AlN厚膜金属化浆料用Au/Pt粉体的制备
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
贵金属粉体由于其优良的电学性能和化学稳定性,其作为厚膜浆料的功能相粒子在电子工业领域有着十分广泛的应用。其中金属相粒子的粒径分布及其微观形貌对厚膜金属化膜层的电学、力学性能和焊接性能有很大的影响。本文采用多元醇法和化学还原法制备了形貌均一、粒度分布窄的单独的金、铂及金铂合金粉体,并将其应用到AlN陶瓷厚膜金属化浆料中,研究金属化膜层的可焊性。以HAuCl_4为金源,乙二醇为还原剂,PVP为分散剂单独还原制备了粒径均匀、分散性好的近球形亚微米级Au;采用柠檬酸钠为还原剂,PVP为分散剂分别在60℃和100℃制备了一系列不同粒径分布的且形貌为球形的Au;采用乙二醇为还原剂,PEG400为分散剂分别制备了Au和Pt,单独制备的Pt为纳米级别,形成200nm左右的均匀的团聚体;单独制备的Au的粒径较大约400nm,形状多为不规则球形。
     利用强还原性的NaBH4,PVP为分散剂同时还原制备了纳米级的Au/Pt合金粉体;采用乙二醇为还原剂,PEG400为分散剂同时还原制备了Pt包裹Au复合粉体,在Au的周围附着上一层Pt纳米颗粒,Au间连接有纳米级的团聚的Pt,将这样结构的Au/Pt复合粉应用到厚膜浆料时可以很好的实现Au/Pt之间的合金化。
     选用乙二醇制备的Au/Pt复合粉体和NaBH4制备的Au/Pt合金粉体为金属相,CaO-B_2O_3-SiO_2-BaO和CaO-B_2O_3-SiO_2为玻璃结合相,配制组成为70wt%金铂粉体、5wt%玻璃粉和25wt%有机载体的厚膜浆料。经XRD和EDS分析烧结后金/铂得到了很好的合金化,且焊接性能良好。
Precious metal powders have a very wide range of applications in electronic industry as a function phase in thick film due to their excellent electrical properties and chemical stability. The properties of particles, such as particle size distribution and morphology, are key to the electrical, mechanical properties and weld ability of thick film. In our experiment, Uniform gold, platinum and their alloy particles with narrow particle size distribution are synthesized by polyol process and chemical reduction ways. The solder ability of metalized film after applying Au/Pt composite in thick film for AlN is also discussed.
     Au powders with uniform distribution and nearly spherical is synthesized using EG as reducing agent and PVP as dispersant in polyol process; Au having different size distribution and spherical morphology is reduced by sodium citrate using PVP as dispersant in 60℃and 100℃respectively. Au prepared use PEG400 as dispersant in polyol process has larger particle size (400nm) and irregular spherical shape, however, Pt reduced by this method is in nanoscale.
     Au/Pt alloy powder in nanoscale is co-synthesized by using NaBH4 with strong reducibility and PVP as dispersant; For co-reduction of Pt and Au using PEG400 as dispersant in polyol process, Au is coated by Pt nanoparticles. Au/Pt composite powder with this structure could be be easy to realize Au/Pt alloying when applied to thick film.
     Use Au/Pt composite powder and the Au/Pt alloy powder as metal phase separately and choose CaO-B_2O_3-SiO_2-BaO and CaO-B_2O_3-SiO_2 as binder respectively to prepare thick film that has 70wt% Au/Pt, 5wt% glass and 25wt% organic vehicle. By XRD and EDS analysis, Au/Pt powder obtain good alloying and has good weld ability.
引文
[1]田民波,电子封装工程,北京:清华大学出版社,2003. 59~63
    [2] Morozowich. D. K. A novel approach to high current hermetic packaging. IEEE, 1998, 516~520
    [3] J.Licari,Ph.D. Fabrication and packaging of high-density multichip interconnect (HDMI)substrates. IEEE, 1998: 1582~1688
    [4]陈明辉,吴懿平,电子制造与封装,电子工业专用设备,2006(133):49~52
    [5]卢基在,[博士学位论文],上海,复旦大学,1998
    [6]张海坡,阮建明,电子封装材料及其技术发展状况,粉末冶金材料科学与工程,2003,8(3):216~223
    [7]田民波,梁彤翔,VL SIC用AlN封装的金属化及元件设计,半导体情报,1997,34(3):18~23
    [8] Miyashiro F, Iwase N. High thermal conductivity aluminum nitride ceramic substrates and packages. IEEE Transactions on Components, Hybrids, and Manufacturing Technology, 1990, 13(2): 313~319
    [9] Zhiping Liu, Jinli Zhang. High performance aluminum nitride packaging materials. International Conference on Electronic Packaging Technology, 2006: 26~29
    [10]田民波,梁彤翔,何卫,电子封装技术和封装材料,半导体情报,1995,32(4):42~46
    [11]刘俊永,AIN基板厚膜金属化工艺技术研究,混合微电子技术,2007,18(2):1~9
    [12] Slack G.A. Nonmetallic crystals with high thermal conductivity. Journal of the Physics and Chemistry of Solids, 1973, 34(2): 321~35
    [13]黄昆,固体物理学,北京:高等教育出版社,1988.143~144
    [14]高陇桥,氮化铝陶瓷及其金属化工艺,真空电子技术,1992(4):23~27
    [15] Harris J.H, Youngman, R.A. The oxygen-related defect in aluminum nitride ceramics: A thermal conduction limiting defect in a technologically important material. Electronic Packaging Materials Science VII Symposium, 1994: 171~82
    [16] Harris J.H., Youngman, R.A. On the nature of the oxygen-related defect in aluminum nitride. Journal of Materials Research, 1990, 5(8): 1763~1773
    [17]吴音,缪卫国等,影响AlN陶瓷热导率的本征氧缺陷,硅酸盐学报,1997,25(6):675~678
    [18]李清涛,吴清仁等,高热导AlN陶瓷材料制备与应用进展,陶瓷学报,2007,28(1):57~64
    [19] Xueli Du, Mingli Qin. Study of rare-earth oxide sintering aid systems for AlN ceramics. Materials Science and Engineering, 2007: 471~474
    [20]周和平,刘耀城,氮化铝陶瓷的研究与应用,硅酸盐学报,1998,26(4):517~520
    [21] Yao Yijun, Qiu Tai. Effects of Behaviors of Aluminum Nitride Ceramics with Rare Earth Oxide Additives. Journal of rare earths, 2007, 25: 58~63
    [22] Liang Qiao, Heping Zhou. Effects of Li2O on the low temperature sintering and thermalconductivity of AlN ceramics. Journal of the European Ceramic Society, 2003(23): 1517~1524
    [23] Watari.K,Hwang, H.J. Effective sintering aids for low-temperature sintering of AlN ceramics. Journal of Materials Research, 1999, 14(4): 1409~1417
    [24] Liang Qiao, Heping Zhou. Thermal conductivity of AlN ceramics sintered with CaF2 and YF3 . Ceramics International, 2003, 29: 893~896
    [25] Liang Qiao, Heping Zhou. Effect of Y2O3 on low temperature sintering and thermal conductivity of AlN ceramics. Journal of the European Ceramic Society, 2003(23): 61~67
    [26]黄小丽,郑永红,复合助剂对氮化铝陶瓷低温烧结的影响,北京机械工业学院学报,2005,20(2):11~15
    [27] Shoichi Kumea, Masaki Yasuoka. Dielectric and thermal properties of AlN ceramics. Journal of the European Ceramic Society, 2007(27): 2967~2971
    [28]刘键,刘志平,高性能氮化铝陶瓷基片生产关键技术研究,电子与封装,2007,7(12):1~4
    [29]石强,氮化铝瓷金属化方法研究进展,中国陶瓷,1995,31(1):33~37
    [30]谢进,宗祥福,铜-氮化铝陶瓷键合机理的探讨,电力电子技术,2000(3):55~57
    [31]陈大钦,林锋,DBC电子封装基板研究进展,材料导报,2004,18(6):76~78
    [32]许昕睿,庄汉锐,AlN陶瓷基板覆铜技术的研究,无机材料学报,2003,18(4):837~842
    [33]夏童能,A1N陶瓷化学镀法金属化机理,表面技术,1999,28(2):20~22
    [34] Yamaguchi. T., Kageyama. M. Oxidation Behavior of AlN in the Presence of Oxide and Glass for Thick Film Applications. IEEE, 1989, 12(3): 402~405
    [35] Kurihara Y., Takahashi S. Ag-Pd Thick Film Conductor for A1N Ceramics. IEEE, 1990, 13(2): 306~312
    [36] Newberg C.E., Risbud S.H. Binder chemistry, adhesion and structure of interfaces in thick-film metallized aluminium nitride substrates. Journal of materials science, 1992, 27: 2670~2676
    [37] Xinrui Xu, Hanrui Zhuang. Bonding behavior of copper thick film containing lead-free glass frit on aluminum nitride substrates. Ceramics Internation, 2004(30): 661~665
    [38] Reicher R., Smetana W. A fritless copper conductor system for power electronic applications. Microelectronics Reliability, 2001, 41: 491~498
    [39] Adlabnig A., Schuster J. C. Development of glass frit free metallization systems for AlN. Journal of materials science, 1998(33): 4887~4892
    [40] Liu Zongrong, Chung DDL. Effect of firing atmosphere on air-firable glass-free electrically conductive thick film. Journal of Electronic Materials, 2005, 34(3): 287~293
    [41]Kuninori Okamoto, Du Pont K. K. Study on Thick Film Conductor Performances on AIN Substrate. TAl-5.IEEE: 195~198
    [42]吴松山,电子产品网印技术解析,北京:化学工业出版社,2007.359~360
    [43]陆仲武,厚膜集成电路丝网印刷工艺技术,电子工业专用设备,2002,31(1):48~50
    [44] T.X.Liang, W.Z.Sun . Effect of Surface Energies on Screen Printing Resolution. IEEE, 1996, 19(2): 423~426
    [45] Hung-Wen Lin, Chang-Pin, Chang. The rheological behaviors of screen-printing pastes. Journal of materials processing technology, 2008(197): 284~291
    [46]杨华荣,堵永国,表面活性剂对厚膜电子浆料流平性的影响,电子元件与材料,2004,23(7):25~27
    [47]S.B. Rane, T. Seth. Influence of surfactants treatment on silver powder and its thick films. Materials Letters, 2003(57): 3096~3100
    [48]梁彤翔,孙文珍,两种表面活性剂对厚膜金属化浆料载体流变性的影响,化工学报,1996,47(2):234~238
    [49]陆广广,宣天鹏,电子浆料的研究进展与发展趋势,金属功能材料,2008,15(1):48~52
    [50]李耀林,厚膜电子元件,广州:华南理工大学出版社,1991.21~22
    [51]S.B. Rane, T. Seth. Influence of surfactants treatment on silver powder and its thick films. Materials Letters, 2003(57): 3096~3100
    [52]韦群燕,潘云昆,超细银粉在有机介质中的分散及其稳定性,电子元件与材料,2000, 19(1):22~23
    [53]陆广广,宣天鹏,电子浆料的研究进展与发展趋势,金属功能材料,2008,15(1):49~52
    [54] Shaojun Guo, Erkang Wang. One-Pot. High-Yield Synthesis of Size-Controlled Gold Particles with Narrow Size Distribution. Inorganic Chemistry, 2007, 46: 6740~6743
    [55]Wissanu Patungwasa, JoseH. pH tunable morphology of the gold nanoparticles produced by citrate reduction. Materials Chemistry and Physics. 2008(108): 45~54
    [56] Darwin James Langlois. Process for gold precipitation. US, 3869280
    [57]张宗涛,超细型银-钯合金的制备方法,中国专利,1104137A
    [58]徐娇珍,杨平,华南平,Pt/Au双金属纳米粒子的制备及表征,化学试剂与应用,2003,15(6):838~840
    [59] Toivo T. Kodas, Albuquerque. Gold powders methods for producing powders and devices fabricated from same. US, 6830823B1
    [60] Sara E. Skrabalak, Benjamin J. Wiley, Munho Kim. On the polyol synthesis of silver nanostructures: glycolaldehyde as a reducing agent. Nano letters, 2008, 8(7): 2077~2081
    [61] P.-Y. Silvert, K. Tekaia-Elhsissen. Synthesis of monodisperse submicronic gold particles by the polyol process. Solid State Ionics, 1995(82): 53~60
    [62]K.Tekaia-Elhsissen, F. Bonet, P.-Y. Silvert. Finely divided platinum–gold alloy powders prepared in ethylene glycol. Journal of Alloys and Compounds, 1999(292) : 96~99
    [63] Tian Tang, IanW. Hamley. Multiple morphologies of gold nano-plates by high-temperature polyol syntheses. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2009(336): 1~7
    [64] Zhirui Guo, Yu Zhang, Yun DuanMu. Facile synthesis of micrometer-sized gold nanoplates through an aniline-assisted route in ethylene glycol solution. Colloids and Surfaces A: Physicochem. Eng. Aspects, 2006(278): 33~38
    [65] J.l. elechiguerra. l.larios-lopez. m. jose-yacaman. Controlled synthesis of platinum submicron and nanometric particles with novel shapes. Appl. Phys. A, 2006(84): 11~19
    [66] Dongjo Kim, Sunho Jeong, Jooho Moon. Synthesis of silver nanoparticles using the polyol process and the influence of precursor injection. Nanotechnology, 2006(17): 4019~4024
    [67] Xiaohui Ji, Xiangning Song, Jun Li, et al. Size Control of Gold Nanocrystals in Citrate Reduction: The Third Role of Citrate. J. AM. CHEM. SOC., 2007, 129(45): 13939~13948
    [68] Dung The Nguyen, Dong-Joo Kim, Myoung Gi So. Experimental measurements of gold nanoparticle nucleation and growth by citrate reduction of HAuCl4. Advanced Powder Technology, 2009(114): 1~8
    [69] P.-Y. Silvert, K. Tekaia-Elhsissen. Synthesis of monodisperse submicronic gold particles by the polyol process. Solid State Ionics, 1995(82): 53~60
    [70] Darwin James Langlois. Process for gold precipitation. US, 3869280
    [71]毛彦进,电子浆料用银钯复合粉末的研制: [硕士学位论文],北京;北京工业大学,2003
    [72]牟志刚,Pt/Au纳米双金属簇的制备及表征,江苏技术师范学院学报,2007,13(2):44~51
    [73]吴松平,郑留群,付贤民,PVP对液相法制备纳Ag粉影响的研究进展,电子元件与材料,2009,28(9):77~80
    [74]彭思,严华,刘善堂,PVP在水相金纳米粒子表面吸附过程的研究,材料工程,2008(10):353~355
    [75]王莉娥,杨明学,谢广云,一种用聚乙二醇制备微粒体的方法,生物化学与生物物理进展,1995,22(5):462~464
    [76]冯青仪,王希岳,秦志忠,抗氧剂对聚乙二醇热稳定性的影响,合成技术及应用,1995,10(2):1~5
    [77]刘庆业,覃爱苗,蒋治良等,聚乙二醇光化学法制备金纳米微粒及共振散射光谱研究,光谱学与光谱分析,2005,25(11):1857~1862
    [78]韩旭,李疏芬,赵凤起,富勒烯灰对聚乙二醇热分解和红外光谱的影响,光谱学与光谱分析,2008,28(12):2789~2792
    [79]江成军,段志伟,张振忠,不同表面活性剂对纳米银粉在乙醇中分散性能的影响,稀有金属材料与工程,2007,36(4):724~727
    [80]王卫伟,利用聚乙烯吡咯烷酮制备银纳米粒子,山东理工大学学报(自然科学版),2007,21(6):43~45
    [81]孙红刚,刘恒,尹光福,液相还原法制备纳米银的固液分离研究,稀有金属,2006,30(2):153~157
    [82]张聪慧,纳米金粉的制备研究: [硕士论文],西安;西安建筑科技大学,2001
    [83] Mariappan Periasamy, Muniappan Thirumalaikumar. Methods of enhancement of reactivity and selectivity of sodium borohydride for applications in organic synthesis. Journal of Organometallic Chemistry, 2000(609): 137~151
    [84]赵修建译,超微颗粒导论,武汉,武汉工业大学出版社:1991.32~35
    [85]阳岸恒,谢宏潮,金锗合金在电子工业中的应用,贵金属,2007,28(1):63~66
    [86] Vivek Chidambaram, John Hald, Jesper Hattel. Development of Au-Ge based candidate alloys as an alternative to high-lead content solders. Journal of Alloys and Compounds, 2010(490): 170~179
    [87]胡永芳,李孝轩,禹胜林,基手Au基共晶焊料的焊接技术及其应用,电焊机,2008,38(9):57~60
    [88]张振霞,李秀霞,赵嵩,金基焊料的典型应用分析及其可替代材料,真空电子技术,2009(4):81~83

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700