工程断裂中的T应力及其对裂纹扩展路径的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
岩石、混凝土等工程材料中常含有裂纹这类缺陷,如何避免裂纹失稳扩展,导致整体结构的断裂,这是一个尤为重要的问题。裂纹的扩展主要是裂尖附近的应力集中所致。除了奇异项应力外,裂尖附近的常数项应力(即T应力)对材料中的裂纹扩展路径也起着决定性的作用。为了阐明工程材料中断裂参数与T应力之间的依赖关系,诠释裂纹扩展路径机理,在下列方面进行了比较深入而系统的理论分析和数值计算。
     1.在光弹实验中利用应力-光学定律,推导出应力强度因子K和T应力与扩展裂纹尖端附近等差线条纹级数之间的非线性关系式,再借助求解非线性方程组的最小二乘法确定应力强度因子K和T应力。对T应力在扩展裂纹尖端应力场中的影响进行研究,发现T应力的大小和正负影响裂纹扩展尖端的光弹条纹的形状大小及倾斜度。因此在模拟裂纹扩展路径有必要考虑T应力的影响,并且对裂纹顶端的塑性区的小范围屈服修正时也有必要考虑T应力。
     2.微裂纹尖端应力场中的T应力对裂纹扩展角和断裂韧度均有较大影响,这样造成传统最大周向应力断裂判据预测裂纹扩展角和断裂韧度结果偏差较大。本文提出了结合了T应力的修正最大周向应力断裂判据。在双轴压缩下的试件断裂中,将修正最大周向应力判据应用于模拟试件的压缩断裂。模拟扩展路径时,用指数函数来描述岩石类脆性材料中的裂纹粗糙界面退化,在扩展有限元模拟结果中发现结合了T应力判据的模拟结果和实验结果相一致。
     3.在非定常热弹性单边裂纹无限长板断裂中,本文利用叠加原理,通过傅立叶转换,求解出奇异积分方程。从理论上分析了在非定常状态下的温度场中,裂纹尖端应力场中的应力强度因子和T应力分别与Biot数、裂纹长度及时间的关系。理论计算结果和有限元计算结果比较吻合。同时在热荷载作用下的PMMA材料的断裂实验中,结合T应力的有限元模拟值比较符合实验结果。
     4.在混凝土三相材料中,引入弹簧层接触界面模型,理论计算得到了骨料和粘接层对应力强度因子和T应力影响,发现其对应力强度因子和T应力有很大的影响。由于T应力对裂尖塑性区有影响,通过建立双参数K-T模型来研究混凝土断裂的扩展路径和断裂韧度。在对Galve三点混凝土弯梁有限元模拟时,基于随机骨料结构,采用蒙特卡罗和Delaunay三角剖分原理,对混凝土试件随机骨料模型进行自动剖分,用三角形单元来模拟砂浆和骨料间的粘结带,并结合双参数K-T模型模型,模拟的裂纹扩展轨迹与试验结果获得的开裂轨迹范围吻合良好。
The crack is often contained in the rock, concrete and other engineering materials. It is particularly important problem that how to avoid the crack extension and finally result in fracture about the overall structure. Crack propagation is mainly caused by the stress concentration near the crack tip. In addition to the stress singularity, the constant term stress (ie. T-stress) that is near the crack also plays an important role in the crack propagation path. In order to clarify the relationship between the fracture parameters and T-stress, interpret of mechanism of crack propagation paths in the engineering materials, the in-depth and systematic theoretical analysis and numerical calculation are carried out. The main work includes the following parts:
     1. In photoelastic experiments, the non-linear relationship between the stress intensity factor (ie. K), T-stress and line stripes arithmetic progression that near the crack tip are deduced by using stress-optical law. And then the stress intensity factors and T-stress are determined by solving nonlinear equations using the least squares method. Through research on T-stress that in the crack-tip stress field, it is found that the T-stress's sign and magnitude can affect the crack tip photoelastic fringe shape, size and inclination. Therefore, it is necessary to consider the impact of T-stress in simulating the crack propagation path. It is also necessary to consider T-stress's effect when the small scale yielding plastic zone that at the top of the crack is amended.
     2. Because the micro-crack tip stress field's T-stress have a greater effect on the crack propagation angle and the fracture toughness, the results of crack growth and fracture toughness that are predicted by using traditional the maximum tangential (MTS) stress criterion have large deviations. The modified maximum tangential stress criterion that is combined with T-stress is presented. In biaxial compression fracture experiments, the modified MTS is applied to simulate the crack growth path. The exponential function is used to describe the rough interface degenerate of the rock's crack in the growth path simulated. It can be found that the modified MTS results by using the extended finite element method (XFEM) and the experimental results are consistent.
     3. The crack's stress problem in the strip plate aroused by heat exchange in a difference of temperature field is studied. In this paper, the superposition principle and the Fourier transform are used, singular integral equation are solved. The crack tip stress field's the stress intensity factor and T-stress respectively relation about the Biot number, the crack length and time are analysed in the unsteady state temperature field. The analysis results and the finite element simulation results are consistent. In the heat loads of the PMMA material fracture experiments, the finite element simulation results that combination of T-stress are more consistent with experimental results.
     4. In the three-phase materials concrete, the spring-layer interface model is introduced to calculate the stress intensity factor and T-stress when the influence of the aggregate and the bonding layer are considered. It is found that the aggregate and the bonding layer have great effect on the stress intensity factor and T-stress. Because the T-stress influence the crack tip plastic zone, the crack growth and the fracture toughness of the concrete are studied by using two-parameter K-T model. In this paper, the finite element simulate fracture about Galve concrete beam are completed. Because of based on the random aggregate, the concrete specimens random aggregate model are automatic partitioned by using the Monte Carlo and the Delaunay triangulation principle. The junction zone the between the mortar and aggregate is used by triangular element. The simulations of crack growth trajectory are consistent with the range of test results.
引文
[1]Griffith A A. The phenomena of rupture and flow in solids. Phil. Trans., Ser.A,1920,221:163~198
    [2]何庆芝,丽正能.工程断裂力学.北京:北京航空航天大学出版社,1993.
    [3]孙广忠.岩体结构力学.北京:科学出版社,1988.
    [4]杨卫.宏微观断裂力学.北京:国防工业出版社,1995.
    [5]Erdogan F, Sih G C. On the crack extension in plates under plane loading and transverse shear. Journal of Basic Engineering,1963,85(4):519~527.
    [6]Paris P C, Sih G C. Stress analysis of cracks. Fracture toughness testing and its applications. American Society for Testing and Materials:Philadelphia,1965,30~83.
    [7]Williams J G, Ewing P D. Fracture under complex stress-the angled crack problem. International Journal of Fracture 1972,8(4):441~446
    [8]Ueda Y, Ikeda K, Yao T. Characteristics of brittle fracture under general combined modes including those under bi-axial tensile loads. Engineering Fracture Mechanics 1983,18(6):1131~1158.
    [9]Williams M L. On the stress distribution at the base of a stationary crack. J. Appl. Mech.1957,24(1):109~114.
    [10]Larrsson S G, Carlsson A J. Influence of non-singular term and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. Journal of Mechanics and Physics and Solids,1973,21(4):263~277.
    [11]Rice J R. Limitations to the small scale yielding approximation for crack tip plasticity. Journal of Mechanics and Physics and Solids,1974,22(1):17-26.
    [12]Timoshenko S P. History of the strength of materials. New York:McGraw-Hill, 1953.
    [13]Todhunter I, Pearson K. History of theory of elasticity and the strength of materials. Cambridge:Cambridge University Press,1986.
    [14]Stanton T E, Batson R G. Proceedings of the Institute of Civil Engineering 211.1921:67~100.
    [15]Docherty J G. Slow bending tests on large notched bars. Engineering,. 1935,139:211-213.
    [16]Inglis C E. Stresses in a plate due to the presence of cracks and sharp corners. Transactionsof the Institute of Naval Architects,1913,55:219~241.
    [17]Griffith A A. The theory of rupture. Proceedings of the First Congress of Applied Mechanics.1924:55~63.
    [18]Stanton T E, Batson R G. Proceedings of the Institute of Civil Engineering 211.1921:67~100.
    [19]Irwin G R. Fracture dynamics in fracture of metals. Cleveland, Am. Soc. Metals, 1948:147~166.
    [20]Orowan E. Fracture and strength of solids. Reports on Progress in Physics,1948, Ⅻ:185.
    [21]Irwin G R. Analysis of stresses and strains near the end of a crack sversing a plate. Appl. Mech.1957,24:361~364.
    [22]Irwin G R. Plastic zone near a crack and fracture toughness. Sagamore Research Conference Proceedings.1961.
    [23]Dugdale D S. Yieldings in steel sheets containing slits. J. Mech. Phys. Solids. 1961,8:100~104.
    [24]Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture. Advances in Applied Mechanics.1962,Ⅶ:55~129.
    [25]Liebowitz H. fracture:an advanced treatise, Vol.1-Ⅶ, New York:Academic, Press,1968:1-Ⅶ.
    [26]Sih G C. Mechanics of fracture. Leyden:Noordhoff International Publishing, 1973-1979.
    [27]Tada H, Paris P C, Irwin G R. The stress analysis of cracks handbook. St. Louis: Paris Productions Inc.1985.
    [28]Rice J R. A path independent integral and the approximate analysis of strain concentration by notches and cracks. Appl. Mech.1968,35:379~386.
    [29]Cherepanov G P. On crack propagation in solids. Int. J. Solids. Structs. 1969,5(8):863~871.
    [30]Hutchinson J W. Singular behavior at the end of a tensile crack tip in a hardening material. Mech. Phys. Solids,1968,16:13-31.
    [31]Rice J R, Rosengren G F. Plane strain deformation near a crack tip in power-law hardening material. Mech. Phys. Solids,1968,16:1~12.
    [32]Eshelby J D. The continuum theory of lattice defects. Solid State Physice.1956
    [33]Gunther W. Uber einige randintegrae der elastomechanik Adhandlungen der Branschweigischen Wissenschaftlichen Gesellschaft.1962,14:53-72.
    [34]Begley J A, Landes J D. The J-Intergral as a fracture criterion. ASTM STP 514, American Society for Testing and Materials, Philadelphia.1972,1-20.
    [35]Rice J R, Prais P C, Merkle J G. Some further results of J-integral analysis and estimates, in Progress in Flaw Growth and Fracture Toughness Testing. ASTM STP 536, American Society for Testing and Materials, Philadelphia.213~245.
    [36]Hutchinson J W, Paris P C. Stability analysis of J-controlled crack growth. ASTM STP 668, Philadelphia. Ame, Soc. Testing & Mater.1979:37-64.
    [37]Paris P C, Tada H, Zahoor A, et al. Instability of the tearing model of elastic-plastic crack growth. ASTM STP 668, Philadelphia. Ame, Soc. Testing & Mater.1979:5-36.
    [38]Mcmeeking R M, Parks D M. Elastic-plastic fracture. ASTM STP 668, 1979,175~194.
    [39]Sih C F, German M D. Requirement for a one parameter characterization of crack tip fields by the HRR singularity. Int. J. Fract.1981,17(1):27~43.
    [40]Hancock J W, Cowling M J. Role of state of stress in crack tip failure processes. Matal Science.1980,14:293~304.
    [41]De Casttro, Spurrire J, Hancock P. An experimental study of the crack length/specimen width ration dependence for the crack opening displacement test using smale scale specimen. Fracture Mechanics, ASTM STP677, Philadelphia. 486~497.
    [42]李尧臣,王自强.平面应变Ⅰ型非线性裂纹问题的高阶渐进解.中国科学A.1986,2:182-194.
    [43]夏霖,王自强.平面应力问题的高阶渐进场.中国科学A.1992,5:512-519.
    [44]Xia L, Wang T C, Sih C F. High order analysis of crack tip fields in power law hardening materials. J. Mech. Phy. Solids.1993,41 (4):665~687.
    [45]Chao Y J, Yang S, Sutton M A. Asymptotic analysis of the crack tip fields to determine the region of dominance of the HRR solution. Proceeding of the 28th Annual Technical Meeting of the Society of Engineering Science.1991.
    [46]Yang S, Chao Y J, Sutton M A. Complete theoretical analysis for high order asymptotic terms and the HRR zone at a crack tip for Mode I and Mode II loading of a hardening materials. Acta Mechanica.1993,98(1-4):79~98.
    [47]Betegon C, Hancock J W. Two-parameter characterization of elastic-plastic crack tip fields. J. Applied Mechanics.1991,58(1):104~111.
    [48]Sharma S M, Aravas N. Determination of high-order terms in asymptotic elastic-plastic crack tip solutions. J. Mech. Phys. Solids.1991,39(2):1043-1072.
    [49]Dowd N P, Shih C F. Family of crack tip fields characterized by a triaxiality parameter-Ⅰ.Structure of fields. Journal of the Mechanics and Physics of Solids, 1991,39(8):989~1015.
    [50]Bilby B A, Cottrell A H, Swinden K H. The spread of plastic yield from a notch. Proc, Roy. Soc. London, Ser, A.1963,272:304~314.
    [51]Dugdale D S. Yielding in steel sheets containing slits. Mech. Phys. Solids, 1960,8(2):100~108.
    [52]Barenblatt G I. The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl.Mech. New York, Academic Press,1962,7:55~129.
    [53]Cottrell A H. Mechanisms of fracture. Tewksbury Symposium on Fracture,1963, 1-27.
    [54]徐纪林,王自强.平面应力的弹塑性断裂模型及其有限元分析.固体力学学报.1980,2:183-193.
    [55]Wells A A. Application of fracture mechanics at and beyond general yielding. British Welding Journal.1963,10:563~570.
    [56]Burderkin F M, Stone D E W. The crack opening displacement approach to fracture mechanics in yielding materials. The Journal of Strain Analysis for Engineering Design.1966,1(2):145~153.
    [57]Smith D J, Ayatollahi M R, Pavier M J. The role of T-stress in brittle fracture for linear elastic materials under mixed-mode loading. Fatig. Fract. Engng. Mater. Struct, 2001,24(2):137~150.
    [58]Cotterell B, Rice J R. Slightly curved or kinked cracks. Int. J. Fract. 1980,16(2):155~169.
    [59]Lo K K. Analysis of brached cracks. J. Appl. Mech.1978,45:797~802.
    [60]Gao H, Chiu C. Slightly curved or kinked cracks in anisotropic elastic solids. Int. J. Solids. Struct.1992,29(8):947~972.
    [61]Azhdari A, Nemat S. Energy-release rate and crack kinking in anisotropic brittle solids. J. Mech. Phys. Solids.1996,44(6):929~951.
    [62]Moon H J, Earmme Y Y. Calculation of elastic T-stress near interface crack tip under in-plane and anti-plane loading. Int. J. Fract.1998,91 (2):179~195
    [63]Jayadevan K R, Narasimhan R, Ramamurthy T S. A numerical study of T-stress in dynamically loaded fracture specimens. Int. J. Solids. Struct. 2001,38(28):4987~5005.
    [64]Shin D K, Lee J J. Numerical analysis of dynamic T-stress of moving interfacial crack. Int. J. Fract.2003,119(3):223~245.
    [65]Chen Y Z. Closed form solutions of T-stress in plane elasticity crack problems. Int. J. Solds Struct.2000,37(11):1629~1637.
    [66]Selvarathinam A S, Goree J G. T-stress based fracture model for cracks in isotropic materials. Engng.Fract.Mech.1998,60(5):543~561.
    [67]Irwin G R, Dally J W, Kobayashi T. On the determination of the a-K relationship for birefringent polymers.1979,19(4):121~128
    [68]Dally J W, Sanford R J. Classification of stress-intensity factors from isochromatic-fringe patterns. Exp. Mech.1978,18(12):441-448.
    [69]Kobayashi A S, Mall S. Dynamic fracture toughness of homalite-100. Exp. Mech.1978,18(1):11~18.
    [70]Mall S, Kobayashia A S, Urabe Y. Dynamic photoelastic and dynamic finite-element analyses of dynamic-tear-test specimens. Exp. Mech. 1978,18(12):449~456.
    [71]Freund L B. Dynamic crack propagation. Mech. Fract.1976,5:105~134.
    [72]Nishioka T, Atluri S N. Path. Path-independent integrals, energy release rates, and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics. Eng. Fract. Mech.1983,18(1):1-22.
    [73]Hawong J S, Kobayashi A S, Dadkhah M S. Dynamic crack curing and braching under biaxial loading. Experimental Mechanics.1987,27(2);146~153.
    [74]李贺.岩石断裂力学.重庆:重庆大学出版社,1988.
    [75]郭少华,孙宗颀,谢晓晴.压缩条件下岩石断裂模式与断裂判据的研究.岩石力学与工程学报.2002,24(3):304-308.
    [76]黎振兹,张静宜.岩石断裂力学测试与理论研究.中国有色金属学报.1994,4(4):18-21
    [77]Larrsson S G, Carlsson A J. Influence of no-singular term and specimen geometry on small-scale yielding at crack tips in elastic-plastic materials. Journal of Mechanics and Physics and Solids,1973,21(4):263~277.
    [78]Ayatollahi M R, Aliha M R M. Fracture toughness study a brittle rock subjected to mixed mode I/II loading. Rock Mechanics and Mining Sciences 2007,44(4):617~624.
    [79]张梅英,尚嘉兰.单轴压缩过程中岩石变形破坏机理.岩石力学与工程学报.1998,17(1):1-8.
    [80]周建平,李爱丽.含微纹弹性体的应力应变关系.力学学报.1994,26(1):49-59.
    [81]尹光志,鲜学福.岩石细观断裂过程的分叉与混沌特征.重庆大学学报(自然科学版).2000,23(2):56-59..
    [82]Fett T, Rizzi G.. Weight functions for stress intensity factors and T-stress for oblique cracks in a half-space. Int. J. Fract,2005,132(1):9-16.
    [83]McClintock F A, Walsh J B. Fraction on Griffith cracks in rocks under pressure. 4th U. S. National Congress for Applied Mechanics. Berkeley, California. 1962:1015~1021.
    [84]Brace W F, Bombolakis E G.. A Note on Brittle Crack Growth in Compression. Journal of Geophysical Research.1963,68(12):3709~3713.
    [85]Murrell S A F, Digby P J. The theory of brittle fracture initiation under triaxial stress conditions. Geophysical Journal of the Royal Astronomical Society. 1970,19(5):449~551.
    [86]Hoek E, Bieniawski Z T. Brittle fracture propagation in rock under compression. International Journal of Fracture.1965,1(3):137~155.
    [87]文丕华.岩石钝裂纹表面闭合与摩擦效应的研究.水利学报1989,20(2):60-66.
    [88]Patton F D. Multiple modes of shear failure in rock. In:Proceedings of the First Congress ISRM, Lisbon,1966.509~513.
    [89]Barton N, Choubey V. The shear strength of rock joints in theory and practice. Rock Mech. Rock. Eng.1977:10(1-2):1~54.
    [90]Plesha M E. Constitutive models for rock discontinuities with dilatancy and surface degradation. Int. J. Numer. Anal. Meth. Geomech.1987,11 (4):345~362.
    [91]Belytschko T, Black T. Elastic crack growth in finite elements with minimal remeshing. International Journal for Numerical Methods in Engineering. 1999,45:601~620.
    [92]Moes N, Dolbow J, Belytschko T. A finite element method for crack growth without remeshing. International Journal for Numerical Methods in Engineering. 1999,46:131~150.
    [93]Daux C, Moes N, Dolbow J, et al. Arbitrary branched and intersecting cracks with the extended finite element method. International Journal for Numerical Methods in Engineering.2000,48:1741~1760.
    [94]李录贤,王铁军.扩展有限元法(XFEM)及其应用.力学进展.2005,35(1):5-20.
    [95]Dolbow J, Moes N, Belytschko T. An extended finite element method for modeling crack growth with frictional contact. Computer Methods in Applied Mechanics and Engineering.2001,190:6825~6846.
    [96]Khoei A R, Nikbakht M. An enriched finite element algorithm for numerical computation of contact friction problems. International Journal of Mechanical Sciences.2007,49:183~199.
    [97]方修君,金峰,王进廷.基于扩展有限元法的粘聚裂纹模型.清华大学学报(自然科学版).2007,47(3):344-347.
    [98]Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by mean of fracture mechanics and finite elements. Cem Concr Res 1976,6(6):773~782.
    [99]Lim I L, Johnston I W, Choi S K, et al. Fracture testing of a soft rock with semi-circular specimens under three-point bending. Int. J. Rock. Mech. Min. Sci Geomech. Abstr.1994,31(3):199~212.
    [100]Schmidt R A. A microcrack model and its significance to hydraulic fracturing and fracture toughness testing. Proceedings of 21st US Symposium Rock Mechanics 1980.581~590.
    [101]Ayatollahi M R, Aliha M R M, Hassani M M. Mixed mode brittle fracture in PMMA—an experimental study using SCB specimen. Mater. Sci. Eng. 2006,417(1-2):348~356.
    [102]Zien H M. Fracture mechanics J-integral calculations in thermo-elasto-plasticity. Computers & Strustures.1983,17(5-6):775~781.
    [103]Barr D T, Cleary M P. Thermoelastic fracture solutions using distributions of singular influence functions—Ⅰ:Determining crack stress fields from dislocation distributions. International Journal of Solids and Structures.1983,19(1):73~82.
    [104]Panasyuk V V, Savruk M P. Plane problems of thermal conductivity and thermo-elasticity for bodies with cracks. Usp. Mekh.1984,7(2):75~115.
    [105]Ram D k, Parhi H K. Thermal stresses in an orthotropic elastic half-plane weakened by a Griffith crack. Journal of Mathematical and Physical Sciences. 1983,17:1~19.
    [106]Belen V D. One case of closure of a crack in a temperature field. Materials Science.1983,18(5):418~421.
    [107]Barsoum R S. On the use of isoparametric finite elements in linear fracture mechanics. Int. J. Num. Meth. in Eng.1976,10:25~37.
    [108]Ting V C, Jacobs H R. Stress intensity factors for transient thermal loading of a semi-infinite medium. J. Thermal Stresses.1979,2:1~13.
    [109]A1-Shayea N A, Khan K, Abduljauwad S N. Effects of confining pressure and temperature on mixed-mode (I-II) fracture toughness of a limestone rock. International Journal of Rock Mechanics and Mining Sciences.2000,37(4):629~643.
    [110]Funatsu T, Seto M, Shimada H. Combined effects of increasing temperature and confining pressure on the fracture toughness of clay bearing rocks. International Journal of Rock Mechanics and Mining Sciences.2004,41 (6):927~938
    [111]Wong T F. Effects of temperature and pressure on failure and post-failure behavior of westerley granite. Mechanics of Materials.1982,1:3-17.
    [112]许锡昌,刘泉声.高温下花岗岩基本力学性能初步研究.岩土工程学报.2000,22(3):332-335.
    [113]张静华,王靖涛,赵爱国.高温下花岗岩断裂特性的研究.岩土力学.1987,8(4):11-16.
    [114]Kokini K, Long M A. Transient thermal fracture of cracked plates. Experimental Mechanics.1988,28(4):373~381.
    [115]Carslaw H S, Jaeger J C. Conduction of heat in solids. Oxford University Press. 1959.
    [116]Gatewood B E.热应力.(魏信方,邵成勋,等译).北京:科学出版社,1964
    [117]Gradstein I S,Ryzik I M. Tables of integrals, sum, series and products. Moscow:Science,1971.
    [118]Yang B, Ravi Chandar K. Evalution of elastic T-stress by the stress difference method. Engineering Fracture Mechanics.1999,64:589~605.
    [119]Gupta G D, Erdogan F. On the numerical solution of singular integral equations. Quarterly of Applied Mathematics.1972,29:525~534.
    [120]Wang L, Park J Y. Fu Y. Representation of real particles for DEM simulation using X-ray tomography. Constr. Build. Mater.2007,21(2):338~346.
    [121]徐世娘,赵国藩.混凝土断裂力学研究.大连:大连理工大学出版社,1991.
    [122]Wecharatana M, Shah S P. Slow crack growth in cement composites. Journal of Structure Division, ASCE,1980,106(2):42~55.
    [123]徐世娘.混凝土双K断裂参数计算理论及规范化测试方法.三峡大学学报.2002,24(1):1-8.
    [124]Ashraf R M, Will Hansen. Micromechanical modeling of crack-aggregate interaction in concrete materials. Cement & Concrete Composites 1999,21(5):349-359.
    [125]Hyunwook Kim, Michael P, Wagoner. Numerical fracture analysis on the specimen size dependency of asphalt concrete using a cohesive softening model. Construction and Building Materials 2009,23(5):2112-2120.
    [126]Hillerborg A, Modeer M, Petersson P E. Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements, Cement Concr Res.1976,6(6):773~782.
    [127]Aboudi J. Damage in composites-modeling of imperfect bonding. Composites Science and Technology.1987,28:103~128.
    [128]Achenbach J D, Zhu H. Effect of interfacial zone on the mechanical behavior and failure of fiber reinforced composites. Journal of the Mechanics and Physics of Solids.1989,37:381~393.
    [129]Bigoni D, Serkov S K, Valentini M, Movchan A B. Asymptotic models of dilute composites with imperfectly bonded inclusions. International Journal of Solids and Structures 1988,35:3239~3258.
    [130]Sudak L J, Ru C Q, Schiavone P. A circular inclusion with inhomogeneously imperfect interface in plane elasticity. Journal of Elasticity 1999,55:19~41.
    [131]Muskhelishvili N I. Some Basic Problems of the Mathematical Theory of Elasticity. P. Noordhoff. Ltd., Netherlands.1963.
    [132]刘光廷,王宗敏.用随机骨料模型数值模拟混凝土材料的断裂.清华大学学报(自然科学版).1996,36(1):84-89.
    [133]高政国,刘光廷.二维混凝土随机骨料模型研究.清华大学学报(自然科学版).2003,43(5):710-714.
    [134]Schutter G. D E, Taerwe L. Random Particle model for concrete based on Delaunay triangulation. Materials and Structures.1993,26:67~73.
    [135]Bruggia M, Casciatib S, Faravellia L. Cohesive crack propagation in a random elastic medium. Probabilistic Engineering Mechanics.2008,23:23~35.
    [136]Monteiro A N, Lemos J V. A generalized rigid particle contact model for fracture analysis. International Journal for Numerical and Analytical Methods in Geomechanics.2005,29(3):269~285.
    [137]唐欣薇,张楚汉.随机骨料投放的分层摆放法及有限元坐标的生成.清华大学学报.2008,48(12):2048-2052.
    [138]Wittmann F H, Roelfstra P E, Sadouki H. Simulation and analysis of composite structures. Mater. Sci. Engng.1984,68:239~248.
    [139]Bazant Z P, Tabbara M R, Kazemi M T, et al. Random particle model for fracture of aggregate or fiber composites. J. Engrg. Mech.1990,116(8):1686~1705.
    [140]Schorn H, Rode U. Numerical simulation of crack propagation from microcracking to fracture. Cem. Concr. Compos.1991,13(2):87~94.
    [141]Schlangen E, van Mier J G M. Simple lattice model for numerical simulation of fracture of concrete materials and structures. Mater Struct.1992,25(9):534~542.
    [142]王宗敏,邱志章.混凝土细观随机骨料结构与有限元网格剖分.计算力学学报.2005,22(6):728-732.
    [143]裴鹿成,王仲奇.蒙特卡罗方法及其应用.北京:海洋出版社.1998.
    [144]Schlangen E. Van Mier J G M. Simple lattice model for numerical simulation of fracture of concrete materials and structures. Materials and structures. 1992,25(9):534~542.
    [145]Walraven J C, Reinhardt H W. Theory and experiments on the mechanical behavior of cracks in plain and reinforced concrete subject to shear loading. HERON. 1981,26(1A):26-35.
    [146]Du Z Z, Betegon C, Hancock J W. J dominance in mixed mode loading. International Journal of Fracture 1991,52:191-206.
    [147]谢奇,吕运冰.Ramberg—Osgood形幂硬化材料的硬化系数及硬化指数的确定.武汉交通科技大学学报.1996,20(3):319-322.
    [148]Galvez J C, Elices M, Guinea G V, Planas J. Mixed mode fracture of concrete under proportional and nonproportional loading. International Journal of Fracture 1998,94:267~284.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700