生物质高效水解及发酵产氢的机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着环保要求的日益严格和化石能源的日益短缺,氢能作为清洁高效的可再生能源受到人们的普遍重视。本文针对农业废弃生物质秸秆以及世界十大恶性杂草之一的水葫芦进行了厌氧发酵产氢实验研究。
     首先针对稻草秸秆,在比较酶水解和酸水解优缺点的基础上,确定了纤维素酶水解的绿色工艺。研究了预处理方法、反应时间、水解温度及pH值等因素对稻草秸秆纤维素酶水解的还原糖转化率的影响规律,确定了稻草秸秆微生物发酵产氢前采用纤维素酶水解时,pH为4.8以及反应温度为50℃的较佳工况点。
     稻草秸秆的水解效果是发酵产氢的关键点之一,本文提出了生物质超临界水高效降解以及微生物发酵产氢,采用稻草秸秆近临界水解在280℃和20Mpa等优化条件下获得了较高的还原糖转化率。并分别讨论了物料浓度、水解温度、水解压力以及水解反应时间等参数对稻草秸秆近临界水降解还原糖转化率的影响。采用色质联机分析技术对液体产物中糖以外的副产物进行了深入分析,发现产物中主要成分为一些含甲基、乙基、甲氧基、羟基等官能团的酮类、醛类、醇类和酸类极性化合物。采用一级均相反应模型模拟了试验数据,得到了与实验数据吻合较好的动力学反应曲线。
     在纤维素酶水解的基础上,分别讨论不同的预处理方式、不同来源的混合菌群以及不同的菌群接种方式对稻草秸秆发酵产氢的影响。由于秸秆水解产物中包含多种还原糖,其中五碳糖木糖的发酵液相产物中丙酸含量偏高,乙酸、丁酸含量较低,导致NADH含量较低,因此其发酵产氢能力低于六碳糖。这也是不同发酵底料发酵产氢存在差异的原因之一。针对不同糖源,讨论了产气肠杆菌以及混合菌群发酵产氢特性。由于混菌间的协同作用,因此混菌的发酵能力优于纯菌。而混菌发酵产氢也会因为菌群来源以及接种方式的不同而有所差异。在上述研究的基础上,讨论了温度、pH值以及稻草秸秆粒径等影响因子对发酵产氢的影响。并通过修正的Gompertz方程拟合发酵产氢动力学曲线。经过NaOH预处理后的稻草单位最大总产氢量可达到91.5mL/g,最高产氢速率为1.52mL/h·g。
     在稻草秸秆发酵产氢研究的基础上,采用厌氧活性污泥为接种物,以水葫芦作为发酵底料进行产氢实验研究。针对水葫芦不同部位对于水域内金属离子吸附能力的差异性,考察了水葫芦不同部位的发酵产氢能力,并在此基础上通过讨论不同金属Fe~(2+)、Mg~(2+)、Cu~(2+)、Ni~(2+)、和Zn~(2+)离子及其浓度对发酵产氢的影响,提出过量的金属离子对于微生物发酵产氢存在抑制作用,从而导致了水葫芦不同部位发酵产氢能力的差异。在实验室三角烧瓶的实验基础上,采用5L容积的发酵罐进行了水葫芦发酵产氢的中小规模实验研究。
     最后合成GenBank中登录的阴沟肠杆菌(Enterobacter cloacae)铁氢酶序列,通过质粒将氢酶植入大肠杆菌Escherichia coli BL21中,实现了氢酶在Escherichia coli BL21中的表达,并研究重组后的E.coli BL21的产氢特性。基因改造后的E.coli BL21最大氢气产气量提升了0.5mol/mol葡萄糖。
Hydrogen, as a clean energy that can replace conventional fossil fuels, is attracting worldwide attentions. In this paper, a detail research of hydrogen production by anaerobic fermentation from straw and hyacinth was carried out.
     First of all, rice straw was degraded by commercial cellulase. Effect of various process parameters, such as pretreatment methods, reaction time, and hydrolysis temperature and pH values was examined with respect to saccharification rate to determine the optimum of hydrolysis parameters.
     Bio-Hydrogen production by combination of Supercritical Water hydrolysis and anaerobic fermentation was proposed. Limited by the experimental apparatus, rice straw was degraded in Near Critical Water. Saccharification rate of rice straw reached to 50.41 % at 280°C and 20Mpa. The sugar components of the liquid products were analyzed by HPLC with the KS-802 sugars column. Other small molecule organic products were detected by GC-MS analysis, as showed that there were some polarity components with methyl, ethyl, methylene and hydroxyl, etc. The experimental data was simulated by heterogeneous first-order reactions model and the experimental date was coincided with the model.
     Experiments were carried out to show the effects of pretreatment methods, different mixed bacteria and different inoculation methods on fermentative hydrogen production by rice straw. And hydrogen production by Enterobacter aerogenes and mixed bacteria from different sugars was also investigated. The influence of the main parameters such as particle size, the ratio of substrate to cellulase, pretreatment method and pH value on the straw fermentation was investigated Gompertz equation was used to simulated the dynamics curve of hydrogen production.
     Hydrogen from the fermentation of hyacinth by digested sludge is demonstrated. The leaf and root of the hyacinth showed different hydrogen production potential because of the diverse metals content in different parts of the hyacinth. And a further study was carried out to investigate effects of different metal ion and its concentration on hydrogen production by Enterobacter aerogenes from glucose. Finally, hydrogen production by hyacinth was carried out in a fermenter with a volume of 5L.
     Fe-hydrogenase coded gene from Enterobacter cloacae was express by vector in non-hydrogen producing Escherichia coli BL21. And fermentative hydrogen production was carried out in batch experiment using recombinant E.coli.
引文
[1] 世界能源理事会.新的可再生能源[M].第一版.1998,北京:海洋出版社.
    [2] 陈军,陶占良.能源化学[M].2004,北京:化学工业出版社.
    [3] 杨立忠,杨钧锡,别义勋.新能源技术[M].1994,北京:中国科学技术出版社.
    [4] 孙艳,苏伟,周理.氢燃料[M].2005,北京:化学工业出版社.
    [5] T(ed.) Watson R. Climate Change 2001: Synthesis Report. Published for the Intergovernmental Panel on Climate IPCC[M]. 2001, UK: Cambridge: Cambridge University Press.
    [6] 中华人民共和国国家发展计划委员会基础产业发展司.中国能源与可再生能源1999白皮书[M].2000:中国计划出版社.
    [7] C.G. Bauer T.W. Forest. Effect of hydrogen addition on performance of methane-fueled vehicles. Part Ⅰ: effect on S.I. engine performance. International Journal of Hydrogen Energy[J]. 2001, 26: 55-70.
    [8] M. Momirlan T. N. Veziroglu. Current status of hydrogen energy. Renewable and Sustainable Energy Reviews[J]. 2002, 6:141-179.
    [9] Agency International Energy. Key World Energy Statistics from the IEA. 2000.
    [10] 翟秀静,刘奎仁,韩庆.新能源技术[M].2005,北京:化学工业出版社.
    [11] DOE. Hydrogen Poster Plan. United States Department of Energy. 2003, 28: 267-273.
    [12] T.Hijikata. Research and development of international clean energy network using hydrogen energy(WE-NET). International Journal of Hydrogen Energy[J]. 2002, 27: 115-129.
    [13] Bromberg L, Cohn D.R. Plasma catalytic reforming of methane. International Journal of Hydrogen Energy[J]. 1999, 24:1131—1137.
    [14] Fulcheri T Paulmier, L. Use of non—thermal plasma for hydrocarbon reforming. Chemical Engineering Journal, Daunesse, France, February[J]. 2004, 2.
    [15] 毛宗强.氢能—21世纪的绿色能源[M].2005,北京:化学工业出版社.
    [16] N.Itoh. Electrochemical coupling of benzene hydrogenation and water electrolysis. Catalysis Today[J]. 2000, 56:307-314.
    [17] E.tasten G.Hagen, R.Tunold. Electrolysis in water electrolysis with solid polymer electrolyte. Eletrochimi Acta[J]. 2003, 48: 3945-3952.
    [18] G.Inzelt M.pineri, J.W.schultze,M.A.Vorotyntsev Electron and proton conducting polymers:recent developments and prospects. Eletrochimi Acta[J]. 2000, 45(): 2403-2421
    [19] T. Kobayashi K.Abe, Y.Ukyo. Sutdy on current efficiency of stream electrolysis using a partial protonic conductor SrZr0.9Yb0.103-α. Solid State Ionics[J]. 2001, 138:243-251.
    [20] Cristiane B Rodella, Roberto W A. V2O5/TiO2 catalyst xerogels:method of preparation and characterization. Journal of Sol-Gel Science and Technology[J]. 2002, 25: 75-82.
    [21] Dvoranova Dana Brezova Vlasta, et al. Investigation of metal—doped titanium dioxide photocatalysts. Applied Catalysis B: Envlromental[J]. 2002, 37: 91—105.
    [22] Yu Jiaguo, Zhao XiuJian. Effect of surface treatment on the photocatalytic activity and hydrophilic property of the sol—gel derived TiO_2 thin films. Materials Research Bulletin[J]. 2001, 36: 97—107.
    [23] Stuart Licht, Susabnta Ghosh, al et. High efficiency solar energy water splitting to generate hydrogen fuel: Probing RuS2 enhancement of multiple band electrolysis. Solar Energy Materials& Solar Cells[J]. 2002, 70: 471-480.
    [24] Bilmies S.A, P Mandelbaum. Surfaca and electronic structure of titanium dioxide photoeatalysts. Journal of Physics and Chemistry: B[J]. 2000, 104:9851-9858.
    [25] 付明.水分解制氢的光触媒陶瓷材料研究进展.材料导报[J].2003,17:32-34.
    [26] 钱丽苹,刘奎仁.半导体光解水制氢的研究.材料与冶金学报[J].2003,2:10-15.
    [27] 上官文峰.太阳能光解水制氢的研究进展.无机化学学报[J].2001,17:619-626.
    [28] Funk J E Reinstrom R M. Energy requirements in the production of hydrogen from water. I&EC Process Design Development[J]. 1966, 5(3): 336-342.
    [29] Steinfeld A. Solar Hydrogen Production via a Two-step Water-splitting Thermochemical Cycle Based on Zn/ZnO Redox Reactions. International Journal of Hydrogen Energy[J]. 2002, 27: 611-619.
    [30] Tamaura Y; Kojima, N; Hasegawa, N; Inoue, M; Uehara, R; Gokon, N; Kaneko, H Stoichiometric studies of H-2 generation reaction for H_2O/Zn/Fe_3O_4 system. International Journal of Hydrogen Energy[J]. 2001, 26(9): 917-922.
    [31] Kasahara.S.G.J.Hwang, H.Nakajima, H.S.Choi, K.Onuki, M.Nomura. Effect of process parameter of the IS process on total thermal efficiency to produce hydrogen from water. Journal of Chemical Engineering of Japan[J]. 2003(36(7)): 887-899.
    [32] Hwang G J Onuki K, Shimizu S. Simulation study on the catalytic decomposition of hydrogen iodine in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process. Journal of Membrane Science[J]. 2001, 194: 207-215.
    [33] 周义德,王方,岳峰.我国生物质资源化利用新技术及其进展.节能[J].2004,10:8-11.
    [34] 吕鹏海,常杰,熊祖鸿.生物质废弃物催化气化制取富氢燃料气.煤炭转化[J].2002,25(3):32-36.
    [35] 阎桂焕,孙立,许敏,孙容峰.几种生物质制氢方式的探讨.能源工程[J].2004,4:38-41.
    [36] 古共伟,陈健,郜豫川,魏玺群.高纯氢制备工艺.低温与特气[J].1998,4:25-30.
    [37] 电子工业部《氢气生产与纯化》编写组.氢气生产与纯化[M].1983,哈尔滨:黑龙江科学技术出版社.
    [38] Zhu H W Xu C L, Wu D H,. Direct synthesis of long single-walled carbon nanotube strands. Science[J]. 2002, 296: 884-886.
    [39] Li X.S, Zhu H.W, Ci L.J The effect of structure and surface characteristic on hydrogen storage in carbon nanotubes. Chinese Science Bulletin[J]. 2001, 46(9): 785-787.
    [40] Zuttel A. Hydrogen storage methods and materials. Naturwissenschaften[J]. 2004, 91: 157-172.
    [41] Zhou.L Zhou.Y.P., Sun.Y,. Stufies on the mechanism and capacity of hydrogen uptake by physisorption-based materials. International Journal of Hydrogen Energy[J]. 2006, 31(2): 259-264
    [42] 毛宗强,徐才录.碳纳米纤维储氢性能初步研究.新型碳材料[J].2000,15:64-67.
    [43] RahmanS Al-SalehM, Al-ZakriA. Study of the preparation of gas-diffusion electrodes for alkaline fuel ceis by a filtration method. Joumal of Power Sources[J]. 1998, 72(1): 71-76.
    [44] Ren X Zelenay P, Thomas S,et al. Recent advances in direct methanol fuel cells at Los Alamos National Laboratory. Journal of Power Sources[J]. 2000, 86:111-116.
    [45] Alderucci V. Recupreo V, Passalacquq E. Infulence of the operating conditions and of the aging upon the electrochemical performance of a phosphoric acid fuel cell. Journal of Power Sources[J]. 1993, 42: 365-376.
    [46] Koh J Kang B, Lim H C. Effect of various stack parameters on temperature rise in molten carbonate fuel cell stack operation. Journal of Power Sources[J]. 2000, 91(2): 161-171.
    [47] Skinner S.J. Recent advances in Perovskite-type materials for solid oxide fuel cell cathodes. International Journal of Inorganic Mater[J]. 2001, 3: 113-121.
    [48] 李改莲.中国生物质能的利用状况及展望.河南农业大学学报[J].2004,1:100-104.
    [49] K. Asada Y, Ikenaka. Photobiological hydrogen production. Journal of Bioscience and Bioengineering[J]. 1999, 88: 1-6.
    [50] Miyake J, Ueno R, Shouko K. Photoproduction of hydrogen from glucose by a co-culturo of a photosynthetic bacterium and Clostridium butyricum. Journal of Fermemtation Technology[J]. 1984, 62:531-535.
    [51] Yokoi H, Kato M, Hasekawa F. H2 production from starch by a mixed culture of Clostridium butyricum and Rhodobacter sp. M-19. Biotechnology Letters [J]. 1998, 20: 895-899.
    [52] Miyamoto K. Hydrogen production by amixed culture of a green alga, Chlamydomonas reinhardtii and a photosynthetic bacterium, Rhodospirillum rubrum Journal of Biological Chemistry[J]. 1987, 51: 1319-1324.
    [53] Ch Sasikala. H2 production by mixed culture. World Journal of Microbiology and Biotechnology[J]. 1994, 10:221-223.
    [54] Ike A, Takabashi K. Photoproduction of hydrogen from raw starch using a halophilic bacterial community. Journal of Bioscience and Bioengineering[J]. 1998, 88: 72-77.
    [55] FM Salih. Improvement of hydrogen photoproduction from E.coli pretreated cheese whey. International Journal of Hydrogen Energy[J]. 1998, 14: 661-663.
    [56] Odom J. Photoproduction of H2 from cellulose by an anaerobic bacterial coculture. Applied Environmental Microbiology[J]. 1983(45): 1300-1305.
    [57] HH Weetall. Photometabolic production of hydrogen from organic substrates by free and immobilized mixed cultures of Rhodospirillum rubrum and Klebsiella pneumoniae. Biotechnology and Bioengieering[J]. 1984, 23: 605-614.
    [58] 李冬敏,陈洪章,李佐虎.生物制氢技术的研究进展.生物技术通报[J].2003,4:1-5.
    [59] 梁建光,吴永强.生物产氢研究进展.生物学通报[J].2002,29(6):81-85.
    [60] Egorov A.M., Avilova T.V., Dikob M.M., et al. NAD dependent FDH from. methylotrophic bacteria strain I, purification, and characterization. Eur. J.Biochem[J]. 1979, 99: 569.
    [61] Zehnder A.J., Huser B.A., Brock T.D., et al. Characterization of an acetate-decarboxylating non-hydrogen-oxidizing methane bacterium. Archives of Microbiology [J]. 1980, 124: 1-11.
    [62] EL Innotti, D Kafkawitz, MJ Wolin, et ai. Glucose fermentation products of Ruminococcus albus grown in continuous culture with Vibrio succinogenes: changes caused by interspecies transfer of H_2. Journal of Bacteriology [J]. 1973, 114(): 1231-1240.
    [63] Fiala. G, Stetter, K.O. Pyrococcus furiosus sp. nov. represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C.. Archives of Microbiology[J]. 1986, 145:56-61.
    [64] Kumar N, Das D. Enhancement of hydrogen production by Enterobacter cloacae IIT - BT08. Process Biochemistry[J]. 2000, 35: 589-593.
    [65] Rachman M.A, Furutani Y, Nakashimada Y, et al. Enhanced hydogen production in altered mixed acid fermentation of glucose by Enterobacter aerogenes. Journal of Fermemtation Bioengieering[J]. 1997, 83(4): 385-363.
    [66] Rachman M.A, Nakashimada Y, Kakizono T, et al. Hydrogen production with high yield and high evolution rate by self-flocculated cells of Enterobacter aerogenes in a packed-bed reactor. Applied Microbiology and Biotechnology[J]. 1998,49: 450-454.
    [67] Kalia V.C, Jain S.R, Kumar A, et al. Fermentation of biowaste to H2 by Bacillus licheniformis. World Journal of Microbiology and Biotechnology[J]. 1994,10: 224-227.
    [68] Tamagnini P, Axelsson R, Lindberg P Hydrogenases and hydrogen metabolism of cyanobacteria Microbiology and Molecular Biology Reviews[J]. 2002, 66: 1-20.
    [69] Hansel A, Lindblad P. Towards optimization of cyanobacteria as biotechnologically relevant producers of molecular hydrogen, a clean and renewable energy source. Applied Microbiology and Biotechnology[J]. 1998,50: 153-160.
    [70] Pinto F A L, Troshina O, Lindblad P. A brieflook at three decades of research on cyan obacterial hydrogen evolution. International Journal of Hydrogen Energy [J]. 2002, 27: 1209-1215.
    [71] Pfennig N. Photosynthetic green and purple bacteria: A comparative, systematic survey. Annual Review of Microbiology [J]. 1977, 31: 275-290.
    [72] Gascetti E, Daddario E, Tpdomo O. Photosynthetic hydrogen evolution with volatile organic acids derived from the fermentation of source selected municipal solid wastes. International Journal of Hydrogen Energy[J]. 1998, 23: 753-760.
    [73] Krahn E Schnerder K, Muller K. Comparative characterization of H2 production by the conventional Mo nitrogenase and alternative "iron-only" nitrogenase of thodobacter capsulata hap mutants. Applied Microbiology and Biotechnology [J]. 1996,46: 285-290.
    [74] Peng Y. Relation between pH,hydrogenase and nitrogenase. Activity, NH_4~+ concentration and hydrogen production in cultures of Rhodobacter sulfidophilus. J. Gen Microbiol [J], 1987,133: 1243-1247.
    [75] C. Singh S P. Sriastava S. Isolation of non-sulfur photosynthetic bacteria strains efficient in hydrogen production at elevated temperatures. International Journal of Hydrogen Energy[J]. 1991,16:404-405.
    [76] Vincezini M Materassi T, Tedici M R. Hydrogen production by immobilized cell light dependent dissimilation of organic substrances by Rhodospeudomoas palustris. International Journal of Hydrogen Energy[J]. 1982, 7: 231-236.
    [77] Vrati S Verna J. Production of molecular hydrogen and single cell protein by Pseudomonas capsulata from cow dung. Journal of Fermemtation Technology [J]. 1983, 61: 157-162.
    [78] Zurre H Bachofen R. Aspects of growth and hydrogen production of the photosynthetic bacterium Rhodospirikkum rubrum in continuous cultures. Biomass[J]. 1982,2: 165-174.
    [79] Ohta Y Frank J, Mitsui A. Hydrogen production by marine photosynthetic bactera:effect of environmental factors and substrate specificity of the growth of hydrogen producting marine photosynthetic bacterium sp. Miami PBS1071. International Journal of Hydrogen Energy[J]. 1981, 6: 451-460.
    [80] Gogotov I N Zori N A, Serebriakova L T. Hydrogen prodction by model systems including hydrogenase from phototrophic bacteria International Journal of Hydrogen Energy[J]. 1991, 16: 393-396.
    [81] Ormerod J G Ormerod K S, Gest H. Light dependent utilization of organic compounds and photoproduction of molecular hydrogen by photosynthetic bacteria:relationships with nitrogen metabolism. Archives of Biochemistry and Biophysics[J]. 1961, 94: 449-463.
    [82] Gorrell TE Uffen RL. Fermentative metabolism of pyruvate by Rhodospirillum rubrum after anaerobic growth in darkness. J. Bacteriol[J]. 1977, 131 (2): 533-543.
    [83] 龙敏南,苏文金.Chromatium vinosum可溶性氢酶小亚基基因的克隆.厦门大学学报(自然科学版)[J].2000,39(2):247-252.
    [84] Eroglu E Gunduz U, Yucel M. Photobiological hydrogen production by using olive mill wastewater as a sole substrate source. International Journal of Hydrogen Energy[J]. 2004, 29(2): 163-171.
    [85] Richard Cammack Michel Frey, Robert Robson. Hydrogen as a fuel[M]. 2001, London: Taylor and Francis.
    [86] Lawier A. Walker Bill to boost hydrogen sparks democratic grumbling. Science[J]. 1995, 267: 613.
    [87] Woodward J Orr M, Cordray K,. Enzymatic production of biohydrogen. Nature[J]. 2000, 405: 1014-1015.
    [88] Biohydrogen production deserves serious funding. Nature Biotechnololy[J]. 1996, 14(7): 199.
    [89] 任南琪,李建政.生物制氢技术.太阳能[J].2003,2:4-6.
    [90] 郑元景,杨海林,蔺金印.有机废料厌氧发酵技术[M].1988,北京:化学工业出版社.
    [91] 张兰英,刘娜,孙立波.现代环境微生物技术[M].2005,北京:清华大学出版社.
    [92] 钱泽澎,闵航.沼气发酵微生物学[M].1986,浙江:浙江科学技术出版社.
    [93] 任南琪,王宝贞,马放.有机废水产酸发酵的生理生态学分析.中国沼气[J].1995,13(1):1-6.
    [94] 任南琪,王爱杰,马放.产酸发酵微生物生理生态学[M].2005,北京:科学出版社.
    [95] 刘敏.产氢产甲烷两相厌氧工艺运行特性研究.2004,博士学位论文:哈尔滨:哈尔滨工业大学
    [96] Yokoi H Tokushige T, Hirose J, Hayashi S, Takasaki Y. Hydrogen production by immobilized cells of aciduric Enterobacter aerogenes strain HO-39. Journal of Fermemtation Bioengieering[J]. 1997, 83(5): 481-484.
    [97] Yokoi H Maeda Y, Hirose J, Hayashi S, Takasaki Y. H_2 productuion by immobilized cells of Clostridium butyricum on porous glass beads. Biotechnology Techniques[J]. 1997, 11(6): 431-433.
    [98] 任南琪,王宝贞.有机废水发酵法生物制氢技术[M].1994,黑龙江:黑龙江科学技术出版社.
    [99] 李建政.有机废水发酵法生物制氢技术研究.市政与环境工程学院.1999,博士:哈尔滨建筑大学
    [100] AT Nielsen, H Amandusson, R Bjorklund, et al. Hydrogen production from organic waste. International Journal of Hydrogen Energy[J]. 2001, 26(6): 547-550.
    [101] JJ Lay, KS Fan, Jl Chang, et al. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. International Journal of Hydrogen Energy[J]. 2003, 28(12): 1361-1367.
    [102] SK Han, HS Shin. Biohydrogen production by anaerobic fermentation of food waste. International Journal of Hydrogen Energy[J]. 2004, 29(6): 569-577.
    [103] JJ Lay,,, YJ Lee, T Noike,. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research[J]. 1999, 33(11): 2579-2586.
    [104] Okamoto M, Miyahara T, Mizuno O, et al. Biological hydrogen potential of materials characteristic of the organic fraction of municipal solid wastes. Water Science and Technology[J]. 2000, 41 (3): 25-32.
    [105] 肖本益,魏源送,刘俊新.微生物发酵产氢的影响因素分析.微生物学通报[J].2004,31:130-135.
    [106] 李白昆,吕炳南,任南琪.厌氧活性污泥与几株产氢细菌的产氢能力及协同作用研究.环境科学学报[J].1997,17(4):459-463.
    [107] 李建政,任南琪.产酸相最佳发酵类型工程控制对策.中国环境科学[J].1998,18(5):398-402.
    [108] 李建昌,张无敌,宋洪川,et al.生物质产氢的研究现状与发展.能源工程[J].2001,6:15-19.
    [109] 秦智,任南琪,李建政.丁酸型发酵产氢的运行稳定性.太阳能学报[J].2004,25(1):46-51
    [110] Samir K.K, Chen W.H, Ling L, et al. Biological hydrogen production: effects of pH and intermediate products, international Journal of Hydrogen Energy[J]. 2004, 29:1123-1131.
    [111] 史央,蒋爱芹,等.秸秆降解的微生物学机理研究及应用进展.微生物学杂志[J].2002.22(1):47-50.
    [112] Iranmahooba J, Nadima F, Monemib S. Optimizing acid-hydrolysis:a critical step for production of ethanol from mixed wood chips. Biomass and Bioenergy[J]. 2002, 22: 401-404.
    [113] Korbitz W. Biodiesel production in Europe and North America:an encourage prospect. Renewable Energy[J]. 1999, 16: 1078-1083.
    [114] Benitez T, Limon C, Delgado L, et al. Clucanolytic and other enzymes and their genes[M]. 1998: Tichoderma and Francis.
    [115] Dekker RFH, Wallis AFA. Autohydrolysis-explosion as pretreatment for the enzymic sacchariflcation of sunflower seed hulls. Biotechnology Letters[J]. 1983, 5:311-316.
    [116] Sun Y, Cheng J.Y. Hydrolysis of lignocellulosic materials for ethnol productuion: a review. Bioresource Technology[J]. 2002, 83: 1-11.
    [117] Wayman M. Alcohol from cellulosics: the autohydrolysis extraction process. In proceeding of the Ⅳ international symposium on alcohols fuel technology. 1980. Brazil.
    [118] 吴东一.糖类的生物化学[M].1987,北京:高等教育出版社.
    [119] 李学骥.医用化学实验技术[M].1986,西安:陕西科学技术出版社.
    [120] 无锡轻工业学院.食品分析[M].1983,北京:轻工业出版社.
    [121] Jerome F.S. Kinetics of wood saccharification hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature. Industrial and Engineering Chemistry[J]. 1945, 1: 43-52.
    [122] 石瑞.单糖的分析方法及进展.四川食品与发酵[J].1997,1:19-32.
    [123] 颜涌捷,任铮伟,白鲁刚,et al.废弃生物质制液体燃料的途径探索Ⅰ:木屑水解发酵制燃料乙醇.[EB/OL].hrtp://www.sunssweb.com.2002.
    [124] 田福利,其木格,高安社,et al.糖醇乙酯衍生物制备方法的改进——气相色谱法分离木糖、棱糖、阿拉伯糖、葡萄糖和甘露糖.内蒙古大学学报(自然科学版)[J].1995,26(2):181-184.
    [125] 周良模.气相色谱新技术[M].1994,北京:科学技术出版社.
    [126] Ruiz R, Ehrman T. Determination of carbohydrates in biomass by high performance liquid chromatography. C.a.a.t.t.l.a.p. LAP-002.1996.2.14.
    [127] Ruiz R, Ehrman T. Dilute acid hydrolysis procedure for determination of total sugars in the liquid fraction of process samples. C.a.a.t.t.l.a.p. LAp-014. 1996.3.6.
    [128] Ruiz R, Ehrman T. HPLC analysis of liquid fractions of process samples for monomeric sugars and cellobiose. C.a.a.t.t.l.a.p. LAp-013.1996.6.28.
    [129] Ruiz R, Ehrman T. HPLC analysis of liquid fractions of process samples for byproducts and degradation products. C.a.a.t.t.l.a.p. LAp-015.1996.8.22.
    [130] 吕秀阳,迫田章义,铃木基之.纤维素在近临界水中的分解动力学和产物分别.化工学报[J].2001,52(6):556-559.
    [131] Vrijie T.D, Haas G.G.D, Tan G.B., et al. Pretreatment of miscanthus for hydrogen production by thermotoga elfii. International Journal of Hydrogen Energy[J]. 2002, 27: 1381-1390.
    [132] 梁新红,常景玲.作物秸杆生产单细胞蛋白的研究概况.山西食品工业[J].2003,3:5-9.
    [133] Herr D. Conversion of cellulose to glucose with cellulase of Trichoderma viride ITC C-1433. Biotechnology and Bioengieering[J]. 1980(22): 1601-1611.
    [134] Eckert C.A, Chandler K. Tuning fluid solvents for chemical reaction. Journal of Supercritical Flulids[J]. 1998, 13:187-195.
    [135] 郭建维,宋晓锐,崔英德.流化床反应器中生物质的催化裂解气化研究.燃料化学学报[J].2001(29(4)):319-322.
    [136] 苏学泳,王智微,程从明,et al.生物质在流化床中的热解和气化研究.燃料化学学报[J].2000,28(4):298-305.
    [137] 王智微,唐松涛,苏学泳,et al.流化床中生物质热解气化的模型研究.燃料化学学报[J].2002,30(4):342-346.
    [138] Hao X.H, Guo L.J, X.M. Hydrogen production from glucose used as a model compound of biomass gasified in supercritical water. International Journal of Hydrogen Energy[J]. 2003, 28(1): 55-64.
    [139] Adschiri Tadafumi, Hirose Satoru. Noncatalytic conversion of cellulose in supercriticai and subcritical water. Journal of Chemical Engineering of Japan[J]. 1993, 26(6): 676-680.
    [140] Kabyemela B.M, Adschiri T. Glucose and fructose decomposition in subcritical and supercritical Water: Detailed reaction path way, mechanisms and kinetics. Industrial and Engineering Chemistry Research [J]. 1999, 38(8): 2888-2892.
    [141] Kabyemela B.M, Adschiri T, Malaluan R.M. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water. Industrial and Engineering Chemistry Research[J]. 1997, 36(5): 1552-1558.
    [142] Kabyemela B.M, Takigawa, Adschiri T. Mechanism and kinetics of cellobiose decomposition in sub-and supercritical water. Industrial and Engineering Chemistry Research[J]. 1999, 37(2): 357-361.
    [143] 吕友军,冀承猛,郭烈锦.农业生物质在超临界水中气化制氢的实验研究.西安交通大学学报[J].2005,3(39):239-242.
    [144] Yoshida T, Oshima Y, Matsumura Y. Gasification of biomass model compounds and real biomass in supercritical water. Biomass and Bioenergy[J]. 2004, 26: 71-78.
    [145] 闫秋会,郭烈锦,梁兴,et al.煤与生物质共超临界水催化气化制氢的实验研究.西安交通大学学报[J].2005,5(39):454-457.
    [146] Hisashi M, Toshiki N, Katsunobu E, et al. 2005Fermentability of water-soluble protion of ethanol obtained by supercritical water treatment of lignceiluloseics. Applied Biochemistry and Biotechnology[J]. 121-124:963-971.
    [147] 吕友军,郭烈锦,郝小红,et al.锯木屑在超临界水中气化制氢过程的主要影响因素.化工学报[J].2004,12:2060-2066.
    [148] Watson R.T Climate Change 2001: Synthesis Report. Published for the Intergovernmental Panel on Climate IPCC[M]. 2001, UK: Cambridge: Cambridge University Press.
    [149] Savage P.E Organic chemical reactions in supercriticai water. Chemical Review[J]. 1999, 99(2): 603-621.
    [150] Akerlof G.S, Oshry H.I The Dielectric constant of water at high temperatures and in equilibrium, with its vapor. Joumal of the American Chemical Society[J]. 1950, 72(28): 2844-2847.
    [151] Connolly J.F. Solubility of hydrocarbons in water near the critical solution temperatures. Journal of Chemical Engineering [J]. 1966, 11(1): 13-16.
    [152] Marshall W.L, Frank E.U. Ion product of water substances, 0-1000℃, 1-10000 bars, new international formulation and its background. Journal of Physics and Chemistry: Ref Data[J]. 1981, 10: 295-304.
    [153] Minowa T, Fang Z, Ogi T, et al. Decomposition of cellulose and glucose in hot-compressed water under catalyst-free conditions. Journal of Chemical Engineering of Japan[J]. 1998, 31(1): 131-134.
    [154] Sakanishi K, Ikeyama N, Sakaki T, et al. Comparison of Hydrothermal Decomposition. Reactivities of Chitin and Cellulose. Industrial and Engineering Chemistry Research[J]. 1999, 38: 2177-2181.
    [155] Sasaki M, Kabyemela B.M, Malaluan R.M, et al. Cellulose hydrolysis in subcritical and supercritical water. Journal of Supercritical Flulids[J]. 1998, 13(1): 261-268.
    [156] Tadafumi A, Satoru H. Noncatalytic conversion of cellulose in supercritical and subcritical water. Journal of Chemical Engineering of Japan[J]. 1993, 26(6): 676-682.
    [157] 胡忠鲠.现代化学基础[M].2000,北京:高等教育出版社.
    [158] 汪昆华,罗传秋,周啸.聚合物现代仪器分析(第二版)[M].2000,北京:清华大学出版社.
    [159] 高洁,汤烈贵.纤维素科学[M].1996,北京:科学出版社.
    [160] 卢怡,张无敌,宋洪川,et al.稻草发酵产氢潜力的研究.Energy Engineering[J].2003,2:26-28.
    [161] 赵静玫,刘波,孙艳,et al.微生物发酵秸秆产氢的气相色谱分析.分析仪器[J].2003,2(29-31).
    [162] Fan Y.T, Zhang S, Zhang H, et al. Efficient conversion of wheat straw wastes into biohydrogen gas by cow dung compost. Bioresource Technology[J]. 2006, 97(3): 500-505.
    [163] Annika T.N, Helena A, B Rober., et al. Hydrogen production from organic waste. Hydrogen Energy[J]. 2001, 26: 547-550.
    [164] Fan Y.T, Li C.L, Lay J.Jyi. Optimization of initial substrate and pH levels for germination of sporing hydrogen-producing anaerobes in cow dung compost. Bioresource Technology[J]. 2004, 91: 189-193.
    [165] 甄卫东,任南琪,李建政,et al.pH值、碱度对产酸脱硫反应器硫酸盐去除率的影响.哈尔滨商业大学学报(自然科学版)[J].2003,19(2):174-177.
    [166] Han S.K, Shin H.S. Biohydrogen production by anaerobic fermentation of food waste. International Journal of Hydrogen Energy[J]. 2004, 29(6): 569-577.
    [167] Lay J.J, Fan K.S, Chang Jl, et al. Influence of chemical nature of organic wastes on their conversion to hydrogen by heat-shock digested sludge. International Journal of Hydrogen Energy[J]. 2003, 28(12): 1361-1367.
    [168] 刘艳玲,任南琪,刘敏,et al.气相色谱法分析厌氧反应器中的挥发性脂肪酸(VFA).哈尔滨建筑大学学报[J].2000,33(6):31-34.
    [169] 林明,任南琪,马汐平,et al.产氢发酵细菌培养基的选择和改进.哈尔滨工业大学学报[J].2003,35(4):398-402.
    [170] 林明,任南琪,王爱杰,et al.高效产氢发酵细菌在不同气相条件下产氢.中国沼气[J].2002,20(2):3-7.
    [171] Hwang M.H, Jang N.J, Hyun S.H, et al. Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. Journal of Biotechnology[J]. 2004, 111: 297-309.
    [172] Yang DY, Li X.J, Gao Z.J, et al. Improving biogas product ion of corn stalk through chemical and biological pretreatment: a preliminary comparison study. Transactions of the CSAE [J]. 2003, 19: 209-213.
    [173] Dodlle H.W.细菌的新陈代谢[M].1983:科学出版社.
    [174] 郑先君.废水生物制氢的理论和技术研究.分析化学.2004,博士学位论文:中国科学技术大学
    [175] Yokii H, Ohkawara T, Hirose J. Characteristics of hydrogen production by aciduric Enterobacter aerogenes strain HO-39. Journal of Fermemtation Bioengieering[J]. 1995, 80(6): 571-574.
    [176] Yokoi H, Maeda Y, Hirose J, et al. H_2 production by immobilization cells of clostridium butyricum on porous glass beads. Biotechnology Techniques[J]. 1997, 11 (6): 431-433.
    [177] 任南琪,王宝贞.有机废水处理生物制氢技.中国环境科学[J].1994,14(6):411-415.
    [178] Schulz S, Matsyama H, Conrad R. Temperature dependence of methane peoduction form different precursors in a profundal sediment(Lake Constance). FEMS Microbiology Ecology[J]. 1997, 22: 207-213.
    [179] Lay J.J, Lee Y.J, Noike T. A mathematical model for methane production from a landfill bioreactor treating the organic fraction of municipal solid wastes. Journal of Environmental Engineering ASCE[J]. 1998, 124(8): 730-736.
    [180] Lay J.J, Lee Y.J, Noike T. Feasibility of biological hydrogen production from organic fraction of municipal solid waste. Water Research[J]. 1999, 33(11): 2579-2586.
    [181] 吴国芳.中国植物志[M].1997,北京:科学出版社.
    [182] Waterhouse D, F. Biological Control of Weeds: Southeast Asia Prospects[M]. 1994, Canberra: ACIAR.
    [183] 刁正俗.中国水生杂草[M].1989,重庆:重庆出版社.
    [184] 丁建清,陈志群,王韧,et al.水葫芦象甲对外来杂草水葫芦的控制效果.中国生物防治[J].2001,17(3):97-100.
    [185] 段惠,强胜,吴海荣,et al.水葫芦.杂草科学[J].2003,2:39-40.
    [186] 王一专,吴竟仑.中国水葫芦危害、防止及开发利用.杂草科学[J].2004,3:4-9.
    [187] Dembele B. Water hyacinth, a pest of waterways in Mali? Sahel Pvinfo CILSS/UCTR/PV[J]. 1994, 62: 12-14.
    [188] Singh H.P, Sharma S.N. Evaluation of 2,4-D and paraquat on chlorophylls of water hyacinth(Eichhomia crassipes) in different seasons. Agricultrual Science Digest Kamal[J]. 1994, 14(189-193).
    [189] Charudattan R. Biological Control of water hyacinth by the using pathogens:opportunites, challenges, and recent developments. Proceedings of the Second Meeting of the Global Working Group for the Biological and Integrated Control of Water Hyacinth. 2001. Beijing, China.
    [190] Julien M.H. Biological control of water hyacinth with arthropods: a review to 2000. Eichhomia Crassipes[J]. 2001: 8-20.
    [191] Jamil K, Hussian S. Biochemical variations in ovaries of water hycainth weevils Noechetinaeichhomiae exposed to heavy metals, indian Journal of Experimental Biology[J]. 1993, 32: 36-40.
    [192] 兰吉武,陈彬,曹伟华,et al.水葫芦厌氧发酵产气规律.黑龙江科技学院学报[J].2004.1:18-21.
    [193] 谢萍,周学文,杨家雄,et al.滇池凤眼莲饲喂肉仔鸡试验的研究.饲料工业[J].1999,20(4):26-28.
    [194] 周岳溪,孔欣,郝丽芳,et al.水葫芦两相厌氧生物处理技术研究.中国沼气[J].1996,14(3):8-12.
    [195] Cheng Jun, Xie Lin, Binfei Xie, et al. Biohydrogen production from solid organic wastes by heat-shock digested sludge. Proceedings of the 8th Asian Hydrogen Energy Conference. 2005. Beijing, China.
    [196] 谢斌飞.厨余垃圾微生物发酵产氢机理研究.2004,学士论文:杭州:浙江大学
    [197] 任南琪,林明,马汐平,et al.厌氧高效产氢细菌的筛选及其耐酸性研究.太阳能学报[J].2003,24(1):80-84.
    [198] Ooshima H, Bums D.S, Converse A.O. Adsorption of cellulose from Trichoderma reesei on cellulose an lignacious residue in wood pretreated by dilute sulfuric acid with explosive decompression. Biotechnology and Bioengieering[J]. 1990, 26: 446-453.
    [199] 瑛陈,金叶飞,王秀琴,et al.凤眼莲各部位富集能力的研究.环境保护科学[J].2004,30(123):31-37.
    [200] 李白昆,吕炳南,任南琪,et al.产酸相乙醇型发酵的影响因素研究.哈尔滨建筑大学学报[J].1996,29(5):44-48.
    [201] Schreck P. Environmental Impact of Uncontrolled Waste Disposal in Mining and Industrial Areas in Central Germany. Environmental Geology[J]. 1998, 35(1): 66-72.
    [202] T Gray C, H Gest. Biological formation ofmolecular hydrogen. Science[J]. 1964, 148: 186-192.
    [203] Tanisho S, Kamiya N, Wakao N. Hydrogen evolution of Enterobacter aerogenes depending on culture pH: mechanism of hydrogen evolution from NADH by means of membrane-bound hydrogenase. Biochimica et Biophysica Acta[J]. 1989, 973: 1-6.
    [204] 陈天寿.微生物培养基的制造与使用[M].1995,北京:中国农业出版社.
    [205] Mishra J., Kumar N., Ghosh A.K., et al. Isolation and molecular characterization of hydrogenase gene from a high rate of hydrogen-producing bacterial strain Enterbacter cloacue IIT-BT 08. International Journal of Hydrogen Energy[J]. 2002, 27: 1475-1479.
    [206] 郑国香,任南琪,林海龙,et al.诱变菌种选育高效产氢菌株.第六届全国氢能学术会议论文集.2005.上海.
    [207] Lu W.Y, Wen J.P, Jia X.Q, et al. Effect of He-Ne laser irradiation on hydrogen production by Enterobacter aerogenes. International Journal of Hydrogen Energy[J]. (in press).
    [208] Chittibabu G., Nath Kaushik, Das. Debabrata. Feasibility studies on the fermentative hydrogen production by recombinant Escherichia coli BL-21. Process Biochemistry[J]. 2006, 41: 682-688.
    [209] Yokoi Haruhiko, Tokushige Tadafumi, Hirose Jun, et al. H_2 production from starch by a mixed culture of Clostridium butyricum and Enterobacter oerogenes. Biotechnology Letters[J]. 1998, 20:143-147.
    [210] Tanishio S, Zaborsky O R. Hydrogen production by Facultative Anaerobe Enterobacter aerogenes[M]. 1998: Plenum press.
    [211] Tanisho S, Ishiwata Y, Takahashi K. Hydrogen production by fermentation and a trial for improment on the yield of hydrogen, Hydrogen energy Progress. Proceedings of the Ninth World Hydrogen Energy conference. 1992.
    [212] Lindblad P, Christensson K, Lindberg P, et al. Photoproduction of H2 by wildtype Anabaena PCC 1720 and a hydrogen uptake deficient mutant; from laboratory to outdoor culture. International Journal of Hydrogen Energy[J]. 2002, 27:1271-1281.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700