电化学生物传感技术用于重金属和蛋白质的检测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境中的重金属离子难以被微生物降解,通过生物链的累积进入人体,严重威胁着人们的身体健康及生命安全。蛋白质是生物体最基本的物质之一,在生物体内含量大,种类繁多,参与生命体每一步反应和活动,与生命的起源和进化、物质运转、遗传等息息相关。而各种蛋白质在人体内的浓度变化直接与人体的新陈代谢情况密切相关,已成为疾病判别与诊断的依据。因此,建立简单、快捷、灵敏、实用的蛋白质检测方法对药物研究、临床诊治等医学研究具有重要的意义。电化学生物传感器具有实时、稳定、在线、快捷、选择、直观的超灵敏分析检测的优点,检测对象涉及医药、环境、食品和金属等多领域,使得以电化学方法为基础的生物分子技术具有极其广阔的发展空间和应用前景。因此,在本研究论文中,我们建构了一下几种电化学传感器。
     (1)本文建构了一种基于目标物诱导DNA链折叠的新型电化学传感器实现对汞离子的超灵敏检测。实验设计了一条巯基标记的包含了33个碱基的DNA链,该链由7对胸腺嘧啶-胸腺嘧啶错配碱基对分隔5对互补杂交碱基对而成,其通过巯基自组装固定在金电极表面,然后与一条二茂铁标记的包含10个碱基的DNA链杂交,产生很强的电化学氧化还原信号。在汞离子的作用下,由于T-Hg-T结构的形成,汞离子诱导33个碱基的DNA链折叠成发卡结构,二茂铁标记的DNA链从电极表面释放下来,电化学信号降低。本传感器的响应信号通过循环伏安,差示脉冲伏安以及电化学阻抗谱图进行了完整的表征。结果表明,该传感器实现了对汞离子的超灵敏检测,浓度范围从0.1 nM到5μM,检测限为0.06 nM。此外,该方法还具有很好的选择性,能实现对实际环境样品中Hg2+的检测。
     (2)本章建立了一种基于免疫脂质体的电化学传感器用于甲胎蛋白AFP的超灵敏检测。通过在脂质体中包埋大量的电活性物质标记的DNA链结合电化学方法的灵敏性进行放大检测,使灵敏度大大提高,显示了很好的线性范围、稳定性和高选择性,检测范围从1 fg/mL到10 ng/mL,使其检测限大大降低,最低检测下限为0.7 fg/mL。
     (3)建立了一种基于包酶脂质体和生物催化金属沉积进行信号二次放大的新型电化学免疫传感器检测前列腺特异性抗原PSA。包裹的碱性磷酸酶和脂质体表面功能化的检测探针作为检测试剂,通过夹心免疫反应,目标分析物PSA和功能化的脂质体被依次固定到电极表面,在表面活性剂的作用下,脂质体被破解释放出内部包裹的碱性磷酸酶ALP, ALP催化抗坏血酸磷酸酯产生的抗坏血酸还原银离子形成金属银纳米颗粒沉积在电极表面。本传感器的响应信号用线性扫描伏安法进行检测。结果显示,阳极溶出峰电流与PSA的浓度在0.01 ng/mL到100 ng/mL具有很好的线性关系,最低检测下限为0.007 ng/mL。由于医学检测人血清中PSA的最低浓度为4.0 ng/mL,该电化学免疫传感器在医疗诊断领域具有可行性和广泛地应用空间。
Heavy metals in the environment are difficult to degrade, which can be accumulated into the human body through the food chain, leading a serious threat to people's health and life. Proteins as the basic material of living organisms with large content and wide variety take part in every step of the reaction and activities, and being closely related to the origin, evolution of life, physical functioning, genetic and so on. Moreover, the concentration of proteins is closely related to the body's metabolism, becoming the basis for identification and diagnosis. Therefore, it is of great significance to establish a simple, fast, sensitive protein detection method used in drug research, clinical treatment of medical research. Electrochemical biosensor with real-time, stable, online, quick, selective, visual inspection involved in pharmaceutical, environment, food and metal areas, indicating its broad space to develop and apply. In this research paper, we construct several electrochemical sensors, the details are described as follows:
     (1) A novel electrochemical sensor has been developed for sensitive and selective detection of mercury(II) based on target-induced structure-switching DNA. A 33-mer oligonucleotide 1 with five self-complementary base pairs separated by seven thymine-thymine mismatches was first immobilized on the electrode via self-assembly of the terminal thiol moiety and then hybridized with a ferrocene-tagged oligonucleotide 2, leading to a high redox current. In the presence of Hg2+, mercury-mediated base pairs (T-Hg-T) induced the folding of the oligonucleotidel into a hairpin structure, resulting in the release of the ferrocene-tagged oligonucleotide 2 from the electrode surface with a substantially decreased redox current. The response characteristics of the sensor were thoroughly investigated using cyclic voltammetry (CV), differential pulse voltammetry (DPV) and electrochemical impedance spectroscopy (EIS). The effect of the reaction temperature on the response of the sensor was also studied in detail. The results revealed that the sensor showed sensitive response to Hg2+ in a concentration range from 0.1 nM to 5μM with a detection limit of 0.06 nM. In addition, this strategy afforded exquisite selectivity for Hg2+ against other environmentally related metal ions, which was superior to that of previous anodic stripping voltammetry (ASV)-based techniques. The excellent sensitivity and selectivity signified the potential of the sensor for Hg2+ detection in real environmental samples.
     (2)We establish a new electrochemical sensor based on immunoliposome for sensitive and selective detection of alpha-fetoprotein. Sensitive electrochemical methods and encapsulated labled DNA probe in liposome, lead to inceasing of sensitivity. At the same time, The results revealed that the sensor showed sensitive response to AFP in a concentration range from 1 fg/mL to 10 ng/mL, with a detection limit of 0.7 fg/mL.
     (3)A novel electrochemical immunosensor based on double signal amplification of enzyme-encapsulated liposomes and biocatalytic metal deposition was developed for the detection of human prostate specific antigen (PSA). Alkaline phosphatase (ALP)-encapsulated and detection antibody-functionalized liposomes were first prepared and used as the detection reagent. In the sandwich immunoassay, the model analyte PSA was first captured by anti-PSA capture antibody immobilized on the electrode and then sandwiched with the functionalized liposomes. The bound liposomes were then lysed with surfactant to release the encapsulated ALP, which served as secondary signal amplification means. ALP on the electrode surface initiated the hydrolysis of ascorbic acid 2-phosphate (AA-p) to produce ascorbic acid. The latter, in turn, reduced silver ions on the electrode surface, leading to deposition of the metal silver on the electrode surface. Linear sweep voltammetry (LSV) was chosen to detect the amount of the deposited silver. The results showed that the anodic stripping peak current was linearly dependent on the PSA concentration in the range of 0.01 ng/mL to100.0 ng/mL, and a detection limit as low as 0.007 ng/mL can be obtained. Since the cut-off value of human PSA is 4.0 ng/mL, the proposed electrochemical immunosensor would be expected to gain widespread applications for the detection of PSA in clinical diagnosis.
引文
[1]Caras S, Janata J. Field effect transistor sensitive to penicillin. Analytical Chemistry, 1980,52(12):1935-1937
    [2]Kimura J, Kuriyama T, Kawana Y. An integrated SOS/FET multi-biosensor. Sensors and Actuators,1986,9(4):373-387
    [3]佟巍,张纪梅,张丽.电化学生物传感器的应用研究进展.武警医学院学报,2008,17(1):62-64
    [4]朱建中,周衍.电化学生物传感器的进展.传感器世界月刊,1997,1(4):1-8
    [5]Gebbert A, Alvareza-Icaza M, Petes H, et al. On line monitoring of monoclonal antibody production with regenerable flow-injection immuno systems. Journal of Biotechnology,1994,32(3):213-220
    [6]Kerman K, Kobayashi M, Tamiya E. Recent trends in electrochemical DNA biosensor technology. Measurement Science and Technology,2004,15(2):R1-11
    [7]Plomer M, Guilbault G G, Hock B. Development of a piezoelectric immunosensor for the detection of enterobacteria. Enzyme and Microbial Technology,1992,14(3):230-235
    [8]Zhu N N, Zhang A P, Wang Q J, et al. Electrochemical detection of DNA hybridization using methylene blue and electro depositedzirconia thin films on gold electrodes. Analytica Chimica Acta,2004,510(2):163-168
    [9]柳畅先,齐小玲.酶法测定葡萄糖.分析试验室,1999,18(5):34-36
    [10]Li E, Beard C, Jaenisch R. Role for DNA methylation in genomic imprinting. Nature, 1993,366(1):362-365.
    [11]Loaiza O A, Campuzano S, Prada A G, et al. Amperometric DNA quantification based on the use of peroxidase-mercaptopropionic acid-modified gold electrodes. Sensors and Actuators B:Chemical,2008,132(1):250-257
    [12]Ma Y, Jiao K, Yang T, et al. Sensitive PAT gene sequence detection by nano-SiO2/ p-aminothiophenol self-assembled films DNA electrochemical biosensor based on impedance measurement. Sensors and Actuators B:Chemical,2008,131(2):565-571
    [13]Mendes R K, Carvalhal R F, Kubota L T. Effects of different self-assembled monolayers on enzyme immobilization procedures in peroxidase-based biosensor development. Journal of Electroanalytical Chemistry,2008,612(2):164-172
    [14]Wu A G, Li Z, Wang E K. Plasmid DNA Network on a Mica Substrate Investigated by Atomic Force Microscopy. Analytical Sciences,2001,17(1):583-584
    [15]Wu Z Y, Wang B Q, Wang E K, et al. A facile approach to immobilize protein for biosensor:self-assembled supported bilayer lipid membranes on glassy carbon electrode. Biosensors and Bioelectronics,2001,16(1-2):47-52
    [16]高盐生,董江庆,徐晓燕.纳米技术在生物传感器中的应用研究进展.江苏化工,2008,36(3):4-6
    [17]Clack L C Jr, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences,1962,102(1):29-45
    [18]Cass A E, Davis G, Turner A P, et al. Turner Ferrocene mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry,1984,56(4):667-671
    [19]Padeste C, Grubelnik A, Tiefenauer L. Ferrocene-avidin conjugates for bioelectrochemical applications. Biosensors and Bioelectronics,2000,15(9-10): 431-438
    [20]Yu J H, Liu S Q, Ju H X. Glucose sensor for flow injection analysis of serum glucose based on immobilization of glucose oxidase in titania sol-gel membrane. Biosensors and Bioelectronics,2003,19(4):401-409
    [21]Ju H X, Leech D. [Os(bpy)2(PVI)10Cl]Cl polymer-modified carbon fiber electrodes for the electrocatalytic oxidation of NADH. Analytica Chimica Acta,1997,345, (1-3): 51-58
    [22]Trudeau F, Daigle F, Leech D. Reagentless Mediated Laccase:Electrode for the Detection of Enzyme Modulators. Analytical Chemistry,1997,69(5):882-886
    [23]Li J, Tan S N, Ge H. Silica sol-gel immobilized amperometric biosensor for hydrogen peroxide. Analytica Chimica Acta,1996,335(1-2):137-145
    [24]Chen H Y, Ju H X, Xun Y G. Methylene Blue/Perfluorosulfonated Ionomer Modified Microcylinder Carbon Fiber Electrode and Its Application for the Determination of Hemoglobin. Analytical Chemistry,1994,66(24):4538-4542
    [25]Ju H X, Dong L, Chen H Y. Amperometric determination of lactate dehydrogenase based on a carbon fiber microcylinder electrode modified covalently with Toluidine Blue O by acylation. Talanta,1996,43(7):1177-1183
    [26]Xiao Y, Ju H X, Chen H Y. Hydrogen peroxide sensor based on horseradish peroxidase-labeled Au colloids immobilized on gold electrode surface by cysteamine monolaye. Analytica Chimica Acta,1999,391(1):73-82
    [27]Mckenna K, Brajter-Toth A. Tetrathiofulvalene tetracyanoquinodimethane xanthine oxidase amperometric electrode for the determination of biological purines. Analytical Chemistry,1987,59(7):954-958
    [28]Narasimhan K, Wingard L B JR. Enhanced direct electron transport with glucose oxidase immobilized on (aminophenyl)boronic acid modified glassy carbon electrode. Analytical Chemistry,1986,58(14):2984-2987
    [29]Foulds N C, Lowe C R. Immobilization of glucose oxidase in ferrocene-modified pyrrole polymers. Analytical Chemistry,1988,60(22):2473-2478
    [30]Kajiya Y, Sugai H, Yoneyama H, et al. Glucose sensitivity of polypyrrole films containing immobilized glucose oxidase and hydroquinonesulfonate ions. Analytical Chemistry,1991,63(1):49-54
    [31]Guo L H. Hill L O, Hopper D J, et al. Direct un-mediated electrochemistry of the enzyme P-cresolmethylhydroxylase. Journal of Electroanalytical Chemistry, 1989,266(2):379-396
    [32]Lyer R N, Schmidt W E. Observations on the direct electrochemistry of bovine copper-zinc superoxide dismutase. Journal of Electroanalytical Chemistry,1992,342(3): 393-404
    [33]Borsari M., Azab H A. Voltammetric behaviour of bovine erythrocyte superoxide dismutase. Bioelectrochemistry and Bioenergetics,1992,27(2):229-233
    [34]Lowe C R. Analytical biotechnology. Current Opinion in Biotechnology,1996,7(1): 1-3
    [35]Janata J. Immunoelectrode. Journal of the American Chemical Society,1975,97 (10): 2914-2916
    [36]Ghindilis A L, Skorobogat'ko O V, Gavrilova V P, et al. A new approach to the construction of potentiometric immunosensors. Biosensors and Bioelectronics,1992, 7(4):301-304
    [37]Aizawa M, Morioka A, Shuichi S, et al. Enzyme immunosenser:III Amperometric determination of human cherienic gonadotropin by membrane-bound antibody. Analytical Biochemistry,1979,94(1):22-28
    [38]Luppa P B, Sokoll L J, Chan D W. Immunosensors-principles and applications to clinical chemistry. Clinica Chimica Acta,2001,314(1-2):1-26
    [39]Patolsky F, Zheng G F, Lieber C M, et al. Electrical detection of single viruses. Proceedings of the National Academy of Sciences,2004,101(39):14017-14022
    [40]Palecek E, Davidson J N, CoHn W E. Process in Nucleic Acids Research and Molecular Biology. Academic Press:New York,1969,9(1):31
    [41]Wang J, Rivas G, Waymire R, et al. Indicator-free electrochemical DNA hybridization biosensor. Analytica Chimica Acta,1998,375(3):197-203
    [42]Wang J, Fernandes R J, Kubota L T. Polishable and Renewable DNA Hybridization Biosensors. Analytical Chemistry,1998,70(17):3699-3702
    [43]Wang J, Jiang M. Dendritic Nucleic Acid Probes for DNA Biosensors. Journal of the American Chemical Society,1998,120(32):8281-8282
    [44]Ikariyama Y, Yamauchi S, Yukiashi T, et al. One Step Fabrication of Micro-biosensor Prepared by the Coposition of Enzyme and Platinum Particles. Analytical Letters,1987, 20(11):1791-1801
    [45]黎雪莲,袁若,柴雅琴等.基于静电吸附甲苯胺蓝和纳米金固定过氧化酶生物传感器的研究.分析化学,2006,34(3):389-392
    [46]Palecek E, Jelen F, Teijeiro C, et al. Biopolymer-modified electrodes in the voltammetric determination of nucleic acids and proteins at the submicrogram level. Analytica Chimica Acta,1993,273(1-2):175-186
    [47]White J H, Soriaga M P, Habbard A T. Reaction mechanism of the benzoquinone/ hydroquinone couple at platinum electrodes in aqueous solutions:Retardation and enhancement of electrode kinetics by single chemisorbed layers. Journal of Electroanalytical Chemistry,1985,185(2):331-338
    [48]Soriaga M P, Stickney J L, Hubbard A T. Electrochemical oxidation of aromatic compounds adsorbed on platinum electrodes:The influence of molecular orientation. Journal of Electroanalytical Chemistry,1983,144(1-2):207-215
    [49]Rizatti M A, Juttner K. Electrocatalysis of oxygen reduction by UPD of lead on gold single-crystal surfaces. Journal of Electroanalytical Chemistry,1983,144(1-2): 351-363
    [50]Kokkinidis G, Juttner K. The electrocatalytic influence of underpotential lead adsorbates on the reduction of nitrobenzene and nitrosobenzene on silver single crystal surfaces in methanolic solutions. Electrochimica Acta,1981,26(8):971-977
    [51]Lee C W, Bard A J. Comparative electrochemical studies of N-methyl-N'-hexadecyl viologen monomolecular films formed by irreversible adsorption and the langmuir-blodgett method. Journal of Electroanalytical Chemistry,1988,239(1-2): 441-446
    [52]Uchida I, Ishiho A, Itaya K, et al. Blocking of an electrode reaction by a stearic acid monolayer. Journal of Electroanalytical Chemistry,1989,266(2):455-460
    [53]Bilewicz R, Majda M. Bifunctional monomolecular Langmuir-Blodgett films at electrodes:Electrochemistry at single molecule gate sites. Journal of the American Chemical Society,1991,113(14):5464-5466
    [54]Sugawara M, Kojima K, Sazawa H, et al. Ion-channel sensors. Analytical Chemistry, 1987,59(24):2842-2846
    [55]Lenhard J R, Murray R W. Chemically modified electrodes:Part VII Covalent bonding of a reversible electrode reactant to Pt electrodes using an organosilane reagent. Journal of Electroanalytical Chemistry,1977,78(1):195-201
    [56]Untereker D F, John C L, Royce W M. Chemically modified electrodes:Part IV Evidence for formation of monolayers of bonded organosilane reagents. Journal of Electroanalytical Chemistry,1977,81(2):309-318
    [57]Beh S K, Moody G J, Thomas J D R. Effect of pre-treatment of platinum for modified platinum wire glucose oxidase amperometric electrodes. Analyst,1989,114(1):29-32
    [58]Darder M, Casero E, Lorenzo E. Biosensors Based on Membrane-Bound Enzymes Immobilized in a 5-(Octyldithio)-2-nitrobenzoic Acid Layer on Gold Electrodes. Analytical Chemistry,2000,72(16):3784-3792
    [59]Oyama N, Osaka T, Masaya M. Electropolymerized cobalttetrakis(o-aminophenyl) porphyrin film mediated enzyme electrode for amperometric determination of glucose. Analytical Chemistry,1988,60(22):2534-2536
    [60]Karyakin A A, Kotel'nikova E A, Lukachova L V, et al. Optimal Environment for Glucose Oxidase in Perfluorosulfonated Ionomer Membranes:Improvement of First-Generation Biosensors. Analytical Chemistry,2002,74(7):1597-1603
    [61]Kanungo M, Kumar A, Contractor A Q. Microtubule Sensors and Sensor Array Based on Polyaniline Synthesized in the Presence of Poly(styrene sulfonate). Analytical Chemistry,2002,75(21):5673-5679
    [62]Bangham A D, Standish M M, Watkins J C. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of molecular biology,1965,13(1):238-52.
    [63]Huang C H. Phosphatidylcholine vesicles:Formation and physical characteristics. Biochemistry,1969,8(1):344-352
    [64]Batzri S, Korn E D. Single bilayer liposomes prepared without sonication. Biochimica Biophysica Acta,1973,298(4):1015-1019
    [65]Ma D D F, Wei A Q. Enhanced delicvery of synthetic oligonucleotides to human leukaemic cells by liposomes and immunoliposomes. Leakemia Research,1996, 20(11-12):925-930
    [66]Allen T M, Chonn A. Large unilamellar liposomes with low uptake into the reticuloendothelial system. FEBS Letters,1987,223(1):42-46
    [67]Deamer D, Bangham A D. Large volume liposomes by an ether vaporization method. Biochimica Biophysica Acta,1976,443(3):629-634
    [68]Brunner J, Skrabal P, Hausser H. Single bilayer vesicles prepared without sonication physico-chemical properties. Biochimica Biophysica Acta,1976,455(2):322-331
    [69]Eisler R. Health risks of goldminers:a synoptic review. Environmental geochemistry and health,2003,25(3):325-345,
    [70]Wang Q R, Kim D, Timberlake D, et al. Sources and remediation for mercury contamination in aquatic systems-a literature review. Environmental pollution,2004, 131(2):323-336
    [71]Tchounwou P B, Ayensu W K, Sutton D. Environmental exposure to mercury and its toxicopathologic implications for public health. Environmental toxicology and chemistry,2003,18(3):149-175
    [72]Guo X F, Qian X H, Jia L H. A highly selective and sensitive fluorescent chemosensor for Hg2+ in neutral buffer aqueous solution. Journal of the American Chemical Society, 2004,126(8):2272-2273
    [73]Caballero A, Martinez R, Veciana J, et al. Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines. Journal of the American Chemical Society,2005,127(45):15666-15667
    [74]Coronado E, Galan-Mascaros J R, Nazeeruddin M K, et al. Reversible colorimetric probes for mercury sensing. Journal of the American Chemical Society,2005,127(35): 12351-12356
    [75]Nazeeruddin M K, Censo D D, Gratzel M, et al. Highly selective and reversible optical, colorimetric, and electrochemical detection of mercury (Ⅱ) by amphiphilic ruthenium complexes anchored onto mesoporous oxide films. Advanced Functional Materials, 2006,16(2):189-194
    [76]Palomares E, Vilar R, Durrant J R. Heterogeneous colorimetric sensor for mercuric salts. Chemical communications,2004,1(4):362-363.
    [77]Kim H J, Park D S, Hyun M H, et al. Determination of HgⅡ ion with a 1,11-bis(8-quinoyloxy)-3,6,9-trioxaundecane-modified glassy carbon electrode using spin-coating technique. Electroanalysis,1998,10(5):303-306
    [78]Nolan M A, Kounaves S P. Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic stripping voltammetry. Analytical Chemistry,1999,71(16):3567-3673
    [79]ZhaoY, Zhong Z. Tuning the sensitivity of a foldamer-based mercury sensor by its folding energy. Journal of the American Chemical Society,2006,128(31):9988-9989
    [80]Chen P, He C. A general strategy to convert the MerR family proteins into highly sensitive and selective fluorescent biosensors for metal ions. Journal of the American Chemical Society,2004,126(3):728-729
    [81]Xu X, Thundat T G, Brown G M, et al. Detection of Hg2+ using microcantilever sensors. Analytical Chemistry,2002,74(15):3611-3615
    [82]Ono A, Togashi H. Highly selective oligonucleotide-based sensor for mercury (II) in aqueous solutions. Angewandte Chemie International edition,2004,43(33):4300-4302
    [83]Tanaka Y, Oda S, Ono A, et al.15N-15N J-coupling across HgⅡ:direct observation of HgⅡ-mediated T-T base pairs in a DNA duplex. Journal of the American Chemical Society,2007,129(2):244-245
    [84]Miyake Y, Togashi H, Ono A, et al. MercuryⅡ-mediated formation of thymine-HgⅡ-thymine base pairs in DNA duplexes. Journal of the American Chemical Society,2006, 128(7):2172-2173
    [85]Chiang C K, Huang C C, Liu C W, et al. Oligonucleotide-based fluorescence probe for sensitive and selective detection of mercury (II) in aqueous solution. Analytical Chemistry,2008,80(10):3716-3721
    [86]Wang J, Liu B. Highly sensitive and selective detection of Hg2+ in aqueous solution with mercury-specific DNA and Sybr Green I. Chemical communications,2008, (39): 4759-4761
    [87]Liu J, Lu Y. Rational design of "turn on" allosteric DNAzyme catalytic beacons for aqueous mercury ions with ultrahigh sensitivity and selectivity. Angewandte Chemie International edition,2007,46(40):7587-7590
    [88]Wang Z, Lee J H, Lu Y. Highly sensitive "turn-on" fluorescent sensor for Hg2+ in aqueous solution based on structure-switching DNA. Chemical communications,2008, (45):6005-6007
    [89]Lee J S, Han M S, Mirkin C A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angewandte Chemie International edition,2007,46(22):4093-4096
    [90]Xue X, Wang F, Liu X. One-step, room temperature, colorimetric detection of mercury (Hg2+) using DNA/nanoparticle conjugates. Journal of the American Chemical Society, 2008,130(11):3244-3245
    [91]Li D, Wieckowska A, Willner I. Optical analysis of Hg2+ ions by oligonucleotide-gold-nanoparticle hybrids and DNA-based machines. Angewandte Chemie International edition,2008,47(21):3927-3931
    [92]Liu C W, Hsieh Y T, Huang C C, et al. Detection of mercury (II) based on Hg2+-DNA complexes inducing the aggregation of gold nanoparticles. Chemical communications, 2008, (19):2242-2244
    [93]Wang L, Zhang J, Wang X, et al. Gold nanoparticle-based optical probes for target-responsive DNA structures. Gold Bulletin,2008,41(1):37-41
    [94]Nutiu R, Li Y. Structure-switching signaling aptamers. Journal of the American Chemical Society,2003,125(16):4771-4778
    [95]Stojanovic M N, Prada P, Landry D W. Aptamer-based folding fluorescent sensor for cocaine. Journal of the American Chemical Society,2001,123(21):4928-4931
    [96]Yang C, Jockusch S, Vicens M, et al. Light-switching excimer probes for rapid protein monitoring in complex biological fluids. Proceedings of the National Academy of Sciences of the United States of America,2005,102(48):17278-17283
    [97]Fan C H, Plaxco K W, Heeger A J. Electrochemical interrogation of conformational changes as a reagentless method for the sequence-specific detection of DNA. Proceedings of the National Academy of Sciences of the United States of America, 2003,100(16):9134-9137
    [98]Xiao Y, Lubin A L, Heeger A J, et al. Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor. Angewandte Chemie International edition,2005,44(34):5456-5459
    [99]Radi A E, Acero Sa'nchez J L, Baldrich E, et al. Reagentless, reusable, ultrasensitive electrochemical molecular beacon aptasensor. Journal of the American Chemical Society,2006,128(1):117-124
    [100]Xiao Y, Rowe A A, Plaxco K W. Electrochemical detection of parts-per-billion lead via an electrode-bound DNAzyme assembly. Journal of the American Chemical Society, 2007,129(2):262-263
    [101]Willner I, Zayats M. Electronic aptamer-based sensors. Angewandte Chemie International edition,2007,46(34):6408-6418
    [102]Wu Z S, Shen G L, Yu R Q, et al. Reusable electrochemical sensing platform for highly sensitive detection of small molecules based on structure-switching signaling aptamers. Analytical Chemistry,2007,79(7):2933-2939
    [103]Zhang Y L, Jiang J H, Yu R Q, et al. Electrochemical aptasensor based on proximity-dependent surface hybridization assay for single-step, reusable, sensitive protein detection. Journal of the American Chemical Society,2007,129(50): 15448-15449
    [104]Huang Y, Jiang J H, Yu R Q, et al. Highly specific and sensitive electrochemical genotyping via gap ligation reaction and surface hybridization detection. Journal of the American Chemical Society,2009,131(7):2478-2480
    [105]Zhang Y L, Jiang J H, Yu R Q, et al. Electrochemical DNA biosensor based on the proximity-dependent surface hybridization assay. Analytical Chemistry,2009,81(5): 1982-1987
    [106]Fahlman R P, Sen D. DNA conformational switches as sensitive electronic sensors of analytes. Journal of the American Chemical Society,2002,124(17):4610-4616
    [107]Liu S J, Jiang J H, Yu R Q, et al. Electrochemical sensor for mercury (II) based on conformational switch mediated by interstrand cooperative coordination. Analytical Chemistry,2009,81(14):5724-5730
    [108]Demers L M, Mirkin C A, Viswanadham G, et al. A Fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Analytical Chemistry, 2000,72(22):5535-5541
    [109]Patolsky F, Lichtenstein A, Willner I. Electronic transduction of DNA sensing processes on surfaces:amplification of DNA detection and analysis of "single-base mismatches by tagged liposomes. Journal of the American Chemical Society,2001, 123(22):5194-5105
    [110]Kim J, Lee B, Kim J S, et al. Antitumoral effects of recombinant adenovirus YKL-1001, conditionally replicating in a-fetoprotein-producing human liver cancer cells. Cancer Letters,2002,180(1):23-32
    [111]Mizejewski G J. Immunologic prospects for mammalian alpha-fetoprotein. Clinical Immunology Newsletter,1981,2(5):37-39
    [112]Dudich I, Tokhtamysheva N, Korpela T, et al. Isolation and Structural and Functional Characterization of Two Stable Peptic Fragments of Human a-Fetoprotein. Biochemistry,1999,38(32):10406-10414
    [113]Kirschner K N, Lexa K W, Salisburg A M, et al. Computational Design and Experimental Discovery of an Antiestrogenic Peptide Derived from a-Fetoprotein. Journal of the American Chemical Society,2007,129(19):6263-6268
    [114]Alving C R. Liposomes as carriers of antigens and adjuvants. Journal of Immunological Methods,1991,140(1):1-13.
    [115]Bangham A D. Liposomes:The Babraham connection. Chemistry and Physics of Lipids, 1993,64(1-3):275-285
    [116]Gregoriadis G, Florence A T. Liposomes in drug delivery, Clinical, diagnostic and ophthalmic potential. Drugs,1993,45(1):15-28
    [117]Smith J G, Walzem R L, German J B. Liposomes as agents of DNA transfer. Biochimica et Biophysica Acta-Reviews on Biomembranes,1993,1154(3-4):238-252
    [118]李欣玮,孙立新,郑利强等.固体脂质纳米粒作为药物载体.化学进展,2007,19(1):87-92
    [119]Lasic D D. Recent developmentsin medical applications of liposomes:sterically stabilized liposomes in cancer therapy and gene delivery invivo. Journal of Controlled Release,1997, (48):203-222.
    [120]Liu F, Huang L. Development of non-viral vectors for systemic gene delivery. Journal of Controlled Release,2002, (78):259-266
    [121]Kabanov A V, Lemieux P, Alakhov V, et al. Pluronic block copolymers:novel functional molecules for gene therapy. Advanced Drug Delivery Reviews,2002, (54): 223-233
    [122]Alfonta L, Singh A K, Willner I. Liposomes labeled with biotin and horseradish peroxidase:A probe for the enhanced amplification of antigen-antibody or oligonucleotide-DNA sensing processes by the precipitation of an insoluble product on electrodes. Analytical Chemistry,2001,73(1):91-102.
    [123]Ahn-Yoon S, DeCory T R, Baeumner A J, et al. Ganglioside-liposome immunoassay for the ultrasensitive detection of cholera toxin. Analytical Chemistry,2003,75(10): 2256-2261
    [124]Baeumner A J, Schlesinger N A, Slutzki N S, et al. Biosensor for dengue virus detection: Sensitive, rapid, and serotype specific. Analytical Chemistry,2002,74(6):1442-1448
    [125]Brown L L, Plant A L, Durst R A, et al. Liposome Flow Injectionlmmunoassay: Implications for Sensitivity, Dynamic Range, and Antibody Regeneration, Analytical Chemistry,1990,62(23):2587-2593
    [126]Singh A K, Kilpatrick P K, Carbonell R G. Application of Antibody an Fluorophore-Derivatized Liposomes to Heterogeneous Immunoassays for D-dimer. Biotechnology progress,1996,12(2):272-280
    [127]Edwards K A, Baeumner A J. DNA-Oligonucleotide Encapsul:Liposomes as a Secondary Signal Amplification Means. Analytical Chemistry,2007,79(5):1806-1815
    [128]Fraley R T, Dellaportat S L, Papahadjopoulost D. Liposome-mediated delivery of tobacco mosaic virus RNA into tobacco protoplasts:A sensitive assay for monitoring liposome-protoplast interactions. Proceedings of the National Academy of Sciences of the United States of America,1982,79(6):1859-1863
    [129]Zhan W, Bard A J. Electrogenerated Chemiluminescence Immunoassay of Human C-Reactive Protein by Using Ru(bpy)32+-Encapsulated Liposomes as Labels. Analytical Chemistry,2007,79(2):459-463
    [130]Wu L C, Huang M R, Annie J H. Electrochemical Immunosensor for Cholera Toxin Uing Liposome and Poly(3,4-ethylenedioxythiophene)-Coated Carbon Nanotubes. Analytical Chemistry,2006,78(4):1115-1121
    [131]Ye L, Wai T Y. Liposomes as Protective Capsules for Active Silica Sol-Gel Biocomposite Synthesis. Journal of the American Chemical Society,2005,127(37): 12756-12757
    [132]Rosenberg M F, Jones M N, Vadgama P M. A liposomal enzyme electrode forMeasuring glocose. Biochinica Biophysica Acta,1991,1115(2):157-165
    [133]Lasic D D. Novel applications of liposomes. Trends in Biotechnology,1998, (16): 307-321
    [134]Zhou L, Chu X, Yu R Q, et al. Aptamer-Based Rolling Circle Amplification:A Platform for Electrochemical Detection of Protein. Analytical Chemistry,2007,79(19): 7492-7500
    [135]Park S, Durst R A. Immunoliposome sandwich assay for the detection of escherichia coli O157:H7. Analytical Biochemistry,2000,280(1):151-158
    [136]Ahn-Yoon S, DeCory T R, Baeumner A J, et al. Ganglioside-liposome immunoassay for the ultrasensitive detection of choleratoxin. Analytical Chemistry,2003,75(10): 2256-2261
    [137]Edwards K A, Baeumner A J. DNA-Oligonucleotide Encapsulating Liposomes as a Secondary Amplification Means. Analitical Chemistry,2007,79 (5):1086-1815
    [138]Mikklesen S R. Electrochecmical biosensors for DNA sequence detection. Electroanalysis,1996,8(1):15-19
    [139]Palecek E, Fojta M. Detecting DNA hybridization and damage. Analytical Chemistry, 2001,73(3):75A-83A
    [140]Singh A K, Kilpatrick P K, Carbonell R G. Noncompetitive immunoassays using bifunctional unilamellar vesicles or liposomes. Biotechnology Progress,1995,11(3): 333-341
    [141]Nakano Y, Mori M, Nishinohara S, et al. Surface-Linked Liposomal Antigen Induces IgE-Selective Unresponsiveness Regardless of the Lipid Components of Liposomes. Bioconjugate Chemistry,2001,12(3):391-395
    [142]Cooper K M, Samsonava J V, Plumpton L, et al. Enzyme immunoassay for semicarbazide the nitrofuran metabolitr and food contaminant. Analytica Chimica Acta, 2007,592(1):64-71
    [143]Vitzthum F, Behrens F, Anderson N L, et al. Proteomics:from basic research to diagnostic application. Journal of Proteome Research,2005,4(4):1086-1097
    [144]Tang L, Zeng G M, Shen G L, et al. Rapid detection of picloram in agricultural field samples using a disposable immunomembrane-based electrochemical sensor. Environmental Science and Technology, 2008,42(5):1207-1212
    [145]Michal B M, Buchner V, Rishpon J. Electrochemical biosensors for pollutants in the environment. Electroanalysis,2007,19(6):2015-2028
    [146]Boring C C, Suires T S, Tong T, et al. CA a Cancer Journal for Clinicians. Cancer statistics,1994,44(1):7-26
    [147]Lilja H, Chrlstensson A, Lovgren T, et al. Prostate-Specific Antigen in Serum Occurs Predominantly in Complex with a 1-Antichymotrypsin. Clinical Chemistry,1991,37(9): 1618-1625
    [148]Papsidero L D, Wang M C, Valenzuela L A, et al. A prostate antigen in sera of prostatic cancer patients. Cancer Research,1980,40(7):2428-2432
    [149]Acevedo B, Perera Y, Ruiz M, et al. Development and validation of a quantitative ELISA for the measurement of PSA concentration. Clinica Chimica Acta,2002, 317(1-2):55-63
    [150]Soukka T, Paukkunen J, Harma H, et al. Supersensitive time-resolved immuno-fluorometric assay of free prostate-specific antigen with nanoparticle label technology. Clinical Chemistry,2001,47(7):1269-1278
    [151]Seto Y, Iba T, Abe K. Development of ultra-high sensitivity bioluminescent enzyme immunoassay for prostate-specific antigen(PSA) using firefly luciferase. Luminescence, 2001,16(4):285-290
    [152]Fernandez-Sanchez C, McNeil C J, Rawson K, et al. Disposable noncompetitive immunosensor for free and total prostate-specific antigen based on capacitance measurement. Analytical Chemistry,2004,76 (19):5649-5656
    [153]Grubisha D S, Lipert R J, Park H Y, et al. Femtomolar detection of prostate-specific antigen:an immunoassay based on surface-enhanced raman scattering and immunogold labels. Analytical Chemistry,2003,75(21):5936-5943

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700