基于气—固两相流分级原理及SLK粉煤灰分级机应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
涡流空气分级机广泛应用于粉煤灰分选,但较细的分级粒度要求与分级效率、分级精度、大处理量之间的矛盾,以及能耗高和部件磨损严重等仍亟待解决。本文根据与分级相关的粉煤灰物化特性,以气-固两相流理论为基础,研究颗粒的分级原理,提出SLK分级原理,通过气-固两相流数值模拟分析,结合实践经验进行SLK分级机结构设计,并进行模型机实验和工业应用实例分析。
     根据粉煤灰利用及其相关物化特性,以气体-固体颗粒两相流理论为基础,提出了集强制涡流分级、迅速分级、惯性预分级、气流密封、颗粒的气流预分散原理于一体的SLK分级原理和技术。运用强制涡流分级原理并进行改进,保证较高的分级效率和精度,以及较低的能耗;迅速分级以减少颗粒在分级区域内的滞留时间,从而减少团聚,减少颗粒反混,提高分级效率和精度,同时减少分级区速度梯度,分级构件的磨损小;惯性预分级可预分离部分粗颗粒,提高分级机的处理量;气流密封高速旋转叶片产生的高压气流进行密封,提高分级精度;气流预分散对物料进行预分散,有利于后续的分级,同时分离部分硬杂物,避免分级机构件损坏。
     运用两相流数值模拟技术对SLK分级结构进行分析,结果表明:内、外侧倾角均为30o的“Z”形转子叶片能有效消除强制涡流区易产生的惯性反旋涡现象,分级流场更加均匀和稳定;“L”形导流叶片使进入分级区的气流速度与转子边缘速度相当,实现迅速分级,同时缩小分级区气流速度差,减少叶片磨损;安装倾角为55o的“L”形导流叶片,使含料气体路径发生偏转,实现惯性分级;后倾角为60o的密封叶片、密封环低于叶片15~20mm的气流密封结构能有效阻止粗颗粒穿过;气流预分散系统采用凹形空腔物料分散锥和粗粉流化清洗装置,可实现颗粒的分散和预分离硬杂物。
     以分级理论分析和数值模拟结果为指导,并结合实践经验进行SLK分级机结构设计,包括“L”形导流叶片、“Z”形转子叶片、分级室结构、分级区环流空间结构、气流密封结构、悬浮式气流预分散系统、粗粉流化清洗装置。
     通过SLK-50型模型机实验和SLK-85应用实例,结果表明:SLK型分级机在较低转速下,所分选的成品就可达到Ⅰ级粉煤灰的粒度要求,而且分级效率平均可达85%左右。SLK分级机在较高的分级浓度下,仍能获得较高的分级细度、分级效率和分级精度,且分级磨损小、分级能耗有所改善。
Vortex air classifier is wide used to classify coal ash, but the contradiction among fine particle size and high classifying efficiency, high precise, high feeding capacity, as well as the high energy consumption and parts abrasion are all demanding prompt solution. Based on the physical and chemical characteristics related to particle classification of coal ash, theory of air solid two-phase was took to study classification principle, and SLK classification principle was put forward, air solid two-phase numerical simulation was adopted to analyze classification principle. With the combination of numerical simulation result and design experience, the structure of SLK classifier was designed, then put on classifying experiments on model SLK classifier and industry application analyze.
     Based on the application of coal ash, as well as physical and chemical characteristics related to particle classification of coal ash, SLK classification principle which was united forced vortex classification, rapid classification, inertia pre-classification, air sealing and material pre-dispersion by air flow was put forward. Forced vortex classification principle was applied and improved, in order to guarantee higher classifying efficiency and precise and lower energy consumption. Rapid classification was applied to the classification housing, to shorten the time particles resort in the classification zone, so particles agglomeration and back mixing can be reduced, to improve classifying efficiency and precise. And by applying of rapid classification, velocity gradient in the classification zone can be decreased, so lessen the parts abrasion. Parts of coarse particle can be separated by inertia pre-classification, and the result was promoting feeding capacity of classifier. High pressure air flow generated by high rotate speed vanes were applied to air sealing, improving classification precise. Material pre-dispersion by air flow was profit for later classification, and simultaneity parts of big stone mixing in the material were separated, avoiding damage of structure in the classifier housing.
     Air solid two-phase numerical simulation was adopted to analyze SLK airflow guiding structure, the results show that: inertia counter-rotation between plane rotor vanes could be reduced by using of Z-shape rotor vanes, the airflow between vanes was steady and uniformity. The velocity of airflow into the classification zone was close to velocity of outer edge of rotor by using of L-shape guide vanes, this principle could achieve rapid classification, and simultaneity speed difference in the classification zone could be reduced, to lessen abrasion of rotor vanes and guide vanes. Path of the air-solid flow was deflected by using of L-shape guide vanes which installing obliquity is 55o, this principle could achieve inertia pre-classification. The bypass of classifier was reduced by applying of air sealing structure which was composed of 60o obliquity vanes and seal ring whose height is lower 15~20mm than vanes. Particle dispersion and separation of big stone mixing in the material could be achieved by using of material dispersion concave cone in the material-dispersion-by-air-flow system.
     Based on the theoretical analyze and numerical simulation results, and combine with classifier design experience, the structure of SLK classifier was designed, which was composed of L-shape guide vanes, Z-shape rotor vanes, classification housing structure, circumfluence structure in the classification zone, air seal structure, structure of suspending material dispersion by airflow and device of coarse particles washed by airflow.
     The experiment results of SLK-50 model type and application program of SLK-85 proved that: the fine product of SLK classifier could achieveⅠgrade of national standard of coal ash under low rotor speed, and average classification efficiency was about 85%. The SLK classifier could achieve high degree of fineness and high classification efficiency and precise under large feeding capacity,
引文
[1] Ken-ichi Yamamoto, Mitsue Shiokari, Toshiaki Miyajima, Masunori Sugimoto.Sep- ation of differently shaped fine particles by a new wet shape separator-effects of sweep methods on the separation characteristics[J].Powder Technology,2002,125:74-81
    [2]张佑林.粉体的流体分级技术与设备[M].武汉:武汉工业大学出版社,1997:30-36
    [3]杨冰,邵友林,朱钧国等.包覆燃料颗粒的形状分选[J].原子能科学技术,2003,37 (增刊):53-55
    [4]郭丽杰.涡流空气分级机的流场特性和分散研究[D].北京:北京化工大学硕士学位论文,2003
    [5] Hiroshi Morimoto, Toshihiko Shakouchi.Classification oultrafine powder by a new pneumatic type classifier [J].PowderTechnology,2003,131(1) :71-79
    [6]刘继光,唐永河.CCX型分级机的分级机理及模拟试验[J].西南工学院学报,1996,11 (1):44-51
    [7]方莹,刘亚去,张少明.离心转子式分级机的分级机理[J].南京化工大学学报,2001,23 (6):18-22
    [8] M.Shapiro, V.Galperin.Air classification of solid particles: a review [J].Chemical Engineering and Processing,2005,44:297-285
    [9]李洪,李双跃,刘继光.干式空气分级机分类与设计概论[J].建材发展导向,2006,4 (2):63-66
    [10]刘继光,唐永河.空气分级机性能评价方法及其适用性[J].新世纪水泥导报,1997,2 (6):49-54
    [11]赵孝昆.分级机评价方法现存问题的探讨[J].新世纪水泥导报,2003,6:26-28
    [12]冯永国.涡流空气分级机结构与分级性能研究[D].北京:北京化工大学硕士学位论文,2007
    [13]盖国胜,王京刚,郑恒生.分级机性能的综合评价[C].第四届全国颗粒制备与处理学术会议论文集,1995,312-315
    [14]刘家祥,张宇.涡流空气分级机转笼转速和进口风速对物料分散效果和分级精度的影响[J].有色金属,2005,57(3) :81-85
    [15]盖国胜.超细粉碎分级技术[M].北京:中国轻工业出版社,2000:309
    [16]盖国胜.超细粉碎分级技术[M].北京:中国轻工业出版社,2000:310-311
    [17]赵孝昆.综合评价O-Sepa高效选分机[J].新世纪水泥导报,2004,3:22-24
    [18]李征宇.TES型涡流分级机的设计理念和结构特点[J].水泥技术,2003,6:16-20
    [19] M.Ito, K.Sutoh, T.Matsuda.New technology originating from the centrifugal air classifier O-SEPA [J].World Cement,1995,9:4-13
    [20]李秋萍,邵国兴.气流分级技术的进展[J].化工装备技术,2002,23(5) :10-15
    [21]郑水林.我国超细粉碎和精细分级技术进展[J].非金属矿,2000,23(6):5-8
    [22] J.Kolacz.Investigating flow conditions in dynamic air classification[J].Minerals Engineering,2002,15:131-138
    [23] A.Bauder,F.Muller,R.Polke.Investigations concerning the separation mechanism in deflector wheel classifiers[J].Int. J. Miner. Process,2004,74:147-154
    [24]刘家祥,张宇.涡流空气分级机转笼转速和进口风速度对物料分散效果和分级精度的影响[J].有色金属,2005,57(3):81-85
    [25]陈海焱,陈文梅,胥海伦.气流分级机操作参数对分级性能的影响[J].四川大学学报, 2006, 38(3): 87-91
    [26] L.Clerc,M.A.Minoux,A.Benhassaine.Pneumatic selection of fly ash: selection methods-influence of the operating parameters [J].Powder Technology,1999,105:172-178
    [27]叶涛.FJW涡轮分级机的分级机理研究[J].中国粉体技术,2006,1:40-42
    [28] Rubinow S I,Keller J J.Experimental determination of statistical properties of two-phase turbulent motion [J].Fluid Mech,1961,11(2):18-24
    [29] Odar F.J.Turbulent fluid and particle interaction [J].Fluid Mech,1966,25(3):30-34
    [30] Hon D. N. S.,Ou N. H..J.Polym Sci,1989,27(7):24-57.转引自黎国华.涡流分级机及其系统的性能研究与分级流场的计算机仿真[D].武汉:武汉理工大学博士论文, 2004
    [31] K·Leschonski.Classification of particles in the submicron range in an impeller wheel air classifier [J].KONA Powder and particle,1996,14:52-60
    [32]刘家祥,徐德龙,赵江平,许渝笙.涡流分级机内惯性反旋涡对颗粒分选的影响[J].西安建筑科技大学学报,1998,30(1):64-88
    [33]徐政.转子型气力分级机性能及流场模拟研究[D].北京:北京科技大学博士论文,1999
    [34]黎国华.涡流分级机及其系统的性能研究与分级流场的计算机仿真[D].武汉:武汉理工大学博士论文, 2004
    [35]杜妍辰,王树林.颗粒在涡轮式分级机分级轮中的运动轨迹[J].化工学报,2005,56(5):823-828
    [36]孙国刚,任智.涡轮式气流分级机的流场测量与分级粒径计算[J].化工冶金,1999(增刊):287-291
    [37]刘大成.粉体团聚及解决措施[J].中国陶瓷,2000,36(6):33-35
    [38]李慧钧,屈鸿屋.空气分级机机械式撒料盘的试验研究[J].水泥,1991,1:6-11
    [39]刘家祥,徐德龙.涡流分级机撒料盘的试验研究[J].水泥,1998,2:16-19
    [40]郭丽杰.涡流空气分级机的流场特性和分散研究[D].北京:北京化工大学硕士论文,2006
    [41]聂文平.涡轮式超细分级机分级流场的数值模拟研究[D].武汉:武汉理工大学硕士论文,2004
    [42]陶珍东,郑少华.粉体工程与设备[M].北京:化学工业出版社,2003:
    [43]徐政,盖国胜,卢寿慈.气力分级机叶片长度对分级区流场的影响的数值模拟研究[J].中国粉体技术,1999,5(6):9-12
    [44]黎国华,韩方亮,聂文平.一种新型叶片涡轮分级机流场的数值模拟[J].武汉理工大学学报·信息与管理工程版,2006,28(2):33-35
    [45]张国旺.超细粉碎设备及其应用[M].北京:冶金工业出版社,2005:150-157
    [46]李蔓球,邬传保,柳绮年.变频涡轮式分选机在电厂粉煤灰分选中的应用[J].粉煤灰综合利用,2004,1:34-36
    [47]石峰.我国粉煤灰分选技术的现状及发展前景的探讨[J].粉煤灰,2004,3:41-42
    [48]高志刚.粉煤灰分选技术在发电厂中的应用[J].河北电力技术,2006,25(4):45-48
    [49]茉莉访谈录首期访谈:平凡中的不凡,老管和他的绿色梦想: http://blog.china.alibaba.com/blog/honghu188/article/b0-i71642.html(2007.9.10)
    [50]许荣华.我国粉煤灰分选技术的发展及应用[J].粉煤灰,2001,1:30-33
    [51]陶珍东,郑少华.粉体工程与设备[M].北京:化学工业出版社,2003:
    [52]袁志毅.粉粒的轨迹-惯性分级[J].选矿机械,1994,3:10-13
    [53]韩怀强,蒋挺大.粉煤灰利用技术[M].北京:化学工业出版社,2001:7-9
    [54]刘晏晏.磨细粉煤灰掺合料在混凝土中的作用[J].广东建材,2004,6:32-33
    [55]孙恒虎,李宇等.凝石技术与循环经济[J].建材发展导向,2005,3(5):61-65
    [56]王福元,吴正严.粉煤灰利用手册[M].北京:中国电力出版社,1997:46
    [57]吴林丽,刘宜汉等.粉煤灰颗粒增强铝基复合材料的研究[J].东北大学学报(自然科学版),2003,24(6):583-585
    [58]刘文永.高掺量粉煤灰固结材料[M].北京:中国建材出版社,2007:9-10
    [59]佟庆理.两相流动理论基础[M].北京:冶金工业出版社,1982:2-3
    [60]王晓钧,杨南如等.磨机种类、水介质和机械热效应对粉煤灰研磨的影响[J].南京化工大学学报(自然科学版),2000,22(6):6-9
    [61]华彬,李春忠,胡黎明等.超细颗粒流化特性及团聚机理[J].过程工程学报,1994,15(4):349-354
    [62]钱觉时.粉煤灰特性与粉煤灰混凝土[M].科学出版社,2002:-
    [63]崔自治,王咏梅.粉煤灰与粉煤灰混凝土性能[J].宁夏工程技术,2005,4 (1) :90-92
    [64]何智海.浅谈粉煤灰效应和粉煤灰的激发[J].粉煤灰综合利用,2007,5:44-46
    [65]方丁酉.两相流动力学[M].长沙:国防科技大学出版社,1988:1-2
    [66]岑可法.气固分离理论及技术[M].杭州:浙江大学出版社,1999:1-3
    [67]岑可法.气固分离理论及技术[M].杭州:浙江大学出版社,1999:7-10
    [68]孔珑.两相流体力学[M].北京:高等教育出版社,2004:93-94
    [69]孔珑.两相流体力学[M].北京:高等教育出版社,2004:96-99
    [70] A.Haider,O.Levenspiel.Drag Coefficient and Terminal Velocity of Spherical and Nonspherical Particles[J].Powder Technology,1989,58:63-70
    [71] Li A and Ahmadi G.Dispersion and Deposition of Spherical Particles from Point Sources in a Turbulent Channel Flow [J].Aerosol Science and Technology,1992,16:209-226
    [72] Saffman P G.The lift on a small sphere in a slow shear flow[J].Fluid Mech,1965,(22):385~400
    [73]黄长雄.化学工程手册:颗粒及颗粒系统[M].北京:化学工业出版社,1989:76-77
    [74]刘家祥,何廷树,夏靖波.涡流分级机流场特性分析及分级过程[J].硅酸盐学报,2003,31(5):485-489
    [75] [日]小川明.气体中颗粒的分离[M].周世辉,刘隽人,译.北京:化学工业出版社,1991:3-5
    [76]容易,张会强,王希麟.气固两相圆湍射流颗粒对气相湍流调制的机理分析[J].工程热物理学报,2007,28(5):791-794
    [77]刘峰,黄海,席时桐.两相流中颗粒对连续相湍流的影响及计算模型[J].水动力学研究与进展,1992,7(3):327-330
    [78] Mitohiro ITO.Cut size Estimation In Centrifugal Air Classifers [J].Journal of TheSociety of Powder Technology,1991,8:28
    [79]周谟仁.流体力学泵与风机[M].北京:中国建筑工业出版社,1985:283-285
    [80] De Silva S R,Walsh D C.Air classification:computer model and experimental results[J].KONA(Japan.powder and particle),1991,9(2):13~16
    [81] [日]小川明.气体中颗粒的分离[M].周世辉,刘隽人,译.北京:化学工业出版社,1991:72-73
    [82]赵祥雄,陈合顺.RC-15高效秸秆揉搓机的设计[J].农机化研究,2006,(11):145-150
    [83]唐万有,卢晓江.动态密封装置的设计与应用[J].轻工机械,1998,(2):25-27
    [84] Pampachr , Haberkcy . Ceramic Powders[M] . Amsterdam:Elsevier Scientific Pub.Comany.1983:623-650
    [85]管义夫.静电手册[M].北京:科学出版社,1981:439-440
    [86]陆厚根.粉体技术导论[M].上海:同济大学出版社,1998:43
    [87]夏泰淳.工程流体力学[M].上海:上海交通大学出版社,2006:79-81
    [88]赵玲,辛振林,肖磊等.微粉体聚集颗粒的气流分散研究[J].化学反应工程与工艺,7(3):271-278
    [89]孙国刚,任智,时铭显.涡轮式气流分级机的流场测量与分级粒径计算[J].化工冶金,1999,20(增刊):287-293
    [90] Qianpu Wang,Morten Chr. Melaaen,Sunil R. De Silva.Investigation and simulation of a cross-flow air classifier [J].Powder Technology,2001,102:273-280
    [91]周力行.湍流两相流动与燃烧的数值模拟[M].北京:清华大学出版社,1991:9-40
    [92]岑可法,樊建人.工程气固多相流动的理论及计算[M].杭州:浙江大学出版社,1990:447-449
    [93] Shane A.Slater,John B.Young.The calculation of inertial particle transport in dilute gas-particle flows[J].International Journal of Multiphase Flow,2001,27:61-87
    [94]刘霞,葛新锋.FLUENT软件及其在我国的应用[J].能源研究与利用,2003,(2):36-38
    [95]韩占忠,王敬,兰小平.FLUENT流体工程仿真计算实例与应用[M].北京:北京理工大学出版社,2004:18-21
    [96] FluentInc.FLUENTUser’s Guide[Z].FluentInc,2003
    [97] D.A.Gorham,A.H.Kharaz.The measurement of particle rebound Characteristics [J].Powder Technology,2000,112:193-202
    [98] B.E. Lee,J.Y.Tu,C.A.J. Fletcher.On numerical modeling of particle–wall impaction in relation to erosion prediction:Eulerian versus Lagrangian method [J].Wear,2002,(252):179-188
    [99]刘家祥,徐德龙.涡流空气分级机环形区宽度对其分级指标的影响[J].水泥,2002,(6):32-35
    [100]任荣华.浅谈用空气输送斜槽输送粉状物料[J].山西机械,2003,119(2):55-61
    [101]杨传遍.影响空气输送斜槽输送粉煤灰的几个因素[J].粉煤灰,2002,24(2):24-28
    [102]昊其胜,张进韶,陈茂荣.如何用特劳姆曲线评价选粉机的性能[J].盐城工业专科学校学报,1996,9(1):17-20

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700