乙酰胆碱酯酶和香豆素460生物缀合物的传感性与分子对接
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
两个或两个以上具有生物活性的分子连接起来形成一个新的复杂的生物缀合物。生物缀合物具有各个组成分子的性能。生物缀合物技术几乎影响到生命科学的各个领域,应用交联反应构建新颖独特的缀合物系统使得灵敏测定生物体内的目标分子及生物过程的分子调节成为可能。生物缀合物也能够作为探针探测特定细胞组分的定位,并用于疾病的治疗。
     分子对接是研究配体与受体之间相互作用及虚拟筛选的有效工具,在药物合理设计中起着非常重要的作用。进行分子对接时,先将受体表面特征化,寻找受体的活性位点,然后把底物放入受体的活性口袋中,通过几何匹配搜索构象,然后根据打分函数评价匹配是否合适。
     本论文对乙酰胆碱酯酶(AChE)和香豆素460形成的生物缀合物进行了研究,并研究应用该生物缀合物荧光法检测有机磷。利用分子对接法模拟乙酰胆碱酯酶与其配体的结合,在理论上探讨AChE与其配体的相互作用机制。本论文由三章组成:
     第一章为绪论,介绍了有机磷的危害和现状及检测有机磷残留方法的研究进展。在此基础上确定了本论文的选题思路和研究内容。
     第二章为实验部分。在pH=7.5的磷酸缓冲溶液中,AChE和香豆素460以静电作用形成生物缀合物。对氧磷可使生物缀合物的荧光强度增强。根据荧光强度变化值,计算了香豆素460在AChE上的结合位置到发光基团色氨酸残基的距离,同时也计算了AChE与香豆素460的结合常数及香豆素460-AChE生物缀合物与对氧磷的结合常数。香豆素460在AChE上的结合位置距色氨酸残基距离r=2.61nm(<7nm),试验结果也表明AChE与香豆素460间可发生荧光共振能量转移。AChE与香豆素460的结合常数ka=7.936×103,香豆素460-AChE生物缀合物与对氧磷的结合常数ka=5.12×106。利用该生物缀合物对对氧磷进行检测的线性响应范围为0.3μg·L-1-20μg·L-1,检出限为0.09μg·L-1,从而建立了测定对氧磷的方法。
     第三章为分子对接研究。用分子对接软件GOLD研究了AChE与香豆素460,及其与对氧磷分子的相互作用。结合模型显示,香豆素460与AChE的外周阴离子位点Trp84产生π-π堆积,质子化氮原子与Ser124形成氢键;而对氧磷与AChE疏水位点Phe330产生阳离子-π作用,氧原子与Tyr130和Gly117形成氢键,得分分别为46.50和53.83。
     本论文的研究为AChE与其抑制剂的相互作用模式建立了一种理论和实验研究模型,可用于筛选用于治疗的AChE抑制剂,并研究其作用方式。
Bioconjugation involves the linking of two or more molecules to form a novel complex having the combined properties of its individual components. The technology of bioconjugation has affected nearly every discipline in the life sciences. The application of the available crosslinking reactions and reagent systems for creating novel conjugates with peculiar activities has made possible the assay of minute quantities of sub-stances, the in vivo targeting of molecules, and the modulation of specific biological processes.
     Molecular docking is to study the interaction between the ligand and the receptor and plays a important role in rational drug design. Its basic idea is to firstly feature receptor surface and find the receptor active site, then pocket the receptor into the activity of the substrate, searching conformational by geometric matching, and then evaluat of the appropriateness of matching by scoring function.
     Bioconjugate formed by acetylcholinesterase (AChE) and coumarin 460 was studied in this paper, and the method of detection of organophosphates was applied by using this bioconjugate; The molecular docking method was see to imitate the combining of acetylcholinesterase (AChE) and its ligand, and illustrate the interaction mechanism of acetylcholinesterase (AChE) and its ligand in theory. This thesis consises of three chapters:
     In chapter 1, the hazards of organophosphates was introduced and the current research activity on detection of organophosphates was reviewed. Finally, the aim of this paper was outlined.
     In chapter 2, AChE-coumarin 460 bioconjugate was fabricated and its characteristics were studied. In pH=7.5 phosphate buffer, AChE and coumarin 460 can form bioconjugate by electrostatic interaction.The fluorescence intensity of AChE-coumarin 460 bioconjugate was related linearly to concentration of paraoxon, thus, a method for the detection of organophosphates was established. According to the change of fluorescence intensity, the distance between Coumarin 460 and tryptophan residues of the AChE was calculated. The binding constant of AChE-coumarin 460 as well as the binding constant of paraxon with coumarin460-AChE bioconjugate were also calculated.The distance between coumarin 460 and tryptophan residues was 2.6 1nm (<7nm), proving that FRET can occur between AChE and coumarin 460. The binding constant of AChE with coumarin 460 was 7.936×103, the binding constant of coumarin 460-AChE with paraxon was 5.12×106, as the interaction between AChE and coumarin460 is electrostatic interaction, paraxon is covalently bound to AChE. Under the optimized conditions, the response of the bioconjugate fabricated was related linearly to concentration of paraxon in the range from 0.3μg·L-1-20μg·L-1, with a detection limit of 0.09μg·L-1.
     In chapter 3, molecular docking software GOLD was used to investigate the binding mode of coumarin 460. The conformation model indicated that phenyl ring of coumarin 460 interacts with peripheral anion sites of AChE via a classic parallelπ-πaccumulation and hydrogen bonding was formed between protonize nitrogen atom and Ser124. Paraxon interacts with the hydrophobic site Phe330 of AChE via cationic-πeffect and hydrogen bonding is simultaneously formed between oxygen atom and Tyr130 and Gly117. The fitness scores were 46.50 and 53.83, respectively.
引文
[I]J. Shi, Y. L. Zhao, H. J. Wang, et al. The oretical studies on oxidation potentials of organophosphorus compounds[J]. J. Mol. Struct.,2009,902:66-71.
    [2]H. M. Thompson, S. D. Langton, A. D. M. Hart. Prediction of interspecies differ-ences in the toxicity of organophosphorus pesticides to wildlife-abiochemical approach[J]. Camp. Biochem. Physiol.,1995,111:1-12.
    [3]M. Jokanovic. Biotransformation of organophosphorus compounds[J]. Toxicology., 2001,166:139-160.
    [4]Y. H. Liu, Y. Liu, Z. S. Chen, et al. Purification and characterization of a novel organophosphorus pesticide hydrolase from Penicillium lilacinum BP303[J]. Enzyme. Microb. Technol.,2004,34:297-303.
    [5]M. Jokanovic, M. Kosanovic. Neurotoxic effects in patients poisoned with organo-phosphorus pesticides [J]. Environ. Toxicol. Pharmacol.,2010,29:195-201.
    [6]M. S. Hong, S. J. Hong, R. Barhousi, et al. Neurotoxicity induced in differentiated SK-N-SH-SY5Y human neuroblastoma cells by organophosphorus compounds[J]. Toxicol. Appl. Pharmacol.,2003,186:110-118.
    [7]L. Correll, M. Ehrich. Comparative sensitivities of avian neural esterases to in vitro inhibition by organophosphorus compounds[J]. Toxicol. Lett.,1987,36(2): 197-204.
    [8]A. M. Saboori, D. M. lang, D. S. Newcombe, et al. Structural requirements for the inhibition of human monocyte carboxylesterase by organophosphorus compounds[J]. Chem. Biol. Interact.,1991,80(3):327-338.
    [9]R. Rezg, B. Mornagui, S. El-Fazaa. Organophosphorus pesticides as food chain contaminants and type 2 diabetes:A review[J]. Trends. Food. Sci. Tech.,2010, xxx:xxx-xxx.
    [10]J. W. Choi, Y. K. Kim, B. K. Oh, et al. Optical biosensor for simultaneous detection of captan and organophosphorus compounds[J]. Biosens. Bioelectron., 2003,18:591-597.
    [11]A. L. Simonian, T. A. Good, S. S. Wang, et al. Nanoparticle-based optical biosen-sors for the direct detection of organophosphate chemical warfare agents and pesticides [J]. Talanta,2007,72:223-230.
    [12]S. B. Mathew, A. K. Pillai, V. K. Gupta. A rapid spectrophotometric assay of some organophosphorus pesticide residues invegetable samples[J]. Spectrochim. Acta, Part A,2007,67:1430-1432.
    [13]D. A. Lambropoulou, T. A. Albanis. Optimization of headspace solid-phase micro-extraction conditions for the determination of organophosphorus insecticides in natural waters[J]. J. Chromatogr. A,2001,922:243-255.
    [14]J. L. Acero, F. J. Benitez, F. J. Real, et al. Chlorination of organophosphorus pesticides in natural waters [J]. J. Hazard. Mater.,2008,15:3320-328.
    [15]N. Amini, C. Crescenzi. Feasibility of an on-line restricted access material/liquid chromatography/tandem mass spectrometry method in the rapid and sensitive determination of organophosphorus triesters in human blood plasma[J]. J. Chromatogr. B,2003,795:245-256.
    [16]K. Fytianos, N. Raikos, G Theodoridis, et al. Solid phase microextraction applied to the analysis of organophosphorus insecticides in fruits [J]. Chemosphere,2006, 65:2090-2095.
    [17]E. Ballesteros, M. J. Parrado. Continuous solid-phase extraction and gas chromato-graphic determination of organophosphorus pesticides in natural and drinking waters [J]. J. Chromatogr. A,2004,1029:267-273.
    [18]C. Molina, P. Grasso, E. Grasso, et al. Automated sample preparation with extra-ction columns followed by liquid chromatography-ionspray mass spectrometry interferences, determination and degradation of polar organophosphorus esticides in water samples[J]. J. Chromatogr. A,1996,737:47-58.
    [19]H. S. Sabik, J. Roger. Stability of organophosphorus in secticides on graphitized carbon black extraction cartridges used for large volumes of surface water [J]. J. Chromatogr. A,2000,879:73-82.
    [20]C. P. Sanz, R. Halko, Z. S. Ferrera, et al. Micellar extraction of organophosphorus pesticides and their determination by liquid chromatography [J]. Anal. Chim. Acta, 2004,524:265-270.
    [21]M. V. Russo, L. G. Campanella, P. Q. Avino. Determination of organophosphorus pesticide residues in human tissues by capillary gas chromatography negative chemical ionization mass spectrometry analysis[J]. J. Chromatogr. B,2002,780: 431-441.
    [22]G. Durand, D. Barcelo. Confirmation of chlorotriazine pesticides, their degrada-tion products and organophosphorus pesticides in soil samples using gas chroma-tography-mass spectrometry with electron impact and positive and negative-ion chemical ionization[J]. Anal. Chim. Acta,1991,24:3259-271.
    [23]M. B. Kralj, M. Franko, P. Trebse, et al. Photodegradation of organophosphorus insec ticides investigations of products and their toxicity using gas chromatography massspectrometry and AChE-thermal lens spectrometric bioassay[J]. Chemosph-ere,2007,67:99-107.
    [24]V. K. Sharma, R. K.Jadhav, G. J. Rao, et al. High performance liquid chromato graphic method for the analysis of organophosphorus and carbamate pesticides[J]. Forensic. Sci. Int.,1990,48(1):21-25.
    [25]J. J. Ellington, J. J. Evans. High performance liquid chromatographic separation of the enantiomers of organophosphorus pesticides on polysaccharide chiralstation ary phases[J]. J. Chromatogr. A.,2001,928:145-154.
    [26]G. Szalontai. High-performance liquid chromatography of organophosphorus inse cticides [J]. J. Chromatogr. A.,1976,124:9-16.
    [27]T. P. Ruiz, C. M. Lozano, V. Tomas, et al High-performance liquid chromato graphic assay of phosphate and organophosphorus pesticides using a post-column photochemical reaction and fluorimetric detection[J]. Anal. Chim. Acta,2005, 540:383-391.
    [28]S. T. Wang, H. Mu, Y. H. Bai, et al. Multiresidue determination of fluoroquinolones, organophosphorus and N-methyl carbamates simultaneously in porcine tissue using MSPD and HPLC-DAD[J]. J. Chromatogr. B,2009,877: 2961-2966.
    [29]L. Rastrell, K. Totaro, D. S. Francesco. Determination of organophosphorus pes-ticide residues in Cilento(Campania, Italy) virgin olive oil by capillary gas chro-matography[J]. Food Chem.,2002,79:303-305.
    [30]S. Schachterle, C. Feigel. Pesticide residue analysis in fresh produce by gas chro-matograp-tandem mass spectrometry [J]. J. Chromatogr. A,1996,754:411-422.
    [31]M. V. Russo,1. Companella, P. Avino. Determination of organophosphorus pesticide residues in human tissues by capillary gas chromatography-negative chemical ionization mass spectrometry analysis[J]. J. Chromatogr. B,2002,780: 431-441.
    [32]J. J. Ellington, J. J. Evans, K. B. Prickett, et al. High-performance liquid chromato-graphic separation of the enantiomers of organophosphorus pesticides on polysac-charide chiral stationary phases[J]. J. Chromatogr. A,2001,928: 145-154.
    [33]A. C. Hogenboom, M. P. Honfina, S. J. Kok, et al. Determination of pesticides in veget-bales using lagre-volume injection column liquid chromatography electrospray tandem mass spectrometry[J]. J. Chromatogr. A,2000,892:379-390.
    [34]M. H. Shi, J. J. Xu, S. A. Zhang. Mediator free screen-printed amperoetrie biosensor for screening of organophosphorus pescitide with flow-injection ana lysis system [J]. Talanta,2006,68:1089-1095.
    [35]J. M. Abad, F. Pariente, L. Abrun, et al. Determination of organophosphorus and carbamatepesticides using a piezoelectric biosensor[J]. Anal. Chem.,1998,70: 2848-2855.
    [36]F. G Rodriguez, B. G. Gold. Environmental monitoring using acetylcholin esterase inhibition in vitro a case study in two Mexican lagoons[J]. Mar. Environ. Res.,2000,50:357-360.
    [37]K. Alfthan, H. Kenttamaa, T. Zukale. Characterization and semiquantitative esti-mation of organophosphorus compounds based on inhibition of cholinesterases. [J]. Anal. Chim. Acta,1989,217:43-51.
    [38]J. W. Choi, Y. K. Kim, I. H. Lee, et al. Optical organophosphorus biosensor consisting of acetylcholiesterase viologen hetero Langmuir-Blodgett film[J]. Biosens. Bioele-ctron.,2001,16:937-943.
    [39]S. Fennouh, V. Casimiri, C. Burstein. Increased paraoxon detection solvents using acetylcholinesterase inactivation measured with a choline oxidase biosensor[J]. Biosens. Bioelectron.,1997,12(2):97-104.
    [40]M. E. Gonzalez, A. Townshend. Flow-injection determination of paraoxon by inhibition of immobilized AChE[J]. Anal. Chim. Acta.,1990,236:267-272.
    [41]S. R. Mortensen, M. J. Hooper. Rat brain acetylcholinesterase activity:develop-ment alprofile and maturational sensitivity to carbamate and organophosphorus inhibitors[J]. Toxicology.,1998,125:13-19.
    [42]F. Worek, N. Aurbek, J. Wetherell, et al. Inhibition, reactivation and aging kinetics of highly toxic organophosphorus compounds:Pigversusminipig acetylcholin estrase [J]. Toxicology.,2008,244:35-41.
    [43]L. G. Sultatos. Metabolic activation of the organophosphorus insecticides chlorp yrifos and fenitrothion by perfused rat liver[J]. Toxicology.,1991,68:1-9.
    [44]王继军,黄永春,李治祥等.应用植物酯酶固化酶检测有机磷和氨基甲酸酯农药[J].环境科学学报,2004,24(3):558-560.
    [45]王多加,胡祥娜,周向阳等.蔬菜农药残留快速检测技术—胆碱酯酶速测卡法[J].食品科学,2003,24(6):109-113.
    [46]贺筱蓉,周华英.农残速测卡与气相色谱在检测蔬菜有机磷农药残留中的对比试验[J].中国卫生检验杂志,2003,13(6):678-679.
    [47]T. S. Enrico. Ceramic sensors for humidity detection:the state-of-the-art and future developments[J]. Sens. Actuators, B:Chemieal,1995,23:135-156.
    [48]K. T. Grattan, D. T. Sun. Fiber optic sensor technology:an overview[J]. Sens. Actuators.,2000,82:40-61.
    [49]G. Korotcenkov. Practical aspects in design of one-electrode semiconductor gas sensors:Statusreport[J]. Sens. Actuators, B,2007,121:664-678.
    [50]R. S. Popovic, J. A. Flanagan, P. A. Besse. The future of magnetic sensors[J]. Sens. Actuators, A,1996,56:39-55.
    [51]J. W. Jeffrey. Materials for high temperature electrochemical NOx gas sensors[J]. Sens. Actuators, B,2007,121:652-663.
    [52]G. Sberveglieri. Recent developments in semiconducting thin-film gas sensors[J]. Sens. Actuators, B,1995,23:103-109.
    [53]P. Mulchandani, A. Mulchandani, I. Kaneva, et al. Biosensor for direct determi nation of organophosphate nerve agents Potentiometric enzyme electrode[J]. Biosens. Bioelectron.,1999,14(1):77-85.
    [54]E. I. Rainina, E. N. Efremenco, S. D. Varfolomeyev, et al. The development of a new biosensor based on recombinant Ecoli for the direct detection of organophos-phorus neurotoxins[J]. Biosens. Bioelectron.,1996,11(10):991-1000.
    [55]A. Mulchandani, P. Mulchandani. Amperometric thichk-film strip electrodes for monitoring organophosphate nerve agents based on immobilized organophosphrus hydrolase[J]. Anal. Chem.,1999,71(11):2246-2249.
    [56]V. Sacks, I. Eshkenazi, T. Neufeld, et al. Immobilized parathion hydrolase:An amperometric sensor for parathion[J]. Anal. Chem.,2000,72(9):2055-2058.
    [57]R. Ballerstadt, J. S. Schultz. A galactose-specific affinity hollowfiber sensor based on fluorescence resonance energy transfer[J]. Methods. Biotech.,2000,7:89-98.
    [58]V. M. Staiano, M. Rossi, S. D. Aurial. Protein-based biosensors for diabetic pati-ents[J]. J. Fluorescence,2004,14:491-498.
    [59]R. J. Russell, V. P. Michael. A Fluorescence-based glucose biosensor using conca-navalin A and dextran encapsulated in a poly(ethylene glycol) hydrogel[J]. Anal. Chem.,1999,71:3126-3132.
    [60]G. Blagoi, N. Rosenzweig, Z. Rosenzweig. Design, Synthesis, and Application of particle-based fluorescence resonance energy transfer sensors for carbohydrates and glycoproteins[J]. Anal. Chem.,2005,77:393-399.
    [61]R. Ballerstadt, S. Jerome, A. Schultz. Fluorescence affinity hollow fiber sensor for continuous transdermal glucose monitoring[J]. Anal. Chem.,2000,72:4185-4192.
    [62]M. Sivrent, A. Vkrkoci, S. Alegret. Pesticide determination in tap water and juice samples using disposable ampero metrie biosensors made using thick film techno-logy[J]. Anal. Chim. Acta,2001,442:35-44.
    [63]L. Pogacnik, M. Franko. Detection of orgnaophosphate and carbonate pesticides in vegetable smaples bya photothermal biosensor[J]. Biosens. Bioelectron.,2000, 3(18):1-9.
    [64]G. S. Nunes, T. Montesinos. Acetylcholine enzyme sensor of determining metha-midophos insecticide evaluation of some genetically modified acetylcholine star-ases from drosophila melanogaster[J]. Anal. Chim. Acta,2001,434:1-8.
    [65]孟范平,何东海,朱小山等.利用流动注射型乙酰胆碱酯酶传感器监测海水中马拉硫磷[J].分析化学,2005,33(7):922-926.
    [66]张君,王月伶,袁悼斌等.检测有机磷农药残留的丝网印刷酶电极[J].化学学报,2006,64(5):428-434.
    [67]G. D. Liu, Y. H. Li. Biosensor based on self-assembling acetylcholinesteras on carbon nanotubes for flow injection/amperometr deteetion of organophosphate pesticides and nerve agents[J]. Anal. Chem.,2006,78:835-843.
    [68]S. Kumararn, A. H. Meier, M. Danna, et al. Immobilization of thin enzyme membranes to construct glass enzyme electrodes[J]. Anal. Chem.,1991,63:1914-1918.
    [69]C. Ristori, C. D. Carl, M. Martini, et al. Potentiometrie dete-ction of pestieides in water samples[J]. Anal. Chim. Acta,1996,325:151-160.
    [70]L. C. Panella, G. Colapicehioni, M. P. Sammaritino, et al. Organophosphorus pesti cid analysis using solid state sensors[J]. Sens. Actuators, B:Chemieal,1993,33: 25-33.
    [71]J. W. Cho, J. H. Min. J. W. Jung, et al. Fiber optic biosensor for the detection of organophosphorus compounds using AChE-immobilized viologen LB films[J]. Thin Solid Films,1998,329:676-680.
    [72]R. Sinhaa, J. Mallikar, N. Ganesa, et al. AChE biosensor based on zinc oxide sol-gel for the detection of pesticides [J]. Anal. Chim. Acta,2010,661:195-199.
    [73]C. C. Yu, S. Keun. Park, R. L. Metcalf. Correlation of toxicity and acetylcho linesterase inhibition in 2-alkyl substituted 1,3-benzodioxolyl-4 N-methylcar bamates and related compounds[J]. Pestic. Biochem. Physiol.,1974,4(2):178-184.
    [74]康天放,刘润,鲁理平等.再生丝素固定乙酰胆碱酯酶生物传感器[J].应用化学.2006,23(10):1009-1103.
    [75]朱玲,安哲.测定氨基甲酸酯类农药生物传感器的研制[J].中国卫生检验杂志.2002,12(2):154-155.
    [76]P. Skladal. Determination of organophosphate and carbamate pestieides using a cobalt phthalocyanine modified carbo paste eleetrode and a cholinesterase enzyme membrane[J]. Anal. Chim. Acta,1991,252(1-2):11-15.
    [77]P. Skladal, M. Maseini. Sensitive detection of pesticides using amperometric sensor based on cobalt phthalocyanine modifed composite electrodes and immo bilized cholineterases[J]. Biosens. Bioelectron.,1992,7(5):335-343.
    [78]P. Skladal. Detection of organophosphate and carbamate pestieides using dispos able biosensors based on chemically modified electrodes and imobilize choline steras[J]. Anal. Chim. Acta,1992,69(2):281-287.
    [79]G. Pallesehi, M. Bemabei, C. Crenisini. Determinantion of organophosphorus insecticide with a choline eleetroehenieal biosensor[J]. Sens. Actuators, B:Che-mieal,1992,7(1-3):513-517.
    [80]K. R. Rogers, J. J. Valdes, A. T. Eldefrawi, et al. Acetyleholinesteras flbe-optic biosensor for deteetion of antieholinesterase[J]. Fund. APPI. Toxieol.,1991,16(4): 810-820.
    [81]S. Camp, L. M. Zhang, M. Marquez, et al. Acetylcholinesterase gene modification intransgenic animals:Functional consequences of selected exon and regulatory regiond eletion [J]. Chem. Biol. Interact.,2005,157:79-86.
    [82]W. Su, J. Wu, W. Y. Ye, et al. A monoclonal antibody against synaptic AChE:A useful tool for detecting apoptotic cells [J]. Chem. Biol. Interact.,2008,175: 101-107.
    [83]J. S. Wendt. AChE-positive fiber growth after hippocampal fimbria transection and peripheral nerve homogenate implantation[J]. Brain Research Bulletin,1985, 15(1):13-18.
    [84]J. W. Choi, J. H. Min, J. W. Jung, et al. Fiber-optic biosensor for the detection of organophosphorus compounds using AChE-immobilized viologen LB films [J].Thin Solid Films,1998, (327-329):676-680.
    [85]M. EsPinosa, P. Atanasov, E.Wilkins. Development of a disposable Organophos phate biosensor[J]. Electroanalysis,1999,11(14):1055-1062.
    [86]S. Kumaran, M. Morita. Application of a cholinesterase biosensor to screen for organophosphorus pesticides extracted from soil[J].Talanta,1995,42(3):649-653.
    [87]E. Christian, H. Norbert. Potentiometric thick-film sensor for the determination of the neurotransmitter acetyleholine[J]. Analyst,1994,119(10):2167-2172.
    [88]S. C. Kumaran, C. T. Minb. Insecticide determination with enzyme electrodes using different enzyme immobilization techniques [J]. Electroanalysis,1992,4(10): 949-954.
    [89]J. L. Marty, K. Sode, I. Karube. Biosensor for detection of organophosphate and carbamate insecticides [J]. Eleetroanalysis,1992,4:249-252.
    [90]M. Bernabei, C. Cremisini, M. Maseini, et al. Determination of organophosphorus and carbamic pesticides with a choline and acetylcholine electrochemical bio sensor[J]. Anal. Lett.,1991,24(8):1317-1331.
    [91]L. CamPanella, R. Coeeo, M. D. Sammartino, et al. A new enzyme inhlbition sensor for organophosphorus pestieides analysis[J]. Sci. Total. Environ.,1992,123: 1-16.
    [92]Y. D. Albuquerque, L. F. Franco. Amperometric biosensing of carbamate and org anophosphate pesticides utilizing screen printed tyrosinase modified electrodes[J]. Anal. Chim. Acta,2007,596:210-221.
    [93]M. Bemabei, S. Chiavarini, C. Cremisin. Anticholinestera activity measurement by a choline biosensor applieation in water analysis[J]. Biosens. Bioelectron.,1993, 8(5):265-271.
    [94]A. N. Ivanov, L.V. Lukachova, G. A. Evtugyn, et al. Polyaniline modified cholinest erase sensor for pesticide determination [J]. Bioelectrochem. Bioenerg.,2002,55: 75-77.
    [95]F. Arduini, F. Ricci, C. S. Tuta, et al. Detection of carbamic and organophosph orous pesticides in water samples using a cholinesterase biosensor based on prussian blue-modified screen-printed electrode[J]. Anal. Chim. Acta,2006,580: 155-162.
    [96]Gouda., Thakur., N. G. Karanth. A dual enzym amperometric biosensor for moni-torin organophosphorous pesticide[J]. Biotechnol. Tech.,1997,11:653-655.
    [97]R. Kataky, D. Parker. Sensitive and specific electrochemical sensors for charge diffuse cations:use of lipophilic cyclodextrins and an enzyme relay for the determination of acetylcholine[J]. Analyst,1996,121(12):1829-1834.
    [98]J. Kulys, E. J. Dcosta. Printed amperometric sensor based on TCNQ and choline-sterase[J]. Biosens. Bioelectron.,1991,6(2):109-115.
    [99]Y. F. Chang, R. C. Chen. Y. J. Lee, etal. Localized surface plasmon coupled fluore cence fiber optic biosensor for alpha-fetoprotein detection in human serum [J]. Biosens. Bio-electron.,2009,24:1610-1614.
    [100]J. Peterson, S. R. Goldstein, R. Vfitzgerald, et al. Fiber optie pH probe for physio logieal use[J].Anal. Chem,1980,52:864-869.
    [101]M. C. Bond, M. Jimenez, C. Perezconde, et al. Analytical performanee of an optical pH sensor for acid-base titration[J]. Anal. Chim. Acta,1990,230:35-40.
    [102]M. Baeei, F. Baldini, S.Bracci. Spectroseopc behavior of acid-base indieator-safter immo-bilization on glass supports [J]. Appl. Sediment.,1991,45(9):1508-1515.
    [103]G. J. Olir, O. S. Wolfbeis. Optical sensors for a wide pH range based on azo dyes immobilized on a novel support[J]. Anal.Chim.Acta,1994,292(1-2):41-18.
    [104]X. Yang, C. G Niu, Z. J. Shang, et al. Optical-fiber sensor for determining content in organic solvents[J]. Sens. Actuators, B:Chemieal,2001,75:43-50.
    [105]D. L. Meadows, J. S. Schultz. Design, Manufacture and Characterization of an optical fiber glucose affinity sensor-based on an homogeneous fluorescence energy transfer assay system[J]. Anal. Chim. Acta,1993,280:21-30.
    [106]Z. Rosenzweig, R. Kopelman. Analytical properties and sensor size effects of a micro-sized optical fiber glucose biosensor[J]. Ana. Chem.,1996,68(8): 1408-1413.
    [107]L. D. Zhu, Y. X. Li, F. M. Tian, et al. Electrochemiluminescent determination of gluco se with a sol-gel derived ceramic-carbon composite electrode as a renewable optical fiber biosensor[J]. Sens. Actuators, B:Chemieal,2002,84(2-3):265-270.
    [108]L. Pogacnik, M. Franko. Determination of organophosphate and earbamat pesti cides in spiked samples of tap water and fruit juices by a biosensor with photothermaldeteetion[J]. Biosens. Bioelectron.,1999,14(6):56-57.
    [109]L. Pogacni, M. Franko. Detection of organophosphate and earbamat pestieides in vegetable samples by a photothermal biosensor[J]. Biosens. Bioelectron.,2003, 18(1):1-9.
    [110]J. Halameka, A. Makower, K. Knosche, etal. Piezoelectric affinity sensors for cocaine and cholinesterase inhibitors[J].Talanta,2005,65:337-342.
    [111]J. W. Choi, Y. K. Kim, I. H. Lee, et al. Optical organophosphorus biosensor consist ing of acetylcholineste rase/viologen hetero Langmuir-Blodgett film[J]. Biosens. Bioelectron.,2001,16 (9):937-943.
    [112]K. E. Drexler. Nanosystems:molecular machinery, manufacturing, and comput-ation [M]. Wiley. Interscience,1992.
    [113]H. A. Clark, SusanL. R. Barker, M. Brasuel, et al. Subcellular optochemical nanobiosen sors:probes encapsulated by biologically localized embedding[J]. Spectrochim. Acta, Part B,1998,51:12-16.
    [114]T. A. Taton, C. A. Mirkin, R. L. Letsinger. Scanometic DNA array detection with nanoparticle probes[J]. Science.,2000,289:1757-1760.
    [115]R. M. Leblanc, X. J. Ji, J.Y. Zheng. (CdSe)ZnS quantum dots for multiphoton fluorescence imaging in vivo[J]. Science.,2003,300:1434-1436.
    [116]I. L. Medintz, J. H. Konnert, A. R. Clapp, et al. A fluorescence resonance energy transfer derived structure of a quantum dot-protein bioconjugate nanoassembly[J]. PANS. USA,2004,101:9612-9617.
    [117]B. M. Linger, H. Mattoussi, E. R. Goldman, et al. Preparation of quantium dot biotin conjugates and their use in immunochromatography assays[J]. Anal. Chem., 2003,75:4043-4049.
    [118]K. E. Sapsord, I. L. Medintz, J. P. Goden. Surface-immobilized self-assembled protein based quantum dot nanoassemblies[J]. Langmuir,2004,20:7720-7728.
    [119]R. Mckendry, J. Y. Zhang, Y. Arntz, et al. Multiple label-free biodetection and qua ntitative DNA-binding assays on a nanomechanical cantilever array [J]. PNAS. USA.,2002,99:9783-9788.
    [120]M. Su, S. Li, V. P. Dravid. Microcantilever resonance-based DNA detection with nanoparticle probes[J]. Appl. Phys. Lett.,2003,82:3562-3564.
    [121]T. Liu, J. Tang, M. Han, et al. A novel microgravimetric DNA sensor with high sen-sitivity[J]. Biochem. Biophys. Res. Commun.,2003,304:98-100.
    [122]R. Dip, U. Camenisch, H. Naegeli. Mechanisms of DNA damage recognition and strand discrimination in human nucleotide excision repair[J]. DNA. Repair.,2004, 3:1409-1423.
    [123]A. Barzila, S. Biton, Y. Shiloh. The role of the DNA damage response in neuronal development, organization and maintenance[J].DNA. Repair.,2008,7:1010-1027.
    [124]K. M. Hansen, H. F. Ji, G Wu, et al. Cantilever-based optical deflection assay for discrimination of DNA single-nucleotide mismatches [J]. Anal. Chem.,2001,73: 1567-1571.
    [125]J. H. Lee, K. H. Yoon, K. S. Hwang, et al. Label free novel electrical detection using micromachined PZT monolithic thin film cantilever for the detection of C-reactive protein[J]. Biosens. Bioelectron.,2004,20:269-275.
    [126]C. A. Savran, S. M. Knudsen, A. D. Ellington, et al. Micromechanical detection of proteins using aptamer based receptor molecules[J]. Anal. Chem.,2004,76: 3194-3198.
    [127]P. Belaubre, M. Guiraradel, V. Leberre. Cantilever-based microsystem for contact and non-contact deposition of picoliter biological samples[J]. Sens. Actuators, A, 2004,110:130-135.
    [128]Y. Arntz, J. D. Seelig, H. P. Lang. Label-free protein assay based on a nanomech-anical catilever array[J]. Nanotechnology,2003,14:86-90.
    [129]M. Guthold, G. Matthews, A. Negishi, et al. Quantitative manipulation of DNA and viruses with the nanomanipulator scanning force microscope [J]. Surf. Interface Anal.,1999,27:437-443.
    [130]R. L. Gunter, W. G. Delinger, K. Manygaots, et al. Viral detection using an embed ed piezo resistive microcantilever sensor[J]. Sens. Actuators, A,2003,107: 219-224.
    [131]X. J. Liu, W. Farmerie, S. Schuster. Molecular beacons for four pathogenicretro viruses using molecular beacons[J]. Anal. Biochem.,2000,283:56-63.
    [132]X. H. Fang, W. H. Tan. Imaging single fluoresceent molecules at the interface of an optical fiber probe by evanescent wave excitation[J]. Anal. Biochem.,1999,71: 3101-3105.
    [133]M. A. Shaffer, B.Velan. Multidisplinary approaches to cholinesterase functions [M]. New York:Plenum Press,1992,95-156.
    [134]Y. X. Chai, G. Y. Liu, J. J. Wang, et al. Toxicological and biochemical characterizations of AChE in liposcelis bostrychophila badonnel (psocoptera: liposcelididae) [J]. J. Biol. Chem.,1992,267:17640-17648.
    [135]S. B. Mushigeri, M. David. Fenvalerate induced changes in the Ach and asso-ciated AchE activity in different tissues of fish cirrhinus mrigala (hamilton) under lethal and sub-lethal exposure period[J]. Environ. Toxicol. Pharmacol.,2005,20: 65-72.
    [136]K. T. Mis, K. Z. Kreft, Z. Grubi. Localization of cells expressing AChE mrna in rat striatum using nonradioactive in situhybridization[J]. Chem. Biol. Interact., 1999, (119-120):327-331.
    [137]C. G. Dosremedios, M.Miki, J. A. Barden. Fluorescence resonance energy transfer measurements of distances in actin and myosin[J]. A critical evaluation,1987,8: 97-117.
    [138]E. K. Oh, M. Y. Hong, D. H. Lee, et al. Inhibition assay of biomolecules based on fluorescence resonance energy transfer between quantum dots and gold nanoparticles[J] J. Am. Chem. Soc.,2005,127 (10):3270-3271.
    [139]A. R. Clapp, I. L. Medintz, H. T. Uyeda, etal. Quantum dot based multiplexed fluo rscence resonance energy transfer[J]. J. Am. Chem. Soc.,2005,127 (51): 18212-18221.
    [140]M. R. Eftink, L. A. Selvidg, Fluorescence quenching of liver alcohol dehydrogen-ase by acrylamide [J]. Biochem.,1982,21:117-125.
    [141]L. F. Shi, V. D. Paoli, N. Rosenzweig. Synthesis and application of quantum dots FRET-based protease sensors [J]. J. Am. Chem. Soc.,2006,128(32): 10378-10379.
    [142]M. Miki. Conformation change in reconstituted thin filament studied with fluorescence energy transfer between epsilon-ADP bound to F-actin and NBD-Cl bound to troponin-C [J]. Biochim. Biophys. Acta.,1979,578:96-106.
    [143]M. Miki. Resonance energy transfer between points in a reconstituted skeletal muscle thin filament. A conformational change of the thin filament in response to a change in Ca2+ concentration [J]. Eur. J. Biochem.,1990,187:155-162.
    [144]M. Miki, H. Hai, K. Saeki, et al. Fluorescence resonance energy transfer between points on actin and the C-terminal region of tropomyosin in skeletal muscle thin filaments [J]. Biochem.,2004,136:39-47.
    [145]E. R. Goldman, I. L. Medintz, J. L. Whitley, et al. A hybrid quantum dot-antibody fragment fluorescence resonance energy transfer-based TNT sensor [J]. J. Am. Chem. Soc.,2005,127(18):6744-67511.
    [146]Y. H. Pang, L. L. Yang, S. M. Shuang, et al. Interaction of human serum albumin with bendroflumethiazide studied by fluorescence spectroscopy[J]. J. Photochem. Photobiol., B,2005,80:139-144.
    [147]Z. Q. Zhang, G. X. Liang. Flow injection on-line oxidizing fluorometry coupled to dialysis sampling for the study of carbamazepine-protein binding[J]. Anal. Chim. Acta,2005,536:145-151.
    [148]B. X. Li, Y. Z. He, C. L. Xu. Simultaneous determination of three organophospho-rus pesticides residues in vegetables using continuous-flow chemiluminescence with artificial neural network calibration[J].Talanta,2007,72:223-230.
    [149]N. G. Bukhov, E. A. Egorova, S. Govindachary, et al. Changes in polyphasic chlorophyll a fluorescence induction curve upon inhibition of donor or acceptor side of photosystem II in isolated thylakoids[J]. Biochim. Biophys. Acta,2004, 1657:121-130.
    [150]B. M. Aydin, M. Acar, M. Ank, et al. The fluorescence resonance energy transfer between dye compounds in micellar media[J]. Dyes. Pigments.,2009,81: 156-160.
    [151]M. A. Marini, W. J. Evans, R. L. Berger. The determination of binding constants with a differential thermal and potentiometric titration apparatus. Ⅱ. EDTA, EGTA and calcium[J]. J. Bio-chem. Bioph. Methods,1986,12(3):135-146.
    [152]S. Bose, J. Yang, D. S. Hage. Guidelines in selecting ligand concentrations for the determina tion of binding constants by affinity capillary electrophoresis [J]. J. Chromatogr. B,1997,69:77-88.
    [153]F. Vogtle, E. Weber. Host-Guest Complex Chemistry:Macrocycles[M]. New York:Springer-Verlag,1985:56-89.
    [154]J. Kuby. Immunology[M]. New York:W H Freeman and Co,1992.
    [155]J. Korytam, K. Stulik. Ion Selective Electrodes[M]. New York:Cambridge Univer-sity Press,1983:21-56.
    [156]K. A. Connors. Binding Constants:The Measurement of Molecular Complex Stabity[M]. New York:John Wiley and Sens,1987:122-141.
    [157]J. A. Loo, H. P. McConnell. Study of srcsh domain protein phosphopeptide binding interactions by electrospray ionization mass spectroetry[J]. J. Am. Soc. Mass. Spectrom.,1997,8:234-243.
    [158]H. K. Lim, Y. L. Hsieh. Electrospray ionization mass spectrometric study of encapsulation of amino acids by cyclodextrins[J]. J. Am. Soc. Mass. Spectrom., 1995,30:708-714.
    [159]G W. Gokel, D. M. Goli, C. Mingati. Clarification of the hole-size cation diameter relationship in crown ethers and a new method for determining calcium cation homogeneous equilibrium binding constants[J]. J. Am. Chem. Soc.,1983,105: 6784-6790.
    [160]Y. Z. Zhang, B. Zhou, Y. X. Liu, et al. Fluorescence study on the interaction of bovine serum albumin with p-aminoazobenzene[J].ORIGINALPAPER,1995,15: 5-10.
    [161]M. G. Christopher, M. A. Matchette, N. Shabestary, et al. Complexation of cesium and rubidium cations with crown ethers in dimethyl form amide[J].Polyhedron, 1996,15:3897-3903.
    [162]G. D. Fasman. Circular dichroism and the conformational analysis of biomole-cules [M]. Plenum Press:New York,1996:78-90.
    [163]J. N. Herron, W. Jiskoot, D. J. A. Crommelin. Physical methods to characterize pharmaceutical pro teins[M]. Plenum Press:New York,1995:86-98.
    [164]F. O. Hache. Application of time-resolved circular dichroism to the study of conformational changes in photochemical and photobiological processes[J]. J. Photochem. Photobiol., A,2009,204:137-143.
    [165]C. Loge, A. Bornschlegl, U. Boesl. Twin mass peak ion source for comparative mass spectrometry:Application to circular dichroism laser MS[J]. Int. J. Mass spectrom.,2009,281:134-139.
    [166]L. L. Cai, Y. X. Li, C. J. Yu, et al. Spontaneous resolution of chiral polyoxomet alate:Synthesis, crystal structures and properties [J]. Inorg. Chim. Acta,2009, 362:2895-2899.
    [167]S. Mukherjee, B. Saha, A. K. DAS. Differential chemical and thermal unfolding pattern of rv3588C and rv1284 of mycobacterium tuberculosis acomparison by fluorescence and circular dichroism spectroscopy[J]. Biophys. Chem.,2009,141: 94-104.
    [168]胡建平,柯国涛,陈慰祖等.HIV-1病毒DNA结合整合酶后构象变化的分子模拟研究[M].物理化学学报,2008.
    [169]T. G. Sun, J. P. Hu, C. H. Li, et al. A molecular dynamics simulation study of gluta-mine-binding protein[J]. THEOCHEM,2005,725:9-16.
    [170]M. Liu, T. G. Sun, J. P. Hu, et al. Study on the mechanism of the btuf periplasmic-binding protein for Vitamin B12 [J]. Biophys. Chem.,2008,135: 19-24.
    [171]R. Brenk, S. W. Vetter, S. E. Boyce, et al. Probing molecular docking in a charged model binding site [J]. J. Mol. Biol.,2006,357:1449-1470.
    [172]J. Koca, M. Ludin, S. Perez, et al. Single coordinate driving method for molecular docking:application to modeling of guest inclusion in cyclodextrin[J]. J. Mol. Graphics Modell,18,2000:108-118.
    [173]S. Janson, D. Merkle, M. Middendorf. Molecular docking with multi-objective Particle Swarm Optimization[J]. Applied Soft Computing,2008,8:666-675.
    [174]S. Y. Lu, Y. J. Jiang, J. Lv, etal. Molecular docking and molecular dynamics simul ation studies of GPR40 receptor-agonist interactions [J]. J. Mol. Graphics Modell, 2010, xxx:xxx-xxx.
    [175]S. Janson, D. Merkle, M. Middendorf. Molecular docking with multi-objective particle swarm optimization[J]. Applied Soft Computing.,2008,8:666-675.
    [176]M. T. Hassan Khan, I. Orhan, F.S. nol, et al. Cholinesterase inhibitory activities of some flavonoid deri-vatives and chosen xanthone and their molecular docking studies[J]. Chem. Br. Chemistry.,2009,181:383-389.
    [177]S. Mukherjee, D. Majumder. Computational molecular docking assessment of hormone receptor adjuvant drugs:Breast cancer as an example[J]. Pathophy-siology,2009,16:19-29.
    [178]I. D. Kuntz, J. M. Blaney, R. Langridge. A geometric approach to macromolecule-ligand interactions [J]. J. Mol. Biol.,1982,161:269-288.
    [179]G. M. Morris, D. S. Goodsell, R. S. Halliday. Automated docking using a lamar-ckian genetic algorithm and an empirical binding free energy function[J]. J. Comput. Chem.,1998,19:1639-1662.
    [180]R. G. Karki, Y. Tang, T. R. Burke, et al. Model of full-length HIV lintegrase complexed with viral DNA as template for anti-HIV drug design [J]. J. Comput. Aided Mol. Des.,2004,18(12):739-760.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700