压系统的动态仿真研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
全自动液压压砖机是集机、电、液、气、计算机技术和陶瓷工艺技术高度一体化的高科技专用设备,也是当代世界陶瓷墙地砖生产线上最关键的装备。随着陶瓷工业技术的不断进步和发展,对陶瓷墙地砖自动液压压砖机液压系统的稳定性,可靠性、精确性及易操作性提出了越来越高的要求,对液压传动与控制系统的性能和控制精度等也提出了更高的要求。
     本文基于改善全自动液压压砖机液压系统的动态特性,针对WL3200T全自动液压压砖机液压系统,采用AMESim建模,建立WL3200T全自动液压压砖机压制过程的模型,并对此模型进行仿真实验,得出系统压制部分活塞运动速度和液压缸压力的动态特性曲线,为全自动液压压砖机系统设计和参数优化提供了依据。本文主要从以下几个方面进行研究并取得了一些成果。
     分析了WL3200T型压机液压系统的油路,对压机的工作原理及动作控制进行了初步的研究。
     以液压元件性能曲线为基础,运用AMESIM建立液压系统各相关液压元件的模型,进行仿真实验研究。验证理论的准确程度,反复修改数学模型,得到与实际非常接近的结果,把这个理论模型作为改进和设计类似元件或系统的依据。
     建立WL3200型压机液压系统压制的模型,并进行仿真实验,确立一套压机系统仿真模型,为以后进行类似的仿真提供参考,通过仿真实验,确定参数的调整范围,从而缩短液压系统的调试时间,达到节省时间,提升效率的目的。
     分析液压系统动态特征的主要参数,得出一些重要的性能曲线,对了解压砖机液压系统主油缸的压制力、活塞运行速度、动作时间及活塞的行程等参数以及各个元件间相互影响等起到重要的作用,从而为进一步的完善和提高现有的压砖机液压系统的动态性能提供理论依据。
Automatic Hydraulic Press is a High-tech equipment with the integration of machine, electricity, liquid, gas, computer technology and ceramic technology. It is also the most critical equipment of the ceramic wall and floor tiles production line in the modern world. With the development of ceramic industry, there is an ever-increasing demand for stability, reliability, accuracy and ease of the hydraulic press system. The hydraulic transmission and control system performance and control accuracy are also put forward higher requirements.
     Based on full-automatic hydraulic press to improve the dynamic characteristics of the hydraulic system, for WL3200T hydraulic system, using AMESim modeling, the process model for WL3200T automatic hydraulic press was set up. Then suppressed part of the piston velocity and dynamic characteristic curve about the Automatic Hydraulic Press were get, and provides the basis parameter and
     optimization of the system design. This paper studies the following aspects. Ansys the oil-road of the hydraulic system for the WL3200-type,study the working principle for the WL3200-type and motion controling.
     Based on the performance curve, AMESim was used to create models related the hydraulic system. Through simulation experiments, to verify the accuracy comparing the simulation results with experimental results and repeated amending to the model, until the experimental results is very close to this model, then make the model as a design improvement and similar components .
     Set up the hydraulic system model for the WL3200-type.Then the simulation was used for the simulation after a similar reference. Determine the parameters of the adjustment range, which reduce the hydraulic system debug time for the purpose of saving time, enhancing the efficiency, and achieving the aim of the simulation.
     The main parameters about the dynamic characteristics of the hydraulic system were analyzed. It can obtain a number of important performance curve .Through the dynamic simulation about the hydraulic system of the suppression, the relationship among the parts and parameters such as the suppress force of the main fuel tanks, piston speed, action time and piston stroke were know. And these are the theoretical basis for improving the performance of the existing hydraulic system.
引文
[1]张柏清编.全自动液压压砖机[M].南昌:江西科学技术出版社,2000:1-15.
    [2]冯长印,张柏清.国产陶瓷砖自动液压压砖机的市场与技术进步[J].陶瓷,2006,12:30-32.
    [3]冯长印,钱锦.国内陶瓷墙地砖自动液压压砖机发展现状及展望[J].中国陶瓷工业,1999(2):22-24.
    [4]冯长印,王琳,曹瑞涛.萨克米PH3590型全自动液压压砖机液压系统综合分析[J].陶瓷, 2004(05)
    [5]贺坚,许建清.大型自动液压压砖机的引进消化及其发展方向[J].中国陶瓷工业,1997(02).
    [6]冯长印,朱永豪.国内全自动液压压砖机的发展状况及问题[J].机床与液压,1997(9):22-23.
    [7]冯长印.国产液压压砖机的发展与技术进步[J].佛山陶瓷,2001(9):24-25.
    [8]冯长印,朱永豪.国外液压压砖机液压系统及其结构的发展和技术特点[J].机床与液压,1997(10):35-36.
    [9]冯长印.国外自动液压压砖机发展概况及其正确使用[J].陶瓷,1995(l): 44.
    [10]张康智.液压仿真软件的应用及其发展[J].科学之友(B版) ,2008(09).
    [11]邓习树,李自光.当前液压系统仿真技术发展现状及趋势[J].机床与液压,2003(1):20-22.
    [12]吴跃斌,谢英俊,徐立.液压仿真技术的现在和未来[J].液压与气动,2002(10):26-30.
    [13]陈鹰.面向创新的液压仿真技术[J].液压气动与密封,2003(11):22-23.
    [14]孙成通,陈国华,蒋学华,韩虎.液压系统仿真技术与仿真软件研究[J].机床与液压,2008,10.
    [15] S.J.Culley,M.J.Darlington,S.E.Potter and P.K.Chandlery.A Stage model approach to the automatic configuration of fluid power circuit based On machine learning[A].Proceeding of the 4th JHPS International Symposium on Fluid Power, Volume 6,Issue 2,February 2004, Pages 45-51.
    [16]刘国昌,王伟,韩虎.仿真软件HOPSAN在液压系统设计中的应用[J].机械制造与自动化,2006(04).
    [17]刘国昌,赵红波,曾庆良,韩虎.基于HOPSAN的液压系统仿真与应用[J].机床与液压,2006(11).
    [18]孙成通,韩虎,曾庆良.基于MATLAB液压系统仿真技术研究[J].煤矿机械,2007(07).
    [19]施阳等.Matlab精要及动态仿真工具Simulink[M].西安:西北工业大学出版社,1998:33-35.
    [20]丘铭军,赵航,姚培.AMESim软件及其应用[J].路面机械与施工技术,2005(8):60-61.
    [21]郁凯元,龙英文.具有Windows液压仿真技术的新进展[J].液压与气动,1997(1): 54-58.
    [22]李永堂,雷步芳.液压系统建模与仿真[M].北京:冶金工业出版社,2003,2:1.
    [23]赵文峰.控制系统设计与仿真[M].西安:西安电子科技大学出版社,2002:76-78.
    [24]常桂秀.液压仿真技术的应用与发展[J].邢台职业技术学院学报,2007(01) .
    [25]张柏清,戴哲敏,高文杰.KD3200型全自动液压压砖机的特点及液压系统分析[J].中国陶瓷工业,2000(02).
    [26]苏东海,于江华.液压仿真新技术AMESim及应用[J].机械,2006(11).
    [27]侯琳.引领CAE技术发展新方向“2007年世冠AMESim船舶行业技术研讨会”见闻[J].CAD/CAM与制造业信息化,2008(01).
    [28]余佑官,龚国芳,胡国良.AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005(03).
    [29] Wilfrid Marquis-Favre,Eric Bideaux,Serge Scavarda.A planar mechanical library in the AMESim simulation software[J].Simulation Modelling Practice and Theory,Volume 14,Issue 2,February 2006, Pages 95-111.
    [30] Richards CW.Numerical challenges posed by modelling hydraulic systems.Forum on design languages 98, Lausanne Switzerland[J]. AMESim Technical Bulletin,No.114.Imagine,France 1998:14.
    [31] N. Janse van Rensburg, J. L. Steyn, P. S. Els .Time delay in a semi-active damper: modelling the bypass valve[J].Journal of Terramechanics, Volume 39, Issue 1, January 2002, Pages 35-45.
    [32] Bideaux,E,Scavarda,S.Pneumatic library for AMESim[J].Fluid power system and technology,1998:185-195.
    [33] M.Vugdelija,Z.Stojanovic.Determination of a time step interval in hydraulic aystems transients simulation[J]. Advances in Engineering Software,2000.
    [34] Du H L, Nair S.Dynamic simulation of a large hydraulic capsule[J].Engineers,1997,16(4): 61-66.
    [35]李吉,李华聪.仿真软件AMESim应用研究[J].航空计算技术,2006(01) .
    [36]肖岱宗.AMESim仿真技术及其在液压元件设计和性能分析中的应用[J].舰船科学技术, 2007(1).
    [37] Yu ZZ, Xie YB. Study of the piston system structure of advantageous to low friction and economizing energy. In: Proceedings of the ASME internal combustion engine division 2006 Spring technical conference[J].Aachen, Germany; 2006. p. 615–24.
    [38] Y. Gao, Q. Zhang and X. Kong.Wavelet-based pressure analysis for hydraulic pump health diagnosis[J].Transactions of the ASAE,46 (4) (2003), pp. 969–976.
    [39] Liu Silan, C. Hung James. Pulsating parameter method for fault diagnosis for a hydraulic pump [A].IECON,(1991) 2145–2150.
    [40] C.Angeli and A.Chatzinikolaou.An expert system approach to fault diagnosis in hydraulic systems[J].Expert System,12 (4) (1995), pp. 323–329.
    [41]郭勇,王勇刚,叶鹏飞,袁燕萍.基于AMESim轴向柱塞泵的建模与仿真研究[J].现代制造工程,2008(11).
    [42]张成刚.插装阀在蝶阀液控装置中的应用[J].大众科技,2008(07).
    [43]孙灿兴,胡中望,黄人豪.二通插装阀在港口机械挂舱保护液压系统上的应用[J].流体传动与控制,2008(05).
    [44]郑淑丽.二通插装阀及其液压系统实例分析[J].山东科技大学学报(自然科学版),2003(02).
    [45]戴华勇.二通插装阀在双车翻车机液压系统上的应用[J].液压与气动,2007(01).
    [46] Wilfrid Marquis-Favre,Eric Bideaux,Serge Scavarda. A planar mechanical library in theAMESim simulation software. Part II: Library composition and illustrative example[J]. Simulation Modeling Practice and Theory,17 March 2005.
    [47]黄友尧.插装阀30吨电弧炉液压系统中应用的几个问题[J].液压气动与密封,1983(01).
    [48]韩文,赵丽霞.全自动液压压砖机中插装阀的静动态特性分析[J].机床与液压,2007(2).
    [49]李良光,冯长印.陶瓷砖压机中充液阀的结构分析与计算[J].山东陶瓷,2007(06).
    [50]张婷婷,李国梁.法兰连接式充液阀的设计与应用[J].锻压装备与制造技术,2006(06).
    [51]魏征宇.充液阀失效分析[J].锻压装备与制造技术,2006(04).
    [52]卢华峰,黄志坚.基于虚拟仪器的蓄能器性能测试系统的研究[J].机床与液压,2007(02).
    [53]黄志坚,卢华峰.蓄能器性能动态测试系统的开发与研究[J].液压与气动,2008(10).
    [54]左健民.液压与气压传动[M].北京:机械工业出版,1999(5):223-241.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700