宝鸡地区黄土斜坡地质灾害危险性区划研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国约有1/3的滑坡、崩塌灾害发生于黄土地区,而黄土滑坡、崩塌是这些地区最常见的地质灾害之一。宝鸡地区的黄土地貌类型多,黄土地层全、分布广、厚度大,黄土颗粒细且均一,质地疏松、垂直节理发育。黄土具有的一些特殊的物理力学性质,使得该地区的黄土边坡经常发生滑坡、崩塌等地质灾害。其分布广泛、数量众多、规模巨大、性质复杂、危害严重,威胁着人民的生命财产、交通安全以及工农业设施安全,给该地区的生态环境和社会发展造成了严重的影响。本文在已经完成的地调项目的基础上进一步系统总结和提高,找出黄土地区斜坡灾害的规律性和主要诱发因素,实现黄土斜坡灾害的易发程度分区与危险性区划研究,为既有黄土斜坡灾害的防治提供依据。具体研究内容如下:
     (1)总结宝鸡地区黄土斜坡灾害发育特征:在宝鸡地区地质灾害调查的基础上,分析研究区内黄土斜坡灾害的分布特征及分布规律,研究影响宝鸡黄土灾害形成的内、外动力地质作用;
     (2)构建黄土斜坡灾害易发性评价的指标体系:以宝鸡地区黄土斜坡灾害为研究对象,根据研究区内黄土斜坡灾害特点,选取地形地貌特征、气象水文条件、工程地质岩组特征、地质构造单元、斜坡结构类型、人类工程活动等作为黄土斜坡灾害发育的主要影响指标,初步建立宝鸡地区黄土斜坡地质灾害易发性评价的指标体系和分级标准。
     (3)宝鸡地区黄土斜坡灾害易发性评价:利用信息量模型与ARCGIS相结合,根据地质灾害详细调查资料,提取影响因素图层并将其叠加,从而确定研究区评价指标的信息量值,据此划分宝鸡地区黄土斜坡地质灾害易发程度,最终获得研究区黄土斜坡地质灾害易发性分区图;
     (4)宝鸡地区黄土斜坡地质危险性评价:在宝鸡地区黄土斜坡地质灾害易发性评价的基础上,主要考虑降雨诱发作用,分析诱发因素导致黄土斜坡灾害的危险性,综合考虑黄土斜坡地质灾害危险性构成要素,从现有的黄土斜坡灾害稳定性、变形历史及高易发区内历史崩塌、滑坡的频率,对本区黄土斜坡地质灾害危险性进行区划研究,绘制宝鸡黄土地区危险性区划图。
In China, 1/3 of geological disasters occurred in the loess area, and the loess landslides are the most common disasters of geological disasters in these areas. In the region of Baoji, there are many types of loess landforms, and loess strata are distributied widely with large thickness, fine grains, and loose and uniform textures as well as vertical joints. Such special physical mechanical properties of loess make slope geological hazards, such as landslides and collapses, occur frequently with large scales and quantities, complicated features and serious consequences that threaten the pepole’s live and property, safety of traffic, industrial and agricultural facilities, and deteriorate ecological environment and hinder the social development of the region seriously. Based on the projects, on the basis of the finished geology survey, further systemic summarizing and improving, and find out regularity and the main inducing agent of the landslide disasters in the loess region, forming susceptibility and risk classification standard of landslides in the loess region of Baoji, then realize loess landslides susceptibility zoning and danger division, and provides the basis for the prevention of the loess landslide disasters. The specific research content as follows:
     (1) Summarizing the developmental characteristics of loess slopes disasters in the region of Baoji: On the basis of geological hazard survey in the loess region of baoji, then research the distribution characters of loess landslides, and study on endogenic and exogenic geological effect in the formation procedure of loess disasters in Baoji;
     (2) Constructing the hazard evaluation index system of loess slopes disasters: Landslides in loess region of Baoji as the research objects, according to research in loess landslide characteristics, the selection of the main influencing factors, such as landform features, meteorological hydrological conditions, engineering geology rock group characteristics, geological tectonic units, slope structure types, human engineering activities as loess landslide disaster, initially established risk evaluation index system and the classification standard of loess landslide in the region of Baoji;
     (3) The susceptibility evaluation of geological disasters of the loess slopes in Baoji: Make use of information model combined with ARCGIS, according to the detailed investigation data of the geological disaster, extracting influencing factors and superimposing, determining the value of index information using of information model and overlying the factors layers, hereby partition the degree of susceptibility landslide disaster of loess region in Baoji, eventually obtaining geo-hazard susceptibility zoning maps of loess landslide disaster area;
     (4) Hazard assessment of landslides in the loess region of Baoji: Based on the susceptibility evaluation of loess landslides geo-hazards in Baoji, take into account of rainfall which the main inducing agent, establish loess slope instability criterion Baoji, combine qualitative analysis with quantitative evaluation to analysis loess landslides hazards, consider the loess landslides hazards elements comprehensively, from the stability of the existing geological disaster, deformation history, the maximum distance of the potential slip, extended range frequency of history collapse and landslide. Establish the risk criterion and grading standards of loess landslides, evaluate the loess landslides hazards in Baoji, and draw up the landslide hazards zoning map for the loess region of Baoji.
引文
Brabb E. E., Panpeyan E. H, Bonilla M. G. Mmap of Landslide Susceptibility in San Mateo Country, California. US Geological Survey. 1972.
    Brabb E. E. Innovation Approachs to Landslide Hazard and Risk Mapping. Proc. Of 4th ISL, Toronto.1984: 307-323.
    Carrara, A., F. Guzzetti, M. Cardinali, P. Reichenbach. Use of GIS Technoloty in the Prediction and Monitoring of Landslide Hazard Natural Disaster. Natural hazards.1999. (2/3).
    Chaco’n J, Irigaray C, Fernapndez T, et al. Engineering geology maps : landslides and geographical information systems[J]. Bull Eng Geol Env , 2006 , 65 : 341-411.
    Dai, F.C., A Spatial~temporal Approach to Landslide Hazard Modeling Using Multi~temporal Aerial Photographs and GIS Technology. The Jockey Club Research and Information Centre for Landslip Prevention and Land Development, University of Hong Kong. 2002, P75.
    Graciela Metternicht, Dr. Alfred Zinck, J. Alfred Zinck. Remote sensing of soil salinization[M]. 2008. Guzzetti F , Reichenbach P , Cardinali M , et al . Probabilisticlandslide hazard assessment at t he basin scale [J] . Geomorphology , 2005 , 72 (124) : 272-299.
    Guzzetti F , Reichenbach P , Ardizzone F, et al . Estimating the quality of landslide susceptibility model s [J] . Geomorphology, 2006 , 81 (122) : 166-184.
    Hutchinson JN. GeneralReport: Morphologicaland geotechnical parameters of landslides in relation to geology and hydrogeology[C]. 5th International Symposium on Landslides. Switzerland Lausanne, 1988: 3-35.
    Lade P V. Static instability and liquefaction of loose fine Sandy slopes[J].Journal of Geotechnical Engineering, ASCE,1992,118(1): 51-71.
    P. Aleotti,R.Chowdhury.1999.Landslide hazard assessment: summary review and new perspectives. Bull Eng GeoI Env, 1999.58: 21-44.
    Poulos S J, CastroG, France JW. Liquefaction evaluation procedure[J]. Journal of Geotechnical Engineering, ASCE, 1985, 11(6): 772-791.
    SasaaK. Themechanism starting liquefied landslides and debris flows[C]. 4th International Symposium Landslide. 1984: 349-354.
    SassaK. Themechanism ofdebris flows[C]. 11th International Conference on SoilMechanics and Foundation Engineering. San Francisco, 1985: 1173-1176.
    Sasitharan S, Robertson PK, SegoD C,etal. Collapse behavior of sand[J].Canadian GeotechnicalJournal,1993, 30: 569-577.
    Sladen J A. DH' ollanderR D, Krahn J,et al.Back analysis of the Nerlerk berm liquefaction slides[J].Canadian Geotechnical Journal,1985, 22: 579-588.
    Sladen J A, D H' ollander R D, Krahn J. The liquefaction of sands, a collapse surface approach[J].Canadian Geotechnical Journal,1985, 22: 564-578.
    Skempton A.W. Residual Strength of clays in landslide, folded strata, and the laboratory[J]. Geotechnique, London, 1985, 35(1): 3-18.
    Terzaghi K, Peck R B. Soil Mechanics in Engineering Practice[M]. New York: JohnW iley, 1948.
    Terzaghi K, Mechanism of landslides.In5.Paige(ed) APP lieation of Geology to Engineering Practiee, GeologiealSocietyofAmeriea, Berkey, 1950:83—123.
    Ter-Stepanian, G. Creep of a clay during shear and its rheologica model[J]. Géotechnique, 1975, 25(2): 229-320.
    Van Dijke J J, Van Wesetn C J. Rockfall hazdar: A geomorphological application of neighbourhood analysis with IL WIS. ITC Journal, 1990, (l): 40-44.
    Van Westen, C.J., A. C. Seijmonsbergen, F. Mantovan. Comparing Landslide Hazard Evaluation: Three Case Support System for landslide Hazard Monitoring. Natural hazards.1999. 20(2/3).
    Van Westen C J , Van Asch T W J , Soeters R. Landslidehazard and risk zonation—why is it still so difficult [J] . BullEng Geol Env , 2005 , 64 : 5-23.
    Xu Junling. Recent study on the presumption of sluice valve and movement character of rapid landslides[J].The Chinese Journal of Geological Hazard and Control, 1997, 8(4): 23-27. [徐峻龄.再论
    高速滑坡的闸门效应及其运动特征[J].中国地质灾害防治学报, 1997, 8(4): 23-27.]
    曹淑良,油新华.降雨诱发滑坡的作用机理及其预测预报[J].工程地质学报. 2000, 8(增刊):104-106.
    陈亮,孟高头,张文杰,王保欣.信息量模型在县市地质灾害调查与区划中的应用研究—以浙江仙居县为例[J].水文地质工程地质, 2003, (5): 49-52.
    高宇.基于GIS的黄土地区滑坡危险性评价[D].博士论文. 2005.
    高克昌,崔鹏,赵纯勇,韦方强.基于地理信息系统和信息量模型的滑坡危险性评价——以重庆万州为例.岩石力学与工程学报, 2006. 25 (5) : 991~996.
    韩金良.陕西宝鸡陈仓区吴家湾滑坡风险评价[J].地质通报. 2009, 28(8): 1118-1120.
    韩恒悦,张逸.渭河断陷盆地地带的形成演化及断块运动[J].地震研究, 2002. 25(04): 362-368.
    胡广韬.滑坡动力学[M].北京:地质出版社, 1995.
    孔纪名.川东89.7暴雨过程中的红层滑坡.滑坡文集[M].铁道出版社, 1987.
    李滨.多级旋转型黄土滑坡演化机理研究[D].博士论文. 2009.
    李晓慧.宝成铁路凤县段地质灾害危险性评价[D].硕士论文. 2010.
    刘红玫,石玉成.黄土地区不同类型滑坡的特征及影响因素[J].西北地震学报, 2006, 28(4): 360-363.
    李军,周成虎.基于栅格GIS滑坡风险评价方法中格网大小选取分析[J].遥感学报, 2003, 7(2): 86-93.
    阮沈勇,黄润秋.基于GIS的信息量法模型在地质灾害危险性区划中的应用[J].成都理工学院学报, 2001, 28(1): 89-92.
    石菊松,张永双,董诚,等.基于GIS技术的巴东新城区滑坡灾害危险性区划[J].地球学报, 2005, 26(3): 275-282
    石菊松,石玲,吴树仁.滑坡风险评估的难点和进展[J].地质论评, 2007, 53(6): 797-806.
    石菊松.基于遥感和地理信息系统的滑坡风险评估关键技术研究[D].博士论文. 2008.
    陕西省滑坡工作办公室.陕西省滑坡分布图说明书(l:750000).西安:西安地图出版社. 1995.
    陕西省滑坡工作办公室.陕西省滑坡分布图、陕西省滑坡灾害预测图.西安:西安地图出版社. 1995.
    舒斯特R. T.等.滑坡的分析与防治[M].北京:中国铁道出版社, 1987.
    孙炜锋.千阳县千河谷地典型粘黄土区地质灾害危险性评价研究[D].博士论文. 2005.
    苏强.基于DEM的黄土滑坡危险性评价研究[D].博士论文. 2006.
    唐红梅,陈洪凯,唐芬等.重庆库区松散土体滑坡危险性分区及评价[J].灾害学, 2004, 19(l): l-6.
    王念秦.黄土滑坡发育规律及其防治措施研究[D].博士论文. 2004.
    王志荣,王念秦.黄土滑坡研究现状综述[J].中国水土保持[J]. 2004, 11, 16-18.
    王家鼎.高速黄土滑坡蠕滑动液化机理进一步研究[J].西北大学学报. 1999,29(1), 79-82.
    王涛,吴树仁,石菊松等.国际滑坡风险评估与指南研究综述[J].地质通报. 2009, 28(8): 1006-1019.
    王治华.大型个体滑坡遥感调查[J].地学前缘. 2006. 13(5): 516~523.
    王少东.四川雨季滑坡规律初步探讨.滑坡文集[M].中国铁道工业出版社, 1984(4).
    王发读.浅层堆积物滑坡特征及其与降雨的关系初探[J].水文地质工程地质. 1995(1): 22-24.
    吴树仁.突发地质灾害研究某些新进展.地质力学学报[J]. 2006, 12(2): 265-267.
    吴树仁,张永双,石菊松等.三峡库区重庆市奉都县滑坡灾害危险性评价[J].地质通报. 2007, 26(5): 574-582.
    吴树仁,石菊松,张春山等.地质灾害风险评估技术指南初论[J].地质通报. 2009, 28(8): 995-1005.
    吴柏清,何政伟,刘严松.基于GIS的信息量法在九龙县地质灾害危险性评价中的应用[J].测绘科学. 2008(04): 335-338.
    吴玮江,王念秦.黄土滑坡的基本类型与活动特征[J].中国地质灾害与防治学报, 2002, 13(2): 36-40.
    吴彩燕,乔建平.基于GIS与信息量模型的地层因素对三峡库区滑坡发育的影响关系.北京林业大学学报, 2007, 29(6): 138-142.
    向喜琼.区域滑坡地质灾害危险性评价与风险管理[D].四川:成都理工大学, 2005.
    谢守益,徐卫亚.降雨诱发滑坡机制研究[J].武汉水利电力大学学报, 1999, 32(1): 21-23.
    辛鹏.陕西省麟游县地质灾害危险性评价[D].硕士论文. 2010.
    晏同珍.滑坡定量预测研究的进展[J].地球科学. 1987.
    晏同珍.滑坡系统静动态规律及斜坡不稳定性空时定量预测[J].地球科学. 1989, 14(2): 117.
    晏同珍.滑坡学[M].武汉:中国地质大学出版社, 2000.
    杨秀梅.基于GIS的地质灾害危险性评价[D].甘肃:兰州大学, 2007.
    殷坤龙,朱良峰.滑坡灾害空间区划及GIS应用研究.地学前缘[J]. 2001. 8 (2): 279-283.
    张梁,张业成,罗元华,等.地质灾害灾情评估理论与实践[M].北京:地质出版社, 1998.
    张业成,胡景江,张春山,等.中国地质灾害危险性分析与灾变区划[J].海洋地质与第四纪地质, 1995, 15 (3): 55~67.
    张春山,何淑军等.陕西省宝鸡市渭滨区地质灾害风险评价[J].地质通报. 2009, 28(8): 1053-1063.
    张继贤. 3S支持下的滑坡地质灾害监测.评估与建模[J].测绘工程. 2005. 14(2): 1-5.
    张桂荣,殷坤龙.区域滑坡空间预测方法研究及结果分析[J].岩石力学与工程学报, 2005.24 (23) : 4297~4302.
    赵景波.陕西长安县杨湾坡面黄土含水条件研究[J].陕西师范大学学报, 2002, 30(3): 109.
    朱良峰,吴信才,殷坤龙,刘修国.基于信息量模型的中国滑坡灾害风险区划研究[J].地球科学与环境学报, 2004, 26(3): 52-53.
    朱阿兴,裴韬,乔建平,陈永波,周成虎,蔡强国.基于专家知识的滑坡危险性模糊评估方法[J].地理科学进展, 2006. 25 (4) : 1~12.
    朱丽娟.降雨对非饱和黄土边坡含水量变化规律分析[J].地下空间与工程学报. 2009, 5(1): 95.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700