尾叶桉脱木素工艺的整体优化及其黑液中酚醛类小分子的分离与分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
“林纸一体化”是当今世界先进的造纸工业发展模式,也是我国制浆造纸工业的发展方向。尾叶桉是我国南方的一种速生丰产树种,是一种优良的造纸纤维原料。随着将硫酸盐浆厂转变为综合林业生物质提炼厂概念的提出,以及将木质生物质转变为高附加值化学品的兴起,黑液中木质素成为了重要的可再生资源,亟待对其进行深入的研究开发和利用。
     本论文以速生材尾叶桉为研究对象,采用硫酸盐法蒸煮,结合氧脱木素和无元素氯漂白,得到高质量的尾叶桉漂白浆,尽量提高原料的利用率。对尾叶桉的硫酸盐法蒸煮、氧脱木素以及后续的无元素氯漂白进行系统的工艺优化和数据分析,对脱木素工艺进行整体优化;比较高卡伯值制浆和中、低卡伯值制浆对后续氧脱木素和ECF漂白的影响。对尾叶桉制浆黑液中具有高附加值的小分子酚醛类物质进行初步的分离与分析,探求一种从黑液中分离这类物质简便而高效的方法。另外,利用近红外光谱分析技术,建立可以预测尾叶桉硫酸盐浆卡伯值和水分的模型,得到比传统方法更快速、准确和环保的测量卡伯值和水分的方法。
     论文研究了尾叶桉硫酸盐法蒸煮过程中有效碱用量、硫化度、蒸煮温度和保温时间对蒸煮结果的影响。通过对实验数据进行综合分析,得出了高卡伯值尾叶桉KP法蒸煮较为理想的终点卡伯值(卡伯值为40)及其所对应的H因子(297)和活性碱用量(19%~20%,NaOH计)。综合考虑原料利用率、木素溶出效率、浆中HexA含量,尾叶桉KP法蒸煮所得纸浆的卡伯值宜在16~40的范围内。
     在较大的氧脱木素工艺条件范围内进行实验,探讨氧脱木素过程中用碱量、温度、时间和氧压对氧脱木素效果的影响,比较高、中、低卡伯值三种硫酸盐原浆的氧脱木素特性。优选高、中、低三种卡伯值氧脱木素浆进行后续ECF漂白,讨论(DQ)P漂后浆料的性质。发现高卡伯值浆在氧脱木素时可以较好地保持纸浆得率,减少碳水化合物的降解,其打浆能耗较少。ECF漂白时,在其他条件相同的情况下,只需适当增加有效氯用量,就可以达到和中、低卡伯值浆相当的白度。在本实验条件下,尾叶桉氧脱木素硫酸盐浆卡伯值分别为9,16和20,D段有效氯用量分别为1.5%、2%和4%,P段H2O2用量为2%时,(DQ)P漂白浆的白度都可达到86%ISO以上,且PC值均小于0.5,说明三种卡伯值氧脱木素硫酸盐浆有较好的漂白性能和白度稳定性。另外,三种不同卡伯值的氧脱木素浆经(DQ)P漂白后,其浆张的撕裂指数较低,但抗张强度和耐破强度都很好。
     利用近红外光谱分析技术建立测定尾叶桉硫酸盐浆卡伯值和水分的数学模型,并对该模型进行了内部检验、外部检验和重现性检验,证明了此模型预测纸浆卡伯值和水分具有良好的精度、重现性和可靠性。
     另外,采用单一pH值萃取法、有机溶剂-无机溶剂交替萃取法和不同pH值分级萃取法3种较简便的方法对黑液中小分子酚醛类化合物进行初步分离,继而进行鉴定和定量分析,并比较其与木质素产生共沉的程度。发现不同pH值分级萃取法可以有效地防止小分子酚醛类化合物与木质素共沉,获得总量为2397.7mg/L的小分子酚醛类化合物,是一种有效而可行的分离方法。
“Forestry-Paper Integration”has been a development model of advanced paper industry, it has also been the developing direction of the China’s paper industry. Eucalyptus urophylla is a main kind of fast-growing wood in south China, and is a good raw material for pulping and papermaking. Nowadays, people already focus on the conception of transferring kraft pulp mill to comprehensive forest biomass refinery, and do lots of researches on changing wooden biomass to high add-value chemicals. Therefore, lignin in the black liquor has become a very significant renewable resource.
     In this thesis, Eucalyptus urophylla was used as raw material of the research. After kraft pulping, oxygen delignification, and ECF bleaching, high quality and yield bleached pulp was obtained. Kraft pulping, oxygen delignification, and ECF bleaching were regarded as a whole system, and the technologies were optimized systematically. The high Kappa number pulping was compared with medium and low Kappa number pulping, the effects of the Kappa number of origin pulps on the following oxygen delignification and ECF bleaching were analysed. Some high add-value phenolic and aldehyde compounds with low molecular were separated by three ways and the easiest and most efficient method was found. Besides that, a model which could predict Kappa number and moisture content for Eucalyptus urophylla kraft pulp was established by NIR.
     In the kraft pulping process, the effects of effective alkali dosage、sulfidity、cooking temperature and time on the cooking results were analyzed. And the optimal Kappa number for high Kappa kraft pulping of Eucalyptus urophylla was found to be 40, and the corresponding H-factor was 297, dosage of active alkali was 19%~20%(as NaOH).Comprehensive consideration of utilization ratio of raw material, dissolution efficiency of lignin and the HexA content of pulp, the optimized Kappa number range of Eucalyptus urophylla kraft pulp should be from 16 to 40.
     In the oxygen delignification process, the experiments were done at a wider range of conditions. The effects of alkali dosage、temperature、time and pressure on the final results and the following ECF bleaching were analyzed. The characters of oxygen delignified pulps of there different Kappa origin pulp were compared. And the characters of the bleached pulp after ECF bleaching of there different Kappa origin pulps were also discussed. Comparing to medium and low Kappa number pulps, the high Kappa origin pulp had better ability to retain the yield during oxygen dilignification process, needed less energy for beating, and could achieve comparative level of brightness as the others with appropriately increasing active chlorine charge during ECF bleaching. When the Kappa numbers of oxygen delignified pulps were 9, 16 and 20, and the corresponding active chlorine dosages in D stage were 1.5%, 2% and 4%, and H2O2 dosage in P stage was 2%, the brightness of (DQ)P bleached pulps could achieve 86%ISO, and PC values were less than 0.5. It showed that the oxygen delignificated kraft pulps of Eucalyptus urophylla with three different Kappa number had preferable bleaching properties and brightness stability. Except for tear index, the tensile strength and burst strength were very good.
     The Kappa number and moisture content of eucalyptus kraft pulp were measured rapidly by near infrared spectrum. The results of the experiment manifest that the mathematical models of Kappa number and moisture content established by NIR are very reliable after the internal inspection, external inspection and repeatability test, and this method is precise, short-time consuming and environment friendly.
     Some high add-value phenolic and aldehyde compounds with low molecular were separated by three ways, which were extraction at constant pH value, sequential extraction at different pH values and upersede extraction using organic and inorganic solvents. And the compounds were identified by GC-MS. The method using different pH value for stepwise extraction could prevent the co-precipitation with lignin effectively and obtain a total amount of 2397.7mg/L small molecular phenolic and aldehyde compounds, indicating that it is the easiest and most efficient way.
引文
[1]姜锦春.中国造纸工业之“最”[J].纸和造纸,1997,(05):32-34
    [2]刘宜学,陈卫斌.文明的载体——中国人发明造纸术的故事[J].科学课,2002,(Z2):85
    [3]王连科.造纸术从中国走向世界[J].黑龙江造纸,2003,(4):48
    [4]王连科.造纸机的发明与发展[J].黑龙江造纸,2006,(03):67
    [5]王育宝,吕璞.中国石油石化产业国际竞争力分析[J] .资源科学, 2005 , 27 (6) : 2 - 9.
    [6]孔凡斌.中国木浆造纸产业国际竞争力评价与发展对策研究[J].林业经济问题, 2006, 26(5): 388- 391. [7 ]顾民达.加快林纸结合步伐,实现造纸工业现代化[J] .中华纸业, 2001 , (2) : 45 - 49. [8 ]黄润斌.我国造纸工业现代化与木浆造纸[J ] .中华纸业, 2001 , (12) : 50 - 53.
    [9]孔凡斌.论商品林市场化经营与政府管理职能改革[J] .世界林业研究, 2004 , (2) : 54 - 58.
    [10]沈文浩,陈小泉,刘焕彬.中国制浆造纸工业的发展现状和趋势[J].造纸科学与技术,2006, 25(6): 15-20.
    [11]杨旭.中国造纸机械制造业现状及发展趋势[J].中华纸业,2008,(12): 6-10.
    [12]郭晓东,周在峰.必须正视外资的挑战[J].新远见,2007,(11): 66-67.
    [13]谢直兴,严代碧.桉树人工林现状及其可持续发展[J].四川林业科技,2006,27(1):76-81
    [14]赵建,李雪芝,石淑兰等.柠檬桉、尾叶桉、柳桉制浆性能研究[J].中国造纸,2003, 22(11): 8-10.
    [15]周茂贤,覃瑜萍.尾叶桉制浆的生产实践[J].中华纸业,2004, 25(7): 42-44.
    [16] Martin van Bueren.. Eucalypt Tree Improvement in China. Australian Centre International Agricultural Research, 2004,11.
    [17]杨民胜,彭彦.中国桉树纸浆材现状与发展趋势[J].纸和造纸,2006, 25:17-20.
    [18]聂伯宁.硫酸盐法制浆[M].北京:中国轻工业出版社,1995.
    [19] G.A.斯穆克.制浆造纸工程大全[M].北京:中国轻工业出版社,2001.
    [20]邝守敏.制浆工艺及设备[M].北京:中国轻工业出版社,2000.
    [21]詹怀宇.制浆原理与工程(第三版)[M].北京:中国轻工业出版社,2009.
    [22] E.W.马科隆.最新碱法制浆技术[M].北京:中国轻工业出版社,1998.
    [23]陈嘉翔.高效清洁制浆漂白新技术[M].北京:中国轻工业出版社.1992
    [24]黄放辉,朱小林.浅述纸浆氧脱木素技术的发展前景[J].造纸科学与技术, 2001, 20(3): 29-32.
    [25]李友明,陈中豪,刘明友等.苇浆双塔氧脱木素的生产实践[J].中国造纸, 2005, 24(6): 29-31.
    [26]安国兴.纸浆氧脱木素技术的现状和发展趋势[J].中国造纸,1998,17(4):58-59.
    [27] Raja P., Bozzi A., Mansilla H.. Evidence for superoxide-radical anion, singlet oxygen and OH- radical intervention during the degration of the lignin model compound(3-methoxy-4-hydroxyphenylmethylcarbinol)[J]. Journal of Photochemistry and Photobiology A: Chemistry, 2005, 169: 271-278
    [28] Gierer J., Yang E., Reitberger T.. The reactions of hydroxyl radicals with aromatic rings in lignins, studied with creosol and 4-methylveratrol[J]. Holzforschung, 1992, 46(6):495-504
    [29] Gierer J. Formation and involvement of superoxide(O2·-/HO2·) and hydroxyl(HO·) radicals in TCF bleaching processes: A review[J]. Holzforschung, 1997,51(1):34-46
    [30] Gierer J., Kerstin J.. Formation of hydroxyl radical from hydrogen peroxide and their effect on bleaching of mechanical pulp[J]. Journal of Wood Chemistry and Technology, 1993, 13(4): 561-581
    [31] Argyropoulos D., Liu Y., Ahazi B.. Salient reactions in lignin during pulping and bleaching[C]. 88th Annual PAPTAC Meeting, Montreal, Canada, 2002, p.A165-A170
    [32] Hausman M. C.. A mechanistic study of the degradation of lignin model compounds with oxygen species[D]. Ph.D. Thesis, University of Maine, 1999
    [33] Guay D. F., Cole B. J. W., Fort Jr. R. C., et al. Mechanisms of oxidative degradation of carbohydrates during oxygen delignification. I. Reaction of Methylβ-D-Glucopyranoside with Photochemically Generated Hydroxyl Radicals[J]. Journal of Wood Chemistry and Technology, 2000, 20(4): 375-394
    [34]李雪芝,张士印.改善氧脱木素效果的方法[J].天津造纸,2005,(3): 6-13.
    [35]安国兴.纸浆氧脱木素技术的现状和发展趋势[C].中国造纸学会第八届学术年会论文集上册.北京,1997: 217
    [36] Gieer J. The chemistry of delignification. A general concept, PartⅡ[J] Holzforschung, 1982, 36: 55-64.
    [37]修慧娟,王志杰,李金宝.氧脱木素的预处理[J].西南造纸, 2001, (6): 10-11
    [38]金永灿,李忠正,邰瓞生.化学纸浆的氧脱木素[J].纤维素科学与技术,1998, (2): 5-14
    [39]罗清,刘叶,陈中豪等.本色废纸浆氧脱木素前高锰酸钾预处理的研究[J].中国造纸学报, 2007, 22(2): 18-21
    [40]邝仕均.无元素氯漂白和全无氯漂白[J].中国造纸,2005, 24(10): 51-56.
    [41]王庆梅编译.无元素氯漂白(ECF)[J].造纸化学品,2004, (5): 57-58.
    [42]黄文荣,陈中豪. ECF和TCF漂白是造纸工业可持续发展的方向[J].中国造纸,2003, 22(8): 40-44.
    [43] Mcdonough T.J., Berry R.M., Betts J.L., et al. Chlorine dioxide in the chlorination stage-A summary of existing pubulished information[C]. International Pulp Bleaching Conference Proceeding, Quebec City, Canada, June 18-21,1985, Vol.1: 143-153
    [44] Reeve D.W. Chlorine Dioxide in Delignification, in: Pulp Bleaching Principles and Pracice[M]. Eds. C.W.Dence and D.W.Reeve Atlanta, TAPPI Press, 1996:261-290
    [45]赵德清,陈克复,莫立焕等.二氧化氯脱木素和漂白化学中的无机中间反应[J].中国造纸学报, 2009, 24(4): 102-108.
    [46] Brogdon B. N., Mancosky D. G., Lucia L. A. New insights into lignin modification during chlorine dioxide bleaching sequences(Ⅰ) : Chlorine dioxide delignification [J]. Journal ofWood Chemistry and Technology, 2004, 24 (3) : 201.
    [47] Gierer J. Basic principles of bleaching-Part 1: Cationic and radical processes [J]. Holzforschuang, 1990, 44 (5) : 387.
    [48] Gierer J. Basic principles of bleaching-Part 2: Anionic processes[J]. Holzforschuang, 1990, 44 (6) : 395.
    [49] Gunnarsson N. P. I., Ljunggren S. The kinetics of lignin reactions during chlorine dioxide bleaching-Part 1: Influence of pH and temperature on the reaction of 12(3, 4-dimethoxyphenyl) ethanol with chlorine dioxide in aqueous solution [J]. Acta Chemica Scandinavica, 1996,50 (5) : 422.
    [50] Barroca M., Simoes R., Castro J. Kinetics of chlorine dioxide delignification of a hardwood kraft pulp[J]. Appita Journal, 2001, 54(2): 190.
    [51] HoignéJ., Bader H.. Kinetics of reactions of chlorine dioxide in water rate constants for inorganic and organic compounds[ J ]. Water Res ,1994, 28 (1) : 45.
    [52]许琼,马国欣.近红外光谱技术在化学分析方面的应用进展[J].中国高新技术企业, 2007, 3: 123–124.
    [53]沈文浩,谢益民,刘焕彬.近红外光谱技术在制浆造纸工业中的应用[J].广东造纸, 1999, (2): 11-13.
    [54]李坤,付时雨,詹怀宇.近红外光谱分析技术在制浆造纸中的应用[J].造纸科学与技术,2008,27(4):40-44.
    [55] Heidi C. H., Tormod N. S. Simultaneous modelling of process variables and raw material properties as measured by NIR. A case study from cellulose production [J]. Chemometrics and Intelligent Laboratory Systems, 2005, 77: 238– 246.
    [56] Zbonak A, Bush T. Non-destructive estimation of content using near-infrared spectros - copy to rapidly asses kraft pulp yeild of Eucalyptus grandis [J]. South African Journal of Botany, 2007, 74 (2) : 384.
    [57] Petra T., Markus W., Thomas P.. Industrial application for inline material sorting using hyperspectral imaging in the NIR range [J]. Real - Time Imaging, 2005, 11: 99- 107
    [58]于建仁,张曾,迟聪聪.生物质精炼与制浆造纸相结合的研究[J].中国造纸学报, 2008, 23 (1) : 80 - 84
    [59] Sridhar P., Araujo J.D., Rodrigues A.E., et al. Modeling of vanillin production in a structured bubble column reactor[ J ]. Catalysis Today, 2005, 105: 574 - 581
    [60]湛尧,翟华敏.生物精炼在造纸工业中的应用现状和前景[J].中华纸业, 2008, 2: 21 - 23
    [61] Adriaan V. H. Converting a kraft pulp mill into an integrated forest products biorefinery [ J ]. Pulp and Paper Canada, 2006, 107(6): 38– 43
    [62] Tarabanko V. E., Petukhov D.V., Selyutin G.E.. New Mechanism for the Catalytic Oxidation of Lignin to Vanillin[ J ]. Kinetics and Catalysis, 2004, 45(4): 569–577
    [63] Villar J.C., CaperosA., García - Ochoa F. Oxidation of hardwood kraft - lignin to phenolic derivatives with oxygen as oxidant [J]. Wood Science and Technology, 2001, 35:245-255
    [64] Fernando G.., Laísse C.A.M., Nelson M.L.F., et al. Kinetic Evaluation and Modeling of Lignin Catalytic Wet Oxidation to Selective Production of Aromatic Aldehydes [ J ]. American Chemical Society, 2006, 45: 6627– 6631
    [65] Claire F., Alvaro M., Alírio R. Kinetics of Vanillin Production from Kraft Lignin Oxidation [J]. American Chemical Society, 1996, 35: 28 - 36
    [66] Xiang Q., Lee Y. Y. Production of Oxychemicals from Precipitated Hardwood Lignin[ J ]. Applied Biochemistry and Biotechnology, 2001,91 - 93: 71 - 80
    [67] Fernando G.. S. , Laísse C. A. M. , Nelson M. L. F. , et al. Experimental evaluation and continuous catalytic process for fine aldehyde production from lignin [ J ]. Chemical Engineering Science , 2007, 62: 5386– 5391
    [68]杨淑蕙主编.植物纤维化学(第三版) [M].中国轻工业出版社,2001
    [69]林鹿,何北海,孙润仓等.木质生物质转化高附加值化学品[J].化学进展, 2007, 19 (7 /8) : 1206– 1216
    [70] Bruce J., Neal W. Summary review of the health effects associated with phenol [J]. Toxicology and Industrial Health, 1987, 3:535 - 568
    [71] Daubaras D., Danganan C., Hubner A., et al. Biodegradation of 2, 4, 5 - trichlorophenoxyacetic acid by Burkholderia cepacia strain AC1100: evolutionary insight[ J ]. Gene, 1996, 179: 1 -8
    [72] Cernakova M., Zemanovicova A. Microbial activity of soil contaminated with chlorinated phenol derivatives[ J ]. Folia Microbiologica , 1998, 43, 411– 416
    [73] Chiara R., Costanzo C., Amalia B., et al. The NADPH oxidase inhibitor apocynin ( acetovanillone) induces oxidative stress[ J ]. Toxicology and Applied Pharmacology, 2006, 212: 179 - 187
    [74] Julie B., Catherine B., Thi LêAnh N., et al. Synthesis and characterization of a polystyrenic resin functionalized by catechol: Application to retention of metal ions[ J ]. Reactive & Functional Polymers, 2008, 68: 1362– 1370
    [75] Villar J.C., Revilla E., Gómez N., et al. Improving the use of kenaf for kraft pulping by using mixtures of bast and core fibers[J]. Ind. Crops Prod., 2009, 29(2-3): 301-307.
    [76] Fu Shiyu, Chai Xinsheng, Hou Qingxi.,et al. Chemical Basis for a Selectivity Threshold to the Oxygen Delignification of Kraft Softwood Fiber As Supported by the Use of Chemical Selectivity Agents[J]. Ind. Eng. Chem. Res., 2004, 43(10): 2291–2295.
    [77] Fu Shiyu, Lucia Lucian. Investigation of the Chemical Basis for Inefficient Lignin Removal in Softwood Kraft Pulp during Oxygen Delignification[J]. Ind. Eng. Chem. Res., 2003, 42(9): 4269–4276.
    [78] Gullichsen, J. Process Internal Measures to Reduce Pulp Mill Pollution Load [J]. Water Sci. Technol., 1991, 24 (3-4): 45-53.
    [79] Li J., Moeser G., Rosen L. Nonuniformity of Carbonhydrate Degradation During Kraft Pulping-Measurement and Modeling Using a Modified G-Factor[J]. Ind. Eng. Chem. Res., 2000, 39(4): 916-921.
    [80] Chai X. S., Yoon, S.H., Li J. The fate of hexenuronic acid groups during alkaline pulping of lobolly pine[J]. Journal of Pulp and Paper Science, 2001, 27(12): 407-411.
    [81] Chai X. S., Luo Q., Yoon S. H., et al. The fate of hexenuronic acid groups during kraft pulping of hardwoods[J]. Journal of Pulp and Paper Science , 2001, 27 (12): 403-406.
    [82] Yoon S.H., Chai X.S., Zhu J.Y., et al. In-digester reduction of organic sulfur compounds in kraft pulping[J]. Advances in Environmental Research, 2001, 5: 91-98.
    [83] Zhu J.Y., Chai X.S., Dhasmana B.. Formation of volatile organic compounds(VOCs) During Pulping[J]. Journal of Pulp and Paper Science, 1999, 25(7): 256-263.
    [84] Chai X.S., Zhu J.Y., Luo Q.. Minor sources of carbonate in kraft pulping and oxygen delignification processes[J]. Journal of Pulp and Paper Science, 2003, 29(2): 59-63.
    [85]罗小林,詹怀宇,柴欣生等.速生桉木硫酸盐法制浆目标卡伯值的确定[J].中国造纸, 2009, 28(4): 31-33.
    [86]石淑兰,何福望.制浆造纸分析与检测[M].北京,中国轻工业出版社, 2003.
    [87] Chai X.S., Zhu J.Y., Li J.. A simple and rapid method to determine hexeneuronic acid groups in chemical pulps[J]. Journal of Pulp and Paper Science, 2001, 27(50): 165-170.
    [88] Jiang Z. H., Barbara V. L., Richard B. Hexenuronic acid groups in pulping and bleaching[J]. Cellulose,2002, 10: 14-17
    [89] Nelson W. H.. Control of active alkali in black liquor: USA, 4498955[P]. 1985-02-15.
    [90]江泽慧,黄安民.木材中的水分及其近红外光谱分析[J].光谱学与光谱分析, 2006, 26(8): 1464-1468.
    [91]高荣强,范世福.现代近红外光谱分析技术的原理及应用[J].分析仪器, 2002, 3: 9-12.
    [92] Carlos P. N., Eoite B., Dmitry E., et al. Total fractionation and analysis of organic components of industrial Eucalyptus globulus kraft liquor[J].Appita Journal, 1999, 52(3): 213~217,225
    [93] Niemel? K. Low-molecular-Weight Compounds in Birch Black Liquors.PhD Thesis,Helsinki University of Technology, Finland,1990
    [94] Alél R., Hupa M., Noopila T. Combustion properties of organic constituents of kraft black liquors[J]. Holzforschung,1992,46(4):337~341
    [95] Jansson M. B., Wormald P. and Dahlman O. Reaction of wood extractives during ECF and TCF bleaching of kraft pulp[J].Pulp and Paper Canada,1995,96(4):42~46
    [96] Andrea C., Carlo G., Patrizia G. Phenolic compounds as likely natural mediators of laccase:A Mechanistic Assessment[J]. Journal of Molecular Catalysis B: Enzymatic, 2008,51(3-4):118-120
    [97] Camarero S., Ibarra D., Mart′?nez M. J., et al. Lignin-derived compounds as efficient laccase mediators for decolorization of different types of recalcitrant dyes[J]. Applledand Environmental Microbiology, 2005, 71:1775–1784
    [98] Camarero, S., Ibarra D., Mart?′nez, et al. Paper pulp delignification using laccase and natural mediators[J]. Enzyme Microbiol Technology, 2007, 40, 1264~1271
    [99] Ekman R. The suberin monomers and triterpenoids from the outer bark of betula verrucosa ehrh [J]. Holzforschung, 1983,37:205~211
    [100] Fahmi A. R., Bridgwater A.A.V., Thain S.C., et al. Prediction of Klason lignin and lignin thermal degradation products by Py–GC/MS in a collection of Lolium and Festuca grasses[J]. Journal of Analytical and Applied Pyrolysis, 2007, 80: 16–23
    [101] Erika M., Emma J., Ga′bor V. TG/MS, Py-GC/MS and THM-GC/MS study of the composition and thermal behavior of extractive components of Robinia pseudoacacia [J]. Journal of Analytical and Applied Pyrolysis, 2007, 79: 61–70
    [102] Jose′C. del R?′o, Ana G., Marina H., et al. Determining the influence of eucalypt lignin composition in paper pulp yield using Py-GC/MS[J]. Journal of Analytical and Applied Pyrolysis, 2005, 74: 110–115
    [103] Stefania V. , Cecilia S., Nadia N., et al. Volatile and semi-volatile components of oak wood chips analysed by Accelerated Solvent Extraction (ASE) coupled to gas chromatography–mass spectrometry (GC–MS)[J]. Food Chemistry, 2007, 102:1260–1269
    [104] Atika O., Erika M., Roge′rio S., et al. Pyrolysis-GC/MS and TG/MS study of mediated laccase biodelignification of Eucalyptus globulus kraft pulp[J]. Journal of Analytical and Applied Pyrolysis, 2007, 78: 233–242
    [105] Christopher H. V. The molecular composition of lignin in spruce decayed by white-rot Fungi (Phanerochaete chrysosporium and Trametes versicolor) using pyrolysis-GC–MS and thermochemolysis with tetramethylammonium hydroxide[J]. International Biodeterioration & Biodegradation,2003, 51:67–75

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700