中温平板式SOFC合金连接体的制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
固体氧化物燃料电池(SOFC)具有能源转换效率高、对环境污染小等优点,被誉为21世纪的绿色能源。近年来,随着新型的电极和电解质材料的不断开发,阳极支撑型平板式SOFC的出现,SOFC的工作温度逐渐降低,使得采用廉价的合金材料作为其连接体材料成为可能。但在SOFC高的工作温度下,合金材料作为其连接体材料在合材料和结构设计等方面还存在着一系列问题。本论文工作主要是通过开展合金连接体材料和结构方面的系统研究,深入地理解了合金连接体的工作特性,为今后组装SOFC电堆打下了坚实的基础。
     研究了SUS430合金作为SOFC连接体材料的基础性能,以La0.8Sr0.2MnO3-δ(LSM20)阴极为例,深入地研究了SUS430合金中Cr对阴极的毒化作用机理,明确了Cr对阴极毒化程度的决定因素。结果表明,SUS430合金的热膨胀系数(TEC)与其它电池组件,尤其是阳极基体非常接近;在SOFC工作条件下,尽管合金的氧化增重速率较慢,但其面电阻增长较快,超出了SOFC对连接体的阻值要求。Cr对LSM20阴极的毒化作用主要是抑制电极表面氧还原反应(ORR)过程,在阴极极化初期,气态铬的氧化物抑制了氧在LSM20电极表面的解离吸附和气体扩散过程;随着极化时间的延长,固态铬的氧化物,如Cr2O3/(Cr,Mn)3O4相的逐渐生成,增大了氧离子迁移和扩散阻抗。Cr对阴极的毒化程度受阴极的工作气氛、电极结构和材料的影响,可以通过降低阴极工作气氛中的氧气和水蒸气分压,选择具有更多氧空位的阴极材料以及合理地优化阴极结构得以改善和抑制。SUS430合金与Ni-YSZ阳极具有良好的化学相容性。
     提出了以改进的等离子喷涂方法制备的La0.8Sr0.2FeO3-δ(LSF20)作为合金连接体阴极侧保护层,以金属Ni作为阳极侧保护层。通过对多种陶瓷材料的电导率和TEC的比较和分析,选择了LSM20和LSF20作为合金连接体的阴极侧保护层材料,采用大气等离子喷涂方法制备了合金连接体阴极侧保护涂层,并适应SOFC工作环境特点,改进了等离子喷涂的后封孔工艺,提出了以LSM20和LSF20的硝酸盐溶液浸渍、原位烧结的方法对等离子喷涂涂层进行后封孔处理,取得了较好效果,涂层显气孔率低于1%。性能测试结果表明,LSF20涂层在抗高温氧化、抑制合金中Cr的挥发和扩散等方面都明显优于LSM20涂层,其在800℃空气中氧化1000h,面电阻仅为1mΩ·cm~2,比目前国际上报道的合金连接体阴极侧保护涂层面电阻的最低值(2mΩ·cm~2)低1倍。连接体阳极侧分别采用等离子喷涂方法和电化学沉积方法制备了金属Ni保护层,等离子喷涂Ni层与合金连接体具有更好的结合强度,在SOFC阳极工作气氛下的面电阻较低。
     设计了连接体与电极之间的汇流结构。通过电极的极化曲线、电化学阻抗和面电阻等方面的测试与分析,明确了汇流层的作用和结构要求,电极接触层不仅可以降低电池的欧姆电阻,而且能够有效地提高电极表面ORR催化活性;电极支撑层只在电极和连接体之间起传导电子的作用,不影响电极表面ORR过程。本文提出了以固相反应法制备的La_(0.6)Sr_(0.4)CoO_(3-δ)(LSC)和Ag浆作为阴极接触层,以粒径为0.68μm的NiO和Ag浆作为阳极接触层,并通过在接触层表面用嵌入银浆的银丝固定支撑层来实现支撑层与接触层的良好电连接,连接体与电极之间的接触电阻降低了50%以上,接近目前国际报道最好水平。
     建立了SOFC有限体积量化分析模型。该模型基于电化学反应动力学理论,并结合现象学原理,采用“比例因子”的思想,将结构参数的优化转化为比例因子的选取问题。比例因子以小步长改变,通过计算电池极化过电势的数值大小,实现连接体的结构参数优化,为连接体的结构设计提供了量化的理论指导。模型还分析了燃料电池的工作条件对其性能的影响。设计了一套电池连接体板,连接体阴、阳极侧表面分别等离子喷涂了LSF20和金属Ni保护层,采用优化的汇流结构,组装电池,测试结果表明,放电性能与数值计算结果基本吻合。
Solid Oxide Fuel Cell (SOFC) has been considered as one of major green energy in the 21st century because SOFC has ultra-high energy conversion efficiency and ultra-low pollutant emission. Over the past few years, research and development of both new electrodes and electrolytes and the advent of the anode-supported planar SOFC design have led to a steady reduction in the SOFC operating temperature. Consequently, it becomes more realistic now to use low cost heat-resistant alloys for interconnect components in the SOFC stack. However, there are some serous problems for using alloys as interconnect materials at the high operating temperature of SOFC including the materials and the structure design. The main work of this thesis focuses on the systematic study on the alloy materials and the structure of interconnects in order to make an intensive comprehension on the properties of alloy interconnects and lay the foundation for the fabrication of the SOFC stack.
     This thesis has evaluated the fundamental properties of SUS430 alloys as SOFC interconnect materials. Taking the LSM20 cathode as an example, the mechanism of chromium poisoning to the cathode was studied in details; and the determinants of the poisoning degree of chromium to the different cathodes were clarified. The compatibility of SUS430 alloy with the Ni-YSZ anode was also studied. Results showed that the thermal expansion coefficient (TEC) of the SUS430 alloy was very close to that of the electrodes under the SOFC operating atmosphere, especially the anode substrate. Although the oxidation growth rate of the alloy was relatively low, the increase of area specific resistance (ASR) was much higher than the acceptable level for SOFC interconnects. The poisoning of chromium to the LSM20 cathode would inhibit the oxygen reduction reaction (ORR) on the surface of LSM20 cathode. At the initial stage of polarization, the dissociative adsorption and the diffusion of oxygen on the LSM20 electrode surface were inhibited by the gaseous Cr species. With the time prolonging, the migration processes of oxygen ions into YSZ electrolyte were inhibited by the solid Cr species, such as Cr2O3 and (Cr,Mn)3O4, deposited on the electrolyte surface. The degree of chromium poisoning to the cathode was determined by the cathode atmosphere, the electrode structure and the cathode materials. Therefore, it is reasonable to inhibit the chromium poisoning to the cathode by lowering the partial pressure of the oxygen and vapor in the cathode atmosphere, selecting the cathode materials with more oxygen vacancies and rationally optimizing the cathode structures. SUS430 alloy was compatible with the Ni-YSZ anode.
     La0.8Sr0.2FeO3-δ(LSF20) was proposed as the interconnect protective coatings in the cathode side and the metallic nickel was proposed as the interconnect protective coatings in the anode side by the improved APS method. Many kinds of ceramic materials were investigated on their conductivity and TEC, LSM20 and LSF20 were finally selected as the protective coating materials for the interconnects made of SUS430 alloys in this thesis. The protective coating in the interconnect cathode side was prepared by the APS method. The densification technique of APS was improved to adapt to the SOFC high operating temperature. A method of nitrate solution impregnation and sintering in situ was proposed to realize the further densification of the as-prepared APS coating. As a result, this made a perfect effect and the open porosity was below 1%. The properties of the LSM20 and LSF20 coating were compared. Results showed that LSF20 coating could more effectively reduce the high temperature oxidation rate of SUS430 alloys and inhibit chromium evaporation and diffusion through the coating. The ASR of the LSF20 coated SUS430 alloy was only 1m??cm2 after being oxidized in air at 800℃for 1000h, which is only half of the lowest ASR value (2m??cm2) of the interconnects cathode protective coating after the same treatment according to the recent international reports. A metallic nickel coating was prepared by the APS and the electrochemical deposition method, respectively. The nickel coating prepared by the APS method adhered more tightly to the alloy substrate. Therefore, a lower ASR was obtained by SUS430 alloys with the APS nickel coating under the SOFC anodic atmosphere. The current collecting structure was designed in this thesis. The current collector’s function and its structural requirements were confirmed by analyzing the results of the electrochemical polarization curves test, electrochemical impedance test and ASR test. Results showed that the electrode contactor can not only reduce the ohmic resistance of the fuel cell, but also improve the catalytic activity of the ORR on the electrode surface. The electrode supporter only played a role in electrical conductivity and did not influence the ORR catalytic activity of the electrodes. A noble contactor of La0.6Sr0.4CoO3-δ(LSC) prepared by solid state reaction method and silver paste was proposed as the cathode contactor. The anode contactor proposed in this thesis was composed of NiO (particles diameter: 0.68μm) and silver paste. A reduction greater than 50% was obtained for the contact resistance between the interconnect and the electrode by fastening the supporters with the silver lead embedded in the silver paste on the contactor surface, and the result was close to the best result presently known.
     A finite volume quantification analysis model was constructed based on the theory of electrochemical reaction kinetics combined with phenomenology. The idea“ratio factor”was adopted to convert the structural parameters optimization into the selection of the ratio factors. Optimization of the interconnect structural parameters was realized by calculating the simulated unit cells polarization with the changes of the ratio factors in a small step. At the same time, it provided a qualification and theory guidance for the SOFC interconnect structural design. The effects of SOFC operating conditions on the fuel cell performance were also evaluated in this thesis. A set of interconnects were designed and sprayed with the LSF20 protective coating in the cathode side and metallic nickel protective coating in the anode side by the APS method, respectively. The optimized current collectors were applied in the fabrication of the fuel cells. Discharging results were close to those of the simulation.
引文
1 贺连星, 温廷琏. 流延法制备陶瓷燃料电池电解质膜的研究进展材. 材料科学与工程. 1997,15(3):15~18
    2 N. Minh. Ceramic Fuel Cells. J. Am. Ceram Soc. 1993,76(10):565~589
    3 刘旭俐, 马俊峰, 刘文化. 固体氧化物燃料电池材料的研究进展. 硅酸盐通报. 2001,99(1):24~29
    4 R. Maric, Satoshi Ohara, T. Fukui, et al. Solid Oxide Fuel Cells with Doped Lanthanum Gallate Electrolyte and LaSrCoO3 Cathode and Ni-Samaria-Doped Ceria Cermet Anode. Journal of the Electrochemical Society. 1999,146(6):2006~2010
    5 李瑛, 王宗林. 燃料电池. 冶金工业出版社, 2001:122~124
    6 B. Stambouli and E. Traversa. Fuel cell, an Alternative to Standard Sources of Energy. Renewable and Sustainable Energy Reviews. 2002, (6):297~306
    7 J. Hall and R. Kerr. Innovation Dynamics and Environmental Technologies: the Emergence of Fuel Cell Technology. Journal of Cleaner Production. 2003, (11):459~471
    8 孟广耀. 开发陶瓷膜燃料电池大有可为. 电池. 2002,32(3):142~145
    9 陆天虹, 孙公权. 我国燃料电池发展概况. 电源技术. 1998,22(4):182~185
    10 J. Palsson, A. Selimovic and L. Sjunnesson. Combined Solid Oxide Fuel Cell and Gas Turbine Systems for Efficient Power and Heat Generation. Journal of Power Sources. 2000,86:442~448
    11 T.-L. Wen, D. Wang, et al. Material Research for Planar SOFC Stack. Solid State Ionics. 2002,148:513~519
    12 N. M. Sammes, G. A. Tompsett, H. Nafe, et al. Bismuth Based Oxide Electrolyte-Structure and Ionic Conductivity. Journal of the European Ceramic Society. 1999,(19):1801~1826
    13 A. M. Azad, S. Larose. Bismuth Oxide-Based Solid Electrolytes for Fuel Cell. Journal of Material Science. 1994,29:4135~4153
    14 T. Mori, T. Ikegami and H. Yamamura. Application of a Crystallographic Index for Improvement of the CeO2-SmO3 Electrolytic Properties of the System. Journal of Power Sources. 1999,146(12):4380~4385
    15 Huanyang Zhu and Robert J. Kee. A General Mathematical Model for Analyzing the Performance of Fuel-cell Membrane-Electrode Assemblies. Journal of Power Sources. 2003,117:74~81
    16 D. L. Maricle, T. E. Swarm and M. Greenblatt. Sintering of Nanocrystalline CeO2 Ceramics. Solid State Ionics. 1992,52:173~180
    17 W. Huang, P. Shuk and M. Greenblatt. Hydrothermal Synthesis and Properties of Terbium- or Praseodymium-Doped Ce1-xSmxO2-x/2 Solid Solution. Solid State Ionics. 1998,113-115:305~312
    18 V. N. Tiknonovich, V. V. kharton, A. A. Savistsky, et al. Surface Modification of La(Sr)MnO3 Electrodes. Solid State Ionics. 1998,106:197~206
    19 S. C. Singhal. Advances in Solid Oxide Fuel Cell Technology. Solid State Ionics. 2000,135:305~313
    20 Andre Weber, Ellen Ivers-Tiffee. Materials and Concepts for Solid Oxide Fuel Cells (SOFCs) in Stationary and Mobile Applications. Journal of Power Sources. 2004,127:273~283
    21 Yuan Ji, Jiang Liu, Tianmin He, et al. The Effect of Pr Co-Dopant on the Performance of Solid Oxide Fuel Cells with Sm-Doped Ceria Electrolyte. Journal of Alloys and Compounds. 2005,389:317~322
    22 V. N. Tiknonovich, V. V. kharton, A. A. Savistsky, et al. Surface Modification of La(Sr)MnO3 Electrodes. Solid State Ionics. 1998,106:192~200
    23 S. B. Adler. Mechanism and Kinetics of Oxygen Reduction on Porous La1-xSrxCoO3-δ Electrodes. Solid State Ionics. 1998,111:125~134
    24 S. B. Adler. Limitations of Charge-Transfer Models for Mixed-Conducting Oxygen Electrodes. Solid State Ionics. 2000,135:603~612
    25 C. M. Williams, J. P. Srakey. U.S.DOE Office of Fossil Energy’s Solid Oxide Fuel Cell Programs. Electrochemical Society Proceedings. 2003, (7):3~8
    26 J. W. Stevenson, S. Baskaram, L. A. Chick, et al. Solid Oxide Fuel Cell Development at PNNL. Electrochemical Society Proceedings. 2003,7:31~39
    27 D. Stover, R. Henne, P. Otschik, et al. Recent Development of SOFC Technology in Germany. Electrochemical Society Proceedings. 2001,16:38~52
    28 G. Schiller, T. France, R. Henne, et al. Development of Thin-Film SOFC for Stationary and Mobile Application by Using Plasma Deposition Technology.Electrochemical Society Proceedings. 2003,7:1051~1058
    29 M. Lany, T. France, R. Henne, et al. Electrochemical Characterization of Vacuum Plasma Sprayed SOFCs on Different Porous Metallic Substrates. Electrochemical Society Proceedings. 2003,7:1058~1076
    30 K. Sudaprasert, R. P. Travis, F. Ricardo, et al. A Computational Fluid Pyramics Model of a SOFC. J. Huijsmans. The Fifth European SOFC Forum, Lucerne, Switzerland, 2002:1395~1402
    31 E. R. Gabrera, A. Atkinson, N. Brandon. Cu/Ce0.9Gd0.1O2-x Anodes of Intermediate Temperature SOFCs. J. Huijsmans. The Fifth European SOFC Forum, Lucerne, Switzerland, 2002:531~538
    32 P. H. Larson, C. Bagger, S. Linderoth, et al. Status of the Danish SOFC Program. Electrochemical Society Proceedings. 2001,16:18~37
    33 M. Mogencen, P. V. Hendriksen. Experimental Requirements in Determination of SOFC Electrode Kinetics. Electrochemical Society Proceedings. 2003, (7):1127~1131
    34 D. Perednis, L. J. Gauckler. Solid Oxide Fuel Cells with YSZ Films Prepared Using Spray Pyrolysis. Electrochemical Society Proceedings. 2003, (7):970~975
    35 P. Holtappals, T. Graule, B. Gut, et al. Fabrication and Performance of Anode-Supported Solid Oxide Fuel Cells. Electrochemical Society Proceedings. 2003, (7):1003~1010
    36 T. L. Ngugen, T. Honda, T. Kato, et al. Fabrication and Characteristics of Anode-Supported Tubular SOFCs with Zirconia Based Electrolyte for Reduced Temperature Operation. Electrochemical Society Proceedings. 2003, (7):1019~1028
    37 H. Fujii. Status of National Project for SOFC Development in Japan. Electrochemical Society Proceedings. 2003, (7):9~15
    38 R. Ratnaraj, K. Ahmed, J. Love, et al. Material Design and Processing of CFCL’s Cell Assembly. Electrochemical Society Proceedings. 2003, (7):945~952
    39 S. P. Yoon, J. Han, S. W. Nam, et al. Performance of Anode-Supported Solid Oxide Fuel Cell with Ni-YSZ or Ni-Ceria Anode Modified Sol-Gel Coating Technique. J.Huijsmans. The Fifth European SOFC Forum, Lucerne,Switzerland, 2002:148~155
    40 J. H. Lee, J. W. Heo, J. P. Kim, et al. Effect of the Pores Structure of Anode-Substrate on the Anode Properties of SOFC. J.Huijsmans. The Fifth European SOFC Forum, Lucerne, Switzerland, 2002:178~190
    41 S. Gile. Global Thermoelectric Integrated Cell Manufacturing of Plasma SOFCs. Electrochemical Society Proceedings. 2003, (7):935~943
    42 江义. 固体氧化物燃料电池最新研究动态—第五届固体氧化物燃料电池国际会议内容介绍. 电化学. 1998,4(4):353~354
    43 江义, 李文钊, 王世忠. 高温固体氧化物燃料电池(SOFC)进展. 化学进展. 1997,9(4):387~388
    44 阎景旺, 成谟杰, 衣宝廉. 固体氧化物燃料电池材料的开发. 电池. 2002, (3):188~190
    45 Shaowu Zha, Changrong Xia, Xiaohong Fang, et al. Processing and Electrical Properties of Doped-LaGaO3 by Gel-Casting. Ceramics International. 2001,27:649~654
    46 Shaowu Zha, Qingxi Fu and Yin Lang. Novel Azeotropic Distillation Process for Synthesizing Nanoscale Powders of Yttria Doped Ceria Electrolyte. Materials Letters. 2001,47:351~355
    47 贺天民, 孙敬姝, 吕喆等. 高温固体氧化物燃料电池实验演示. 物理实验. 1999,20:9~10
    48 黄文华 , 杨建华 , 聂怀文等 . 中温固体氧化物燃料电池阴极材料Ln0.6Sr0.4Fe1-xCoO3-δ 的合成与性能表征. 无机材料学报. 2002,17:683~687
    49 陆 天 虹 , 孙 公 权 . 我 国 燃 料 电 池 的 发 展 概 况 . 电 源 技 术 . 1998,22(4):183~184
    50 W. Z. Zhu, S. C. Deevi. Development of Interconnect Materials for Solid Oxide Fuel Cells. Materials Science & Engineering. 2002,A348(1-2):227~243
    51 Isamu Yasuda, Takashi Ogiwara and Hisataka Yakabe. Accumulation of Detailed Property Data for LaCrO3-Based Interconnector Materials. Electrochemical Society Proceedings. 2001,16:783~786
    52 Takuya Hashimoto, Takashi Nakamura, Yuhma Matsui, et al. The Crystal Structure and Structural Phase Transition of La1-xAexCrO3. Electrochemical Society Proceeding. 2001,16:820~827
    53 Yong-Jie Yang, Ting-Lian Wen, Hengyong Tu, et al. Characteristic of Lanthanum Strontium Chromite Prepared by Glycine Nitrate Process. Solid State Ionics. 2000,135:475~479
    54 K. Hilpert, R. W. Steinbrech, F. Boroomand, et al. Defect Formation and Mechanical Stability of Pervoskites Based on LaCrO3 for Solid Oxide Fuel Cells (SOFC). Journal of the European Ceramic Society. 2003,23:3009~3020
    55 Masashi Mori, Nigel M. Sammes. Sintering and Thermal Expansion Characterization of Al-Doped and Co-Doped Lanthanum Strontium Chromites Synthesized by the Pechini Method. Solid State Ionics. 2002,146:301~312
    56 Jeffrey W. Fergus. Lanthanum Chromite-Based Materials for Solid Oxide Fuel Cell Interconnects. Solid State Ionics. 2004,171:1~15
    57 X. Zhou, J. Ma, F. Deng, et al. A High Performance Interconnecting Ceramics for Solid Oxide Fuel Cell. Solid State Ionics. 2007,177:3461~3466
    58 X. Zhou, F. Deng, M. Zhu, et al. High Performance Composite Interconnect La0.7Ca0.3CrO3/20 mol% ReO1.5 Doped CeO2(Re=Sm,Gd,Y) for Solid Oxide Fuel Cells. Journal of Power Sources. 2007,164:293~299
    59 X. Zhou, J. Ma, F. Deng, et al. Preparation and Properties of Interconnecting Materials, La0.7Ca0.3CrO3 Doped with GDC for IT-SOFC. Journal of Power Sources. 2007,162:279~285
    60 K. Mori, H. Mlyamoto, K. Takenobu, et al. Controlling the Chromite Expansion in Reducing Atmosphere. Augustin J. MaEvoy. The 4th European Solid Oxide Fuel Cell Forum, Luzern, Switzerland, 2000:875~880
    61 F. Meschke, L. Singheiser, R. W. Steinbrech. Mechanical Properties of Doped LaCrO3 Interconnects after Exposure to SOFC-Relevant Conditions. Augustin J.MaEvoy. The 4th European Solid Oxide Fuel Cell Forum, Luzern, Switzerland, 2000:865~873
    62 Zhenguo Yang, K. S. Weil, Dean M.Paxton, et al. Selection and Evaluation of Heat-Resistant Alloys for SOFC Interconnect Applications. J. Electrochem. Soc. 2003,150(9):A1188~A1201
    63 K. Hilpert, D. Das, M. Miller, et al. Chromium Vapor Species over Solid Oxide Fuel Cell Interconnect Materials and Their Potential for Degradation Processes. J. Electrochem. Soc. 1996,143(11):3642~3647
    64 Y. Matsuzaki, I. Yasuda. Electrochemical Properties of a SOFC Cathode in Contact with a Chromium-Containing Alloy Separator. Solid State Ionics. 2000,132:271~278
    65 K. Fujita, T. Hashimota, K. Ogasawara, et al. Relationship between Electrochemical Properties of SOFC Cathode and Composition of Oxide Layer Formed on Metallic Interconnects. Journal of Power Sources. 2004,131:270~277
    66 Christian Gindorf, Klaus Hilpert and Lorez Singheiser. Determination of Chromium Vaporization Rates of Different Interconnect Alloys by Transpiration Experiments. Electrochemical Society Proceeding. 2001,16:793~802
    67 S. Taniguchi, M. Kadowaki and H. Kawamura, et al. Degradation Phenomena in the Cathode of a Solid Oxide Fuel Cell with an Alloy Separator. Journal of Power Sources. 1995,55:73~79
    68 H. Yokokawa, T. Horita, N. Sakai, et al. Thermodynamic Considerations on Cr Poisoning in SOFC Cathodes. Solid State Ionics. 2006,177:3193~3198
    69 S. P. Jiang, Sam Zhang and Y. D. Zhen. A Fast Method for the Investigation of the Interaction between Metallic Interconnect and Sr-Doped LaMnO3 of Solid Oxide Fuel Cells. Materials Science and Engineering. 2005,B119:80~86
    70 S. P. Jiang, Y. D. Zhen, Sam Zhang, et al. An Electrochemical Method to Assess the Chromium Volatility of Chromia-Forming Metallic Interconnect for SOFCs. J. Electrochem. Soc. 2006,153(11):A2120~A2125
    71 S. P. Jiang, Y. D. Zhen and Sam Zhang. Interaction between Fe-Cr Metallic Interconnect and (La,Sr)MnO3/YSZ Composite Cathode of Solid Oxide Fuel Cell. J. Electrochem. Soc. 2006,153(8):A1511~A1517
    72 S. P, Simner, M. D. Anderson, G.G.Xia, et al. SOFC Performance with Fe-Cr-Mn Alloy Interconnect. J. Electrochem. Soc. 2005,152(4):A740~A745
    73 S. P. Jiang, Sam Zhang and Y. D. Zhen. Deposition of Cr Species at (La,Sr)(Co,Fe)O3 Cathode of Solid Oxide Fuel Cells. J. Electrochem. Soc. 2006,153(1):A127~A134
    74 J. Y. Kim, V. L. Sprenkle, N. L. Canfield, et al. Effects of Chrome Contamination on the Performance of La0.6Sr0.4Co0.2Fe0.8O3 Cathode Used inSolid Oxide Fuel Cells. J. Electrochem. Soc. 2006,153(5):A880~A886
    75 E. Kongysheva, H. Penkalla, E. Wessel, ea al. Chromium Poisoning of Pervoskite Cathodes by the ODS Alloy Cr5Fe1Y2O3 and the High Chromium Ferritic Steel Crofer22APU. J. Electrochem. Soc. 2006,153(4):A765~A773
    76 C. Gindorf, K. Hilpert, H. Nabielek, et al. Chromium Release from Metallic Interconnects with and without Coatings. Augustin J.MaEvoy. The 4th European Solid Oxide Fuel Cell Forum, Luzern, Switzerland, 2000,1:845~854
    77 S. P. Jiang. Use of Gaseous Cr Species to Diagnose Surface and Bulk Process for O2 Reduction in Solid Oxide Fuel Cells. Journal of Applied Electrochemistry. 2001,31:181~192
    78 W. Z. Zhu, S. C. Deevi. Opportunity of Metallic Interconnects for Solid Oxide Fuel Cell: a Status on Contact Resistance. Materials Research Bulletin. 2003,38:957~972
    79 M. D. Vazquez-Navarro, J. McAleese and J. A. Kilner. Candidate Interconnect Materials Oxidation Study of a Ni-Based Superalloy in Pure Oxygen at 800 ℃ . Electrochemical Society Proceeding. 1999,19:749~758
    80 Ellen Ivers-Tiffee, Andre Weber and Dirk Herbstritt. Materials and Technologies for SOFC-Components. J. the European Ceramic Society. 2001,21:1805~1814
    81 Jeffrey W. Fergus. Metallic Interconnects for Solid Oxide Fuel Cells. Materials Science and Engineering. 2005,A119:80~86
    82 S. P. S. Badwal, R. Deller, K. Foger, Y. Ramprakash, et al. Interaction between Chromia Forming Alloy Interconnects and Air Electrode of Solid Oxide Fuel Cells. Solid State Ionics. 1997,99:297~310
    83 W. Glatz, E. Batawi, W. Kraussler, et al. A New Low Cost Material Production Route for Metallic SOFC-Interconnectors. Electrochemical Society Proceedings. 1999,19:783~790
    84 Wlofgang Thierfelder, Horse Greiner. High-Temperation Corrosion Behaviour of Chromium Based Alloys for High Temperature SOFC. Electrochemical Proceeding. 1997,18:1306~1315
    85 T. Horita, Y. Xiong, H. Kishimoto, et al. Application of Fe-Cr alloys to Solid Oxide Fuel Cells for Cost-Reduction Oxidation Behavior of Alloys inMethane Fuel. J. Power Sources. 2004,131:293~298
    86 Z. Zeng, K. Natesan. Corrosion of Metallic Interconnects for SOFC in Fuel Gases. Solid State Ionics. 2004,167:9~16
    87 S. Geng, J. Zhu. Promising Alloys for Intermediate-Temperature Solid Oxide Fuel Cell Interconnect Application. Journal of Power Sources. 2006,160:1009~1016
    88 Z. Yang, J. S. Hardy, M. S. Walker, et al. Structure and Conductivity of Thermally Growth Scales on Ferritic Fe-Cr-Mn Steel for SOFC Interconnect Applications. Journal of the Electrochemical Society. 2004,151(11):A1825~A1831
    89 I. Antepara, I. Villarreal, L. M. Rodríguez-Martínez, et al. Evaluation of Ferritic Steels for Use as Interconnects and Porous Metal Supports in IT-SOFCs. Journal of Power Sources. 2005,151:103~107
    90 Z. Yang, M. S. Walker, P. Singh, et al. Oxidation Behavior of Ferritic Stainless Steels under SOFC Interconnect Exposure Conditions. Journal of the Electrochemical Society. 2004,151(12):B669~B678
    91 Z. Yang, G. Xia, P. Singh, et al. Effects of Water Vapor on Oxidation Behavior of Ferritic Stainless Steels under Solid Oxide Fuel Cell Interconnect Expose Conditions. Solid State Ionics. 2005,176:1495~1503
    92 H. Kurokawa, K. Kawamura, T. Maruyama. Oxidation Behavior of Fe-16Cr Alloy Interconnect for SOFC under Hydrogen Potential Gradient. Solid State Ionics. 2004,168:13~21
    93 H. Kurokawa, Y. Oyama, K. Kawamura, et al. Hydrogen Permeation through Fe-16Cr Interconnect in Atmosphere Simulating SOFC at 1073K. Journal of the Electrochemical Society. 2004,151(8):A1264~A1268
    94 R. Haugsrud. On the Influence of Sol-Gel Derived CeO2 Coatings on High-temperature Oxidation of Co, Ni and Cu. Corrosion Science. 2002,44: 1569~1576
    95 F. Riffard, H. Buscail, E. Caudron, et al. Effect of Yttrium Addition by Sol-Gel Coating and Ion Implantation on the High Temperature Oxidation Behavior of the 304 Steel. Applied Surface Science. 2002,199:107~116
    96 J. H. Zhu, Y. Zhang, A. Basu, et al. LaCrO3-based Coatings on Ferritic Stainless Steel for Solid Oxide Fuel Cell Interconnect Applications. Surfaceand Coatings Technology. 2004,177-178:65~72
    97 S. Linderoth, P. V. Hendriksen and M. Mogensen. Investigations of Metallic Alloys for Use as Interconnects in Solid Oxide Fuel Cell Stacks. Journal of Materials Science. 1996, (31):5081~5092
    98 H. W. Nie, T-L. Wen, H. Y. Tu. Protection Coatings for Planar Solid Oxide Fuel Cell Interconnect Prepared by Plasma Spraying. Materials Research Bulletin. 2003,38:1531~1537
    99 Wei Qu, Jian Li and P. G.Ivey. Sol-gel Coatings to Reduce Oxide Growth in Interconnects Used for Solid Oxide Fuel Cells. Journal of Power Sources. 2004,138:162~168
    100 G. Schiller, R. Henne. Vacuum Plasma Sprayed Protective Layers for Solid Oxide Fuel Cell Application. Journal of Advanced Materials. 2000,32:3~10
    101 H. Tsukuda, A. Notoml and N. Hisatome. Application of Plasma Spraying Technology to Tubular-Type Solid Oxide Fuel Cells Production. Journal of Thermal Spray Technology. 2000,9:364~375
    102 K. Okumura, Y. Aihara, S. Ito, et al. Development of Thermal Spraying-Sintering Technology for Solid Oxide Fuel Cells. Journal of Thermal Spray Technology. 2000,9:354~360
    103 S. Takenoiri, N. Kadokawa and K. Koseki. Development of Metallic Substrate Supported Planar Solid Oxide Fuel Cells Fabricated by Atmospheric Plasma Spraying. Journal of Thermal Spray Technology. 2000,9:360~368
    104 W. Qu, L. Jiang, D. G.Ivey, et al. Yttrium, Cobalt and Yttrium/Cobalt Oxide Coatings on Ferritic Stainless Steels for SOFC Interconnects. J. Power Sources. 2006,157:335~350
    105 M. J. Capitianm, A. Paul, J. L. Pastol, et al. X-ray Diffraction Study of Oxide Scales Formed at High Temperature Oxidation of Metals. Oxidation of Metals. 1999,52:447~452
    106 W. Qu, J. Li, G. I. Pouglas. Sol-Gel Coatings to Reduce Oxide Growth in Interconnects for Solid Oxide Fuel Cells. J. Power Sources. 2004,138:162~170
    107 T. Brylewski, M. Nanko, T. Mauyama. Application of Fe-16Cr Ferritic Alloy as Interconnector for a Solid Oxide Fuel Cell. Solid State Ionics.2001,143:131~150
    108 K. Honegger, A. Plas, R. Diethelm, et al. in: H. Yokokawa, S. C. Singhal (Eds.), Evaluation of Ferritic Steel Interconnects for SOFC Stacks Proceedings of the Seventh International Symposium on Solid Oxide Fuel Cells (SOFC VII), Tsukuba, Ibaraki, Japan, 3-8 June, 2001:803~810
    109 D. P. Lim, D. S. Lim, J. S. Oh, et al. Influence of Post-Treatments on the Contact Resistance of Plasma –Sprayed La0.8Sr0.2MnO3 Coating on SOFC Metallic Interconnector. Surf. & Coat. Tech. 2005,200:1248~1251
    110 Z. Yang, G. Xia, Gary D. Maupin, et al. Evaluation of Perovskite Overlay Coatings on Ferritic Stainless Steels for SOFC Interconnect Applications. J. Electrochem. Soc. 2006,153:A1852~A1858
    111 Z. Yang, G. Xia and J. W. Stevenson. Mn1.5Co1.5O4 Spinel Protection Layers on Ferritic Stainless Steels for SOFC Interconnect Applications. Electrochem. Solid-State Lett. 2005,8:A168~A170
    112 Z. Yang, G. Xia, Gary D.Maupin, et al. Conductive Protective Layers on Oxidation Resistant Alloys for SOFC Interconnect Applications. Surf. Coat. Technol. 2006,201:4476~4483
    113 K. Fujita, K. Ogasawara, Y. Matsuzaki, et al. Prevention of SOFC Cathode Degradation in Contact with Cr-Containing Alloy. Journal of Power Sources. 2004,131:261~269
    114 R. Horita, Y. Xiong, K. Yamaji, et al. Stability of Fe-Cr Alloy Interconnects under CH4-H2O Atmosphere for SOFCs. J. Power Sources. 2003,118:35~43
    115 W. A. Meulenberg, S. Uhlebruck, E. Wessel, et al. Oxidation Behavior of Ferrous Alloys Used as Interconnecting Materials in Solid Oxide Fuel Cells. Journal of Materials Science. 2003,38:507~513
    116 J. Li, J. Pu, X. Zhang, et al. Oxidation of Haynes230 alloy in Reduced Temperature Solid Oxide Fuel Cell Environments. J. Power Sources. 2005,139:182~187
    117 谢光远, 肖建中, 谢淑红. 基于 00Cr17 的连接材料抗氧化性研究. 华中科技大学学报(自然科学版). 2004,32(6):75~77
    118 Z. Yang, G. Xia and P. Singh. Electrical Connects between Cathodes and Metallic Interconnects in Solid Oxide Fuel Cells. Journal of Power Sources. 2006,155:246~252
    119 S. P. Jiang, J. G. Love and L. Apateanu. Effect of Contact between Electrode and Current Collector on the Performance of Solid Oxide Fuel Cells. Solid State Ionics. 2003,160:15~26
    120 W. A. Meulenberg, O. Teller and U. Flesch. Improved Contacting by the Use of Silver in Solid Oxide Fuel Cells up to an Operating Temperature of 800℃. Journal of Materials Science. 2001,36:3189~3195
    121 W. A. Meulenberg, A. Gil, E. Wessel. Corrosion and Interdiffusion in a Ni/Fe-Cr-Al couple Used for the Anode Side of Multi-layered Interconnect for SOFC Applications. Oxidation of Metals. 2002,2(57):1~12
    122 M. Guillodo, P. Vernoux, J. Fouletier. Electrochemical Properties of Ni-YSZ Cermet in Solid Oxide Fuel Cells. Solid State Ionics. 2000,127:99~107
    123 K. A. Nielsen, A. R. Dinesen, L. Korcakova, et al. Testing of Ni-plated Ferritic Steel Interconnect in SOFC Stacks. Fuel Cells. 2005,10:100~106
    124 林子敬, 张晓华. 固体氧化物燃料电池电化学与热分析耦合的二维模型. 无机材料学报. 2003,18(3):661~666
    125 P. Costamagna, K. Honegger. Modeling of Solid Oxide Heat Exchange Integrated Stacks and Simulation at High Fuel Utilization. J. Electrochem. Soc. 1998,145(11):3995~4007
    126 B. A. Haberman, J. B. Young. Three-Dimensional Simulation of Chemically Reacting Gas Flows in the Porous Support Structure of an Integrated-Planar Solid Oxide Fuel Cell. International Journal of Heat and Mass Transfer. 2004,47:3617~3629
    127 E. H. Pacheco, D. Singh, P. N. Hutton, et al. A Macro-Level Model for Determining the Performance Characteristics of Solid Oxide Fuel Cells. Journal of Power Sources. 2004,138:174~186
    128 R. Wilkenhoener, H. P. Bucheremer, D. Stoever, et al. Brazing of Metallic Conductors onto Ceramic Plates in Solid Oxide Fuel Cells PartⅠ: Attaching a Current Collector. Journal of Material Science. 2001,36:1775~1782
    129 R. Wilkenhoener, H. P. Bucheremer, D. Stoever, et al. Brazing of Metallic Conductors onto Ceramic Plates in Solid Oxide Fuel Cells Part ⅡAttaching Conducting Wires. Journal of Material Science. 2001,36:1783~1788
    130 H. Yakabe, M. Hishinuma, M. Uratani, et al. Evaluation and Modeling of Performance of Anode-Supported Solid Oxide Fuel Cell. Journal of PowerSources. 2000,86:423~431
    131 M. Iwata, T. Hikosaka, M. Morita, et al. Performance Analysis of Planar-Type Unit SOFC Considering Current and Temperature Distributions. Solid State Ionics. 2000,132:297~308
    132 A. Selimovic, M. Kemm, T. Torisson, et al. Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells. Journal of Power Sources. 2005,145:463~469
    133 H. Yakabe, T. Ogiwara, M. Hishinuma, et al. 3-D Model Calculation for Planar SOFC. Journal of Power Sources. 2001,102:144~154
    134 Robert J. Kee, P. Korada, K. Walters, et al. A Generalized Model of the Flow Distribution in Channel Networks of Planar Fuel Cells. Journal of Power Sources. 2002,109:148~159
    135 J. R. Ferguson, J. M. Fiard and R. Herbin. Three-Dimensional Numerical Simulation for Various Geometries of Solid Oxide Fuel Cells. Journal of Power Sources. 1996,58:109~122
    136 H. Zhu, R. J. Kee. A General Mathematical Model for Analyzing the Performance of Fuel-Cell Membrane-Electrode Assemblies. Journal of Power Sources. 2003,117:61~74
    137 Y. Ji, K. Yuan, J. N. Chung, et al. Effects of Transport Scale on Heat/Mass Transfer and Performance for Solid Oxide Fuel Cells. Journal of Power Sources. 2006,161:380~391
    138 Z. Lin, J. W. Stevenson, M. A. Khaleel. The Effect of Interconnect Rib Size on the Fuel Cell Concentration Polarization in Planar SOFCs. Journal of Power Sources. 2003,117:92~97
    139 M. Gaudon, C. L. Robert and F. Ansart. Preparation and Characterization of La1-xSrxMnO3 (0≤x≤0.6) Powder by Sol-gel Processing. Solid State Sciences. 2002,4:125~133
    140 尧巍华, 张中太, 唐子龙等. 低温燃料法合成 La0.9Sr0.1Ga0.8Mg0.2O2.85 固体电解质粉末. 稀有金属材料与工程. 2004,33(4):421~424
    141 Stepher J. Skinner. Recent Advances in Pervoskite-Material for Solid Oxide Fuel Cell. International Journal of Inorganic Materials. 2001,3:113~121
    142 W. J Qudakkers, H. Greiner, M. Hansel, A. S. Khanna, et al. Compatibility of Perovskite Contact Layers between Cathode and Metallic InterconnectorPlates of SOFCs. Solid State Ionics. 1996,91:55~67
    143 李美栓. 金属的高温腐蚀. 冶金工业出版社, 2001:36~247
    144 S. C. Paulson and V. I. Birss. Chromium Poisoning of LSM-YSZ SOFC Cathodes I. Detailed Study of the Distribution of Chromium Species at a Porous Single-Phase Cathode. J. Electrochem. Soc. 2004,151(11):A1961~A1968
    145 S. P. Jiang, J. P. Zhang and X. G. Zhang. A Comparative Investigation of Chromium Deposition at Air Electrodes of Solid Oxide Fuel Cells. J. European Ceramic Soc. 2002,22:361~373
    146 N. Sakai, T. Horita, K. Yamaji, et al. Material Transport and Degradation Behavior of SOFC Interconnect. Solid State Ionics. 2006,177:1933~1939
    147 Xue Chen, Peggy Y. Hou, Craig P. Jacobson, et al. Protective Coating on Stainless Steel Interconnect for SOFCs: Oxidation Kinetics and Electrical Properties. Solid State Ionics. 2005,176:425~433
    148 Y. Wang, F. Yoshiba, T. Watanabe, et al. Numerical Analysis of Electrochemical Characteristics and Heat Species Transport for Planar Porous-Electrode-Supported SOFC. J. Power Sources. 2007,170:101~110
    149 A. V. Virkar, J. Chen, C. W. Tanner, et al. The Role of Electrode Microstructure on Activation and Concentration Polarization in Solid Oxide Fuel Cells. Solid State Ionics. 2000,131:189~198
    150 J. W. Kim, A. V. Virkar, K. Z. Fung, et al. Polarization Effects in Intermediate Temperature Anode-Supported Solid Oxide Fuel Cells. J. Electrochem. Soc. 1999,146:69~78
    151 S. Campanari, P. Lora. Comparison of Finite Volume SOFC Models for the Simulation of a Planar Cell Geometry. Fuel Cells. 2005,5:34~51

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700