竹子半纤维素的热水预抽提及其对KP法制浆和ECF漂白性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热水预抽提技术作为一种经济、环保的生物质预处理技术,具有对设备腐蚀低、预抽提液中寡糖含量高、单糖降解率低、对纤维素破坏较小和木素溶出较少等优点,已成为结合制浆造纸生物质精炼的研究中应用最为广泛的生物质预抽提技术之一。竹子,作为我国南方一种重要的非木材原料,其结合制浆造纸的高值化利用的研究,对于木材原料匮乏的我国的生物质资源化利用和制浆造纸产业的持续发展具有重要意义。因此,本论文以我国南方的竹子为原料,进行了制浆前的热水预抽提,然后进行硫酸盐蒸煮和无元素氯(Elemental Chlorine Free,简称ECF)漂白,分析了热水预抽提条件对抽提液各主要组分变化规律及后续KP法制浆和ECF漂白性能的影响,为竹子结合制浆造纸的生物质精炼提供理论依据和技术支持。
     采用热水预抽提技术、离子色谱和高效液相色谱的检测手段,在不同的最高温度和保温时间下,对竹子主要糖组分(葡萄糖、木糖、阿拉伯糖)的抽提得率及其主要降解产物——糠醛和羟甲基糠醛的浓度进行了考察。探讨了木糖、葡萄糖和阿拉伯糖的寡糖、单糖得率,糠醛和羟甲基糠醛浓度随反应温度和反应时间的变化规律。进一步,采用H-因子对数(LogH)做变量,对热水预抽提液各组份的变化规律进行了研究。得到了获得最大量糖组分得率的同时、尽量减少抽提液中糖组分降解产物浓度的合理LogH范围以及热水预抽提的最佳温度范围。
     为了了解热水预抽提过程糖组分溶出和降解的机理,建立了预测热水预抽提液中糖组分得率及其降解产物浓度的动力学模型,研究了半纤维素在热水预抽提过程中的反应动力学特性。发现竹子中木聚糖和阿拉伯聚糖的溶出、木寡糖、木单糖、阿拉伯糖、糠醛的降解反应速率系数与氢离子浓度呈指数或线性关系,即氢离子对以上各组分的生成和降解具有催化作用。据此,建立了预测热水预抽提液中木寡糖、木单糖和阿拉伯糖得率、糠醛浓度的动力学模型,该模型能很好地对以上四种物质的量进行预测(R2大于0.985)。
     竹子中总糖的抽提程度对于热水预抽提后续的KP法制浆和ECF漂白具有重要影响,建立戊糖、己糖和糠醛、羟甲基糠醛生成量的预测模型,进而获得总糖溶出量的经验模型具有重要意义。根据动力学特性的研究结果,将抽提液氢离子浓度引入到H-因子计算式得到了H '-因子。通过修正反应的活化能,建立了竹子热水预抽提过程戊糖、己糖、糠醛、羟甲基糠醛生成量的经验模型。结果表明,该模型能很好地对热水抽提液中的戊糖、己糖、糠醛、羟甲基糠醛的生成量进行预测(R2大于0.965)。
     选用三种热水预抽提H-因子(0、500和1000)和三个蒸煮有效碱用量(15%、18%和21%),通过对比KP法制浆的有效碱消耗、VOC生成量和KP浆的卡伯值、得率、黏度、己烯糖醛酸含量、打浆性能,探讨了热水预抽提对竹子后续KP法制浆性能的影响。结果表明,热水预抽提可以提高竹片蒸煮脱木素效率,达到相同卡伯值(20),可节省约2%-3%的有效碱用量,得到更高的纸浆黏度,更低的VOC和HexA生成量;然而,纸浆的得率下降较多,打浆性能也显著下降。
     选取卡伯值相近(20)的三种热水预抽提后竹片制得的纸浆,采用DQP漂序,通过变化二氧化氯用量和过氧化氢用量,对比漂白浆的白度、返黄值、卡伯值降低率、黏度和相同白度(85%ISO)纸浆打浆性能、相同打浆度(450SR)纸浆的物理强度(撕裂指数、抗张指数、耐破指数),探讨了热水预抽提对竹片KP浆ECF漂白性能的影响。发现热水预抽提可以提高纸浆漂白过程的卡伯值降低率;相同总有效氯因子下,漂后浆的白度较高,返黄值较低,黏度相近;达到相同白度(85%ISO)可节省约1.4%的总有效氯用量,然而返黄值略高、打浆性能下降,且纸浆的物理强度降低。
     对比不同热水预抽提条件,抽提液糖组分得率和对后续KP法制浆和ECF漂白的正面和负面影响。发现相对于H-因子500的热水预抽提条件,H-因子1000可获得更高的糖组分得率(约为H-因子500的2.5倍);但是,未漂KP浆的得率损失仅由7%增至10%,打浆转数提高了约0.3倍;漂白浆的返黄值未变化,打浆转数提高约0.35倍,纸浆物理强度下降变缓。所以,热水预抽提的强度更高,单位糖组分得率对后续KP法制浆和ECF漂白所造成的不利影响越低。因此,本实验条件下的最佳热水预抽提条件为H-因子1000。
The technology of hot water pre-extraction, as an economical and environmentally friendly pretreatment technology, has the advantages of lower corrosion to equipment, higher content of oligosaccharides, smaller damage to cellulose, lower degradation rate of monosaccharides and less dissolving rate of lignin. It has been extensively studied in biorefinery integrated with pulp and papermaking. Bamboo is a non-wood raw material in south China. The research of bamboo biorefining integrated with pulping and papermaking is important for the resource utilization of biomass and sustainable development of pulp and paper industry in China. Hence, this dissertation studied on the bamboo hot water pre-extraction, kraft pulping and elemental chlorine free bleaching of the pulp. The effect of the hot water pre-extraction conditions on the changing behaviors of main components in extracts and the following kraft pulping and ECF bleaching were analysed. This research will provide the fundamental base and technology support for the biorefinery integrated with pulping and papermaking of bamboo.
     The yields of main saccharides (glucose, xylose and arabinose) extracted from bamboo and its degradation products (furfural and HMF) were studied at different maximum temperature and holding time of hot water pre-extraction, using HPAEC and HPLC as detection apparatus. The variations of yields of monomers and oligomers of xylose, glucose and arabinose and the concentrations of furfural and HMF as reaction temperature and time were discussed. Furthermore, the changing behaviors of the above components as the logarithm of H-factor (LogH) during hot water pre-extraction were analysed. The reasonable range of LogH and the optimal range of reaction temperature were established for maximizing yield of saccharides and minimizing the concentrations of degradation products from saccharides.
     The kinetic characteristic of hemicellulose hot water pre-extraction was studied for understanding dissolution and degradation of saccharides, and the kinetic models of the saccharides and its degradation products were built. It was found that there was a relationship (exponent or lineal) between hydrogen ion concentration and the dissolving and degradating reaction rate coefficient of xylan, arabinose polymer, xylose oligomer, xylose, arabinose, furfural and HMF. The kinetic models for predicting the yields of xylose oligomer, xylose, arabinose, and the concentrations of furfural and HMF were set up. The relative coefficients (R2) of the models for the four compounds are above 0.985.
     The extraction extent of saccharides from bamboo has an important influence on following kraft pulping and the pulp ECF bleaching. Thereby, there was concernment significance to build an empirical model of the formation of pentose, hexose, furfural and HMF. Hydrogen ion concentration was introduced to the calculating formula of H-factor , obtaining H '-factor, according to the dynamic characteristics. The models for predicting the formation of pentose, hexose, furfural and HMF using modified activation energies were built. The results show that the models are precise, the R2 are greater than 0.965.
     Three hot water pre-extraction H-factors (0, 500 and 1000) and three cooking effective alkali dosages (15%, 18% and 21%) were selected. The effect of hot water pre-extraction on the kraft pulping performance of bamboo was researched by comparing the consumption of effective alkali, formation of volatile organic compounds and the Kappa number, yield, viscosity, hexenuronic acid content, beating performance of the resulted pulps. The results show that hot water pre-extraction of bamboo could improve the delignification efficiency of pulping, save about 2%-3% of the effective alkali, obtain higher pulp viscosity, lower VOC and HexA content based on the same Kappa number (20). However, there are obvious decrease in the yield and beating performance of pulp.
     The bamboo pulps with similar Kappa number (20) after hot water pre-extraction and kraft pulping was chosen as unbleached pulp for DQP bleaching. The effect of hot water pre-extraction on the ECF bleaching performance of bamboo pulp was studied, through comparing brightness, PC number, decreasing rate of Kappa number, viscosity and beating performance of bleached pulp, and handsheet’s strength properties of bleached pulp with same brightness (85%ISO) and beating degree (450SR) under different dosages of chlorine dioxide and hydrogen peroxide. The results indicate that hot water pre-extraction before kraft pulping could obtain higher decreasing rate of Kappa number, higher brightness, lower PC number, similar viscosity of bleached pulp at the same total active chlorine factor. For the same brightness bleached pulp(85%ISO), hot water pre-extraction could save 1.4% bleaching chemical, but the PC number was slightly higher, beating performance and strength properties of bleached pulp were also lower.
     The saccharides yield in extracts and the positive and negative influence of pre-extraction on subsequent kraft pulping and ECF bleaching were compared under different conditions of hot water pre-extraction. It was found that H-factor 1000 of hot water pre-extraction could obtain higher yield of saccharides (2.5 times as that of H-factor 500), however, the yield loss of kraft pulp increased from 7% to 10%, PFI revolutions to beat the kraft pulp to the same 0SR increased about 0.3 times, the PC number of bleached pulp has no much difference, the loss of the strength properties of bleached pulp was not obvious. Forasmuch, the higher the intensity of hot water pre-extraction, the lower the negative effect of unit saccharides yield in extracts on subsequent kraft pulping and ECF bleaching. Consequently, the optimal H-factor of hot water pre-extraction is one thousand under the experimental conditions.
引文
[1] Hoffert M. I., Caldeira K., Benford G., et al. Advanced technology paths to global climate stability: energy for a greenhouse planet [J]. Science, 2002, 298(5595): 981-987
    [2] Whitesides G. M., Crabtree G. W.. Don't forget long-term fundamental research in energy[J]. Science, 2007, 315(5813): 796-798
    [3]赵静,钱桦,袁湘月等.林木生物质收获机械发展现状[J].林业技术与木工设备, 2006, 34(5): 10-16
    [4] Lal R.. Soil carbon sequestration impacts on global climate change and food security[J]. Science, 2004, 304(5677): 1623-1627
    [5] Eissen M., Metzger J, Schmidt E., et al. 10 years after rio-concepts on the contribution of chemistry to a sustainable development[J]. Angewandte Chemie International Edition(English), 2002, 41(3): 415-436
    [6] Kheshgi H. S., Prince R. C., Marland G.. The potential of biomass fuels in the context of global climate change: focus on transportation fuels[J]. Annual Review of Energy and the Environment, 2000, 25(1): 199-244
    [7] Galbe M., Zacchi G.. A review of the production of ethanol from softwood[J]. Applied Microbiology Biotechnology, 2002, 59: 618-628
    [8] EERE. U.S. Department of energy, energy efficiency and renewable energy[OL]. http://www1.eere.energy.gov/biomass, 2008
    [9] Adriaan V. H.. Converting a kraft pulp mill into an integrated forest biorefinery[J]. Pulp & Paper Canada, 2006, 107(6): 38-43
    [10] Ragauskas A., Williams C., Davison, B.. The path forward for biofuels and biomaterials[J]. Science, 2006, 311(5760): 484-489
    [11] Sun J. X., Sun X. F., Sun R. C., et al. Fractional extraction and structural characterization of sugarcane bagasse hemicelluloses[J]. Carbohydrate Polymers 2004, 56(2): 195-204
    [12] Mendesa C. V. T., Carvalhoa M. G. V. S., Baptista C. M. S. G., et al. Valorisation of hardwood hemicelluloses in the kraft pulping process by using an integrated biorefinery concept[J]. Food and Bioproducts Processing, 2009, 87(3): 197-207
    [13] American Forest & Paper Association. Agenda 2020: a technology vision and research agenda for america’s forest, wood and paper industry[OL]. www.agenda2020.org, 2010
    [14]郭三川.速生桉木低污染制浆漂白及纸浆纤维性质的研究[D].广州:华南理工大学博士学位论文, 2008
    [15]詹怀宇主编.纤维化学与物理[M].北京:科学出版社, 2005, 40-49
    [16]马乃训,张文燕.竹材制浆造纸述评[J].林业科学研究, 1995, 8(3): 329-333
    [17]胡湛波,柴欣生,王景全等.以制浆造纸产业为平台的生物炼制新模式[J].化学进展, 2008, 20(9): 1439-1446
    [18] Knappert D. R., Grethlein H. E., Converse A. O.. Partial acid hydrolysis of poplar wood as a pretreatment for enzymatic hydrolysis[J]. Biotechnology and Bioengineering, 1981, 11(1): 67-77.
    [19] Sun Y., Cheng J. J.. Dilute acid pretreatment of rye straw and bermuda grass for ethanol production[J]. Bioresource Technology, 2005, 96(14): 1599-1606
    [20] Lee Y. Y., Iyer P., Torget R. W.. Dilute-acid hydrolysis of lignocellulosic biomass[J]. Advances in Biochemical Engineering/Biotechnology, 1999, 65: 93-115.
    [21] Nguyen Q. A., Tucker M. P., Keller F. A., et al. Two-stage dilute-acid pretreatment of softwoods[J]. Applied Biochemistry and Biotechnology, 2000, 84/86(1-9): 561~576.
    [22] Mok W. S. L., Antal M. J. J.. Uncatalyzed solvolysis of whole biomass hemicellulose by hot compressed liquid water[J]. Industrial & Engineering Chemistry Research, 1992, 31(4): 1157-1161
    [23] Song T., Pranovich A., Sumerskiy I., et al. Extraction of galactoglucomannan from spruce wood with pressurised hot water[J]. Holzforschung, 2008, 62(6): 659-666
    [24]吕欣,坂志朗,董明盛等.用加压热水预处理山毛榉树粉生产燃料乙醇的初步研究[J].农业工程学报, 2008, 24(3): 219-222
    [25] Hasegawa I., Kazuhide T., Okuma O., et al. New pretreatment methods combining a hot water treatment and water/acetone extraction for thermo-chemical conversion of biomass[J]. Energy & Fuels, 2004, 18(3): 755-760
    [26] Mosier N., Hendrickson R., Ho N., et al. Optimization of pH controlled liquid hot water pretreatment of corn stover[J]. Bioresource Technology, 2005, 96(18): 1986~1993
    [27] Brownell H.H., Saddler J.N.. Steam pretreatment of lignocellulosic material for enhanced enzymatic hydrolysis[J]. Biotechnology Bioengineering, 1987, 29(2): 228~235
    [28] Ohgren, K., Bengtsson, O., Gorwa-Grauslund, M. F.. Simultaneous saccharification and cofermentation of glucose and xylose in steam-pretreated corn stover at high fiber content with saccharomyces cerevisiae TMB3400[J]. Journal of Biotechnology, 2006, 126 (4), 488–498.
    [29] Karhumaa K., Wiedemann B., Hahn-Hagerdal B., et al. Co-utilization of l-arabinose and d-xylose by laboratory and industrial saccharomyces cerevisiae strains[J]. Microbial CellFactories, 2006, 10, 5–18.
    [30] Taherzadeh M. J., Karimi K.. Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review[J]. International Journal of Molecular Sciences, 2008, 9: 1621-1651.
    [31] Oliva J. M., Sáez F., Ballesteros I., et al. Effect of lignocellulosic degradation compounds from steam explosion pretreatment on ethanol fermentation by thermotolerant yeast kluyveromyces marxianus[J]. Applied Biochemistry and Biotechnology, 2003, 105(1-3): 141-153
    [32] Cara C., Ruiz E., Ballesteros I., et al., Enhanced enzymatic hydrolysis of olive tree wood by steam explosion and alkaline peroxide delignification[J]. Process Biochemistry, 2006, 41(2): 423-429
    [33] Zhao Y. L., Wang Y., Zhu J. Y., et al. Enhanced enzymatic hydrolysis of spruce by alkaline pretreatment at low temperature[J]. Biotechnology and Bioengineering, 2008, 99(6): 1320-1328
    [34] Gabrielii I., Gatenholm P., Glasser W.G., et al, Separation, characterization and hydrogel-formation of hemicellulose from aspen wood[J]. Carbohydrate Polymers, 2000, 43(4): 367-374.
    [35] Sun R. C., Fang J. M., Tomkinson J., et al. Fractional isolation, physico-chemical characterization and homogeneous esterification of hemicelluloses from fast-growing poplar wood[J]. Carbohydrate Polymers, 2001, 44(1): 29-39.
    [36] Tucker M. P., Kim K. H., Newman M. M., et al. Effects of temperature and moisture on dilute-acid steam explosion pretreatment of corn stover and cellulase enzyme digestibility[J]. Applied Biochemistry and Biotechnology, 2003, 105(1-3): 165-177
    [37] Alvira P., Tomás-PejóE., Ballesteros M., et al. Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review[J]. Bioresource Technology, 2010, 101(13): 4851-4861
    [38] Huang H. J., Shri R., Tschirner U. W., et al. A review of separation technologies in current and future biorefineries[J]. Separation and Purification Technology, 2008, 62(1): 1-21
    [39] Yu Y., Lou X., Wu H. W.. Some recent advances in hydrolysis of biomass in hot-compressed water and its comparisons with other hydrolysis methods[J]. Energy & Fuels, 2008, 22(1): 46-69
    [40] Kruse A., Dinjus E.. Hot compressed water as reaction medium and reactant: properties and synthesis reactions[J]. The Journal of Supercritical Fluids, 2007, 39(3): 362-380
    [41] Akiya N., Savage P. E.. Roles of water for chemical reactions in high temperature water[J]. Chemical Reviews, 2002, 102(8): 2725-2750
    [42] Buhler W., Dinjus E., Ederer H. J., et al. Ionic reactions and pyrolysis of glycerol as competing reaction pathways in near- and supercritical water[J]. The Journal of Supercritical Fluids, 2002, 22(1): 37-53
    [43] Krammer P., Vogel H.. Hydrolysis of esters in subcritical and supercritical water[J]. The Journal of Supercritical Fluids, 2000, 16(3): 189-206
    [44] Br?ll D., Kaul C., Kr?mer A., et al. Chemistry in supercritical water[J]. Angewandte Chemie International Edition(English), 1999, 38(20): 2998-3014
    [45] Ehara K., Saka S.. A comparative study on chemical conversion of cellulose between the batch-type and flow-type systems in supercritical water[J]. Cellulose, 2002, 9(3-4): 301-311
    [46] Liu C. G., Wyman C. E.. The effect of flow of compressed hot water on xylan, lignin and total mass removal from corn stover[J]. Industrial & Engineering Chemistry Research, 2003, 42(21): 5409-5416
    [47] Feng S. H., Chen J. S., Shi Z.. Hydrothermal reactions and techniques[M]. Singapore: World Scientific Publishing, 2003, 169-176
    [48] Amidon T. E., Liu S. J.. Water-based woody biorefinery[J]. Biotechnology Advance, 2009, 27(5): 542-550
    [49] Srokol Z., Bouche A.-G., Estrik A. V., et al. Hydrothermal upgrading of biomass to biofuel; studies on some monosaccharide model compounds[J]. Carbohydrate Research, 2004, 339(10): 1717-1726
    [50] Bobleter O., Bonn G.. The hydrothermolysis of cellobiose and its reaction-product d-glucose[J]. Carbohydrate Research, 1983, 124(2): 185-193
    [51] Lu, X. Y., Sakoda A., Suzuki M.. Decomposition of cellulose by continuous near-critical water reactions[J]. Chinese Journal of Chemical Engineering, 2000, 8(4): 321-325
    [52] Sasaki M., Adschiri T., Arai K.. Production of cellulose II from native cellulose by near- and supercritical water solubilization[J]. Journal of Agricultural and Food Chemistry, 2003, 51(18): 5376-5381
    [53] Kabyemela B. M., Adschiri T., Malaluan R., et al. Degradation kinetics of dihydroxyacetone and glyceraldehyde in subcritical and supercritical Water[J]. Industrial & Engineering Chemistry Research, 1997, 36(6): 2025-2030
    [54] Kabyemela B. M., Adschiri T., Malaluan R., et al. Kinetics of glucose epimerization and decomposition in subcritical and supercritical water[J]. Industrial & EngineeringChemistry Research, 1997, 36(5): 1552-1558
    [55] Sakaki T., Shibata M., Miki T., et al. Decomposition of cellulose in near-critical water and fermentability of the products[J]. Energy & Fuels, 1996, 10(3): 684-688
    [56] Sakaki T., Shibata M., Miki, T., et al. Reaction model of cellulose decomposition in near-critical water and fermentation of products[J]. Bioresource Technology, 1996, 58(2): 197-202
    [57] Sakaki T., Shibata M., Sumi T., et al. Saccharification of cellulose using a hot-compressed water-flow reactor[J]. Industrial & Engineering Chemistry Research, 2002, 41(4): 661-665
    [58] Sasaki M., Fang Z., Fukushima Y., et al. Dissolution and hydrolysis of cellulose in subcritical and supercritical water[J]. Industrial & Engineering Chemistry Research, 2000, 39(8): 2883-2890
    [59] Sasaki M., Iwasaki K., Hamaya T., et al. Super-rapid enzymatic hydrolysis of cellulose with supercritical water solubilization pretreatment[J]. Kobunshi Ronbunshu, 2001, 58(10): 527-532
    [60] Várhegyi, G., SzabòP., Mok W. S.-L., et al. Kinetics of the thermal decomposition of cellulose in sealed vessels at elevated pressures. effects of the presence of water on the reaction mechanism[J]. Journal of Analytical and Applied Pyrolysis, 1993, 26(3): 159-174
    [61] Aida T. M., Sato Y., Watanabe M., et al. Dehydration of d-glucose in high temperature water at pressures up to 80MPa[J]. The Journal of Supercritical Fluids, 2007, 40(3): 381-388
    [62] Aida T. M., Sato Y., Watanabe M., et al. Reactions of d-fructose in water at temperatures up to 400°C and pressures up to 100MPa[J]. The Journal of Supercritical Fluids, 2007, 42(1): 110-119
    [63] Kabyemela B. M., Adschiri T., Malaluan R. M., et al. Glucose and fructose decomposition in subcritical and supercritical water: detailed reaction pathway, mechanisms, and kinetics[J]. Industrial & Engineering Chemistry Research, 1999, 38(8): 2888-2895
    [64] Kabyemela B. M., Adschiri T., Malaluan R. M., et al. Rapid and selective conversion of glucose to erythrose in supercritical water[J]. Industrial & Engineering Chemistry Research, 1997, 36(12): 5063-5067
    [65] Sasaki M., Goto K., Tajima K., et al. Rapid and selective retro-aldol condensation of glucose to glycolaldehyde in supercritical water[J]. Green Chemistry, 2002, 4(3):285-287
    [66] Sinag A., Kruse A., Rathert J.. Influence of the heating rate and the type of catalyst on the formation of key intermediates and on the generation of gases during hydropyrolysis of glucose in supercritical water in a batch reactor[J]. Industrial & Engineering Chemistry Research, 2004, 43(2): 502-508
    [67] Sinag A., Kruse A., Schwarzkopf V.. Key compounds of the hydropyrolysis of glucose in supercritical water in the presence of K2CO3[J]. Industrial & Engineering Chemistry Research, 2003, 42(15): 3516-1521
    [68] Sinag A., Kruse A., Schwarzkopf V.. Formation and degradation pathways of intermediate products formed during the hydropyrolysis of glucose as a model substance for wet biomass in a tubular reactor[J]. Engineering in Life Sciences, 2003, 3(12): 469-473
    [69] Watanabe M., Aizawa Y., Iida T., et al. Glucose reactions with acid and base catalysts in hot compressed water at 473K[J]. Carbohydrate Research, 2005, 340(12): 1925-1930
    [70] Watanabe M., Aizawa Y., Iida T., et al. Glucose reactions within the heating period and the effect of heating rate on the reactions in hot compressed water [J]. Carbohydrate Research, 2005, 340(12): 1931-1939
    [71] Watanabe M., Aizawa Y., Lida T., et al. Catalytic glucose and fructose conversions with TiO2 and ZrO2 in water at 473K: Relationship between reactivity and acid–base property determined by TPD measurement[J]. Applied Catalysis A: General, 2005, 295(2): 150-156
    [72] Watanabe M., Inomata H., Arai K.. Catalytic hydrogen generation from biomass (glucose and cellulose) with ZrO2 in supercritical water[J]. Biomass and Bioenergy, 2002, 22(5): 405-410
    [73] Yoon S.-H., Macewan K., Adriaan V. H.. Hot-water pre-extraction from loblolly pine (Pinus taeda) in an integrated forest products biorefinery[J]. Tappi Journal, 2008, 7(6): 27-32
    [74] Yang B. Y., Montgomery R.. Alkaline degradation of glucose: effect of initial concentration of reactants[J]. Carbohydrate Research, 1996, 280(1): 27-45
    [75] Mok W. S., Antal M. J. J., Varhegyi G.. Productive and parasitic pathways in dilute acid-catalyzed hydrolysis of cellulose[J]. Industrial & Engineering Chemistry Research, 1992, 31(1): 94-100
    [76] Watanabe M., Lida T., Aizawa Y., et al. Conversions of some small organic compounds with metal oxides in supercritical water at 673K[J]. Green Chemistry, 2003, 5: 539-544
    [77] Watanabe M., Inomata H., Smith R. L., et al. Catalytic decarboxylation of acetic acid with zirconia catalyst in supercritical water [J]. Applied Catalysis A: General, 2001, 219(1-2): 149-156
    [78] Watanabe M., Osada M., Inomata H., et al. Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673K[J]. Applied Catalysis A: General, 2003, 245(2): 333-341
    [79] Watanabe M., Aizawa Y., Lida T., et al. Glucose reactions with acid and base catalysts in hot compressed water at 473K[J]. Carbohydrate Research, 2005, 340(12): 1925-1930
    [80] Gray K. A., Zhao L. S., Emptage M.. Bioethanol[J]. Current Opinion in Chemical Biology, 2006, 10(2): 141-146
    [81] Polizeli M. L. T. M., Rizzatti A. C. S., Monti R., et al. Xylanases from fungi: properties and industrial applications[J] Applied Microbiology Biotechnology, 2005, 67(5): 577-591
    [82] Ryabova O., Vrsanska M., Kaneko S., et al. A novel family of hemicellulolytic a-glucuronidase[J]. FEBS Letters, 2009, 583(9), 1457-1462
    [83] Dhawan S., Kaur J.. Microbial mannanases: an overview of production and applications[J]. Critical Reviews in Biotechnology, 2007, 27(4): 197-216
    [84] Wyman C. E.. Potential synergies and challenges in refining cellulosic biomass to fuels, chemicals, and power[J]. Biotechnology Progess, 2003, 19(2), 254-262
    [85] Gírio F. M., Fonseca C., Carvalheiro F., et al. Hemicelluloses for fuel ethanol: a review[J]. Bioresource Technology, 2010, 101(13): 4775-4800
    [86] Jeffries T. W., Vleet J. R. H. V.. Pichia stipitis genomics, transcriptomics, and gene clusters[J]. FEMS Yeast Research, 2009, 9(6), 793-807
    [87] Ozcan S., Kotter P., Ciriacy M.. Xylan-hydrolysing enzymes of the yeast pichia stipitis[J]. Applied Microbiology Biotechnology, 1991, 36 (2): 190-195
    [88] Helmerius J., Walter J. V. V., Rova U., et al. Impact of hemicellulose pre-extraction for bioconversion on birch Kraft pulp properties[J]. Bioresource Technology, 2010, 101(15): 5996-6005
    [89] Yoon S.-H., Adriaan V. H.. Kraft pulping and papermaking properties of hot-water pre-extraction loblolly pine in an integrated forest products biorefinery[J]. Tappi Journal, 2008, 7(6): 22-27
    [90] Leschinsky M., Zuckerstatter G., Weber H. K., et al. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. part 1: comparison of different lignin fractions formed during water prehydrolysis[J]. Holzforschung, 2008, 62(6): 645-652
    [91] Leschinsky M., Zuckerstatter G., Weber H. K., et al. Effect of autohydrolysis of Eucalyptus globulus wood on lignin structure. part 2: influence of autohydrolysis intensity[J]. Holzforschung, 2008, 62(6): 653-658
    [92] Garrote G., Domínguez H., ParajóJ. C.. Kinetic modeling of corncob autohydrolysis[J]. Process Biochemistry, 2001, 36(6): 571-578
    [93] Nabarlatz D., Farriol X.,. MontanéD.. Kinetic modeling of the autohydrolysis of lignocellulosic biomass for the production of hemicellulose-derived oligosaccharides[J]. Industrial & Engineering Chemistry Research, 2004, 43(15): 4124-4131
    [94] Delgenes J P, Moletta R, Navarro J M. Effects of lignocellulose degradation products on ethanol fermentations of glucose and xylose by Saccharomyces cerevisiae, Zymomonas mobilis, Pichia stipitis and Candida shehatae[J]. Enzyme and Microbial Technology, 1996, 19(3): 220-225
    [95] Helle S., Cameron D., Lam J., et al. Effect of inhibitory compounds found in biomass hydrolysates on growth and xylose fermentation by a genetically engineered strain of S. cerevisiae[J]. Enzyme and Microbial Technology, 2003, 33(6): 786-792
    [96] Klinke H. B., Thomsen A. B., Ahring B. H.. Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass [J]. Applied Microbiology and Biotechnology, 2004, 66(1): 10-26
    [97] Oliva J. M., Negro M. J., Sáez F., et al. Effects of acetic acid, furfural and catechol combinations on ethanol fermentation of kluyveromyces marxianus[J]. Process Biochemistry, 2006, 41(5): 1223-1228
    [98] Fukuda H., Kondo A., Tamalampudi S.. Bioenergy: sustainable fuels from biomass by yeast and fungal whole-cell biocatalysts[J]. Biochemical Engineering Journal, 2009, 44(1): 2-12
    [99] Palmqvist E., Hahn-H?gerdal B.. Fermentation of lignocellulosic hydrolysates. I: inhibition and detoxification[J]. Bioresource Technology, 2000, 74(1), 17-24
    [100] Palmqvist E., Hahn-H?gerdal B.. Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition[J]. Bioresource Technology, 2000, 74(1), 25-33
    [101]迟聪聪,张曾,于建仁等.桉木半纤维素预提取工艺的初步研究[J].中国造纸学报, 2008, 123(13): 6-10
    [102]迟聪聪,张曾,刘轩.桉木木片高温预水解反应历程的研究[J].中国造纸,2008,12(27):6-10
    [103] Brasch D J, Free K W. Prehydrolysis-kraft pulping of Pinus radiata grown in New Zealand[J]. Tappi Journal, 1965, 48(4): 245-248
    [104] Vroom K E. The H factor: A means of expressing cooking times and temperatures as a single variable[J]. Pulp and Paper Magazine of Canada, 1957, 58(3): 228-231
    [105]庄新姝,王树荣,袁振宏等.纤维素超低酸水解产物的分析[J].农业工程学报, 2007, 23(2): 177-182
    [106] Liang Lina, Zhang Ping, Cai Yaqi, Mou Shifen,High-performance anion exchange chromatography with pulsed amperometric detection for simultaneous determination of monosaccharides and uronic acids[J]. Chinese Journal of Analytical Chemistry, 2006, 34(10): 1371-1374
    [107]姜聚慧,石起增,陈华军.反相高效液相色谱法测定糠酸和糠醇[J].色谱, 2005, 23(1): 110
    [108] Liu S. J.. A kinetic model on autocatalytic reactions in woody biomass hydrolysis[J]. Journal of Biobased Materials and Bioenergy, 2008, 2(2): 135-147
    [109] Nabarlatz D., Farriol X.,. MontanéD..Autohydrolysis of almond shells for the production of xylo-oligosaccharides: product characteristics and reaction kinetics[J]. Industrial & Engineering Chemistry Research, 2005, 44(20): 7746-7755
    [110] Garvalheiro F., Garrote G., ParajòJ. G., et al. Kinetic modeling of brewery’s spent grain autohydrolysis[J]. Biotechnology Progress, 2005, 21(1): 233-243
    [111] Conner A. H.. Kinetic modeling of hardwood prehydrolysis. part I. xylan removal by water prehydrolysis[J]. Wood and Fiber Science, 1984, 16(2): 268-277
    [112] Yat S. C., Berger A., Shonnard D. R.. Kinetic characterization for dilute sulfuric acid hydrolysis of timber varieties and switchgrass[J]. Bioresource Technology, 2008, 99: 3855-3863
    [113] Aguilar R., Ramírez J. A., Garrote G., et al. Kinetic study of the acid hydrolysis of sugar cane bagasse[J]. Journal of Food Engineering, 2002, 55: 309–318
    [114] Saeman J. F. Kinetics of wood saccharification hydrolysis of cellulose and decomposition of sugars in dilute acid at high temperature[J]. Industrial and Engineering Chemistry, 1945, 37(1): 43-52
    [115] Lu X. B., Zhang Y. M., Liang Y., et al. Kinetic studies of hemicellulose hydrolysis of corn stover at atmospheric pressure[J]. Korean Journal of chemical Engineering, 2008, 25(2): 302-307
    [116] Jensen J., Morinelly J., Aglan A., et al. Kinetic characterization of biomass dilutesulfuric acid hydrolysis: mixtures of hardwoods, softwood, and switchgrass[J]. Environmental and Energy Engineering, 2008, 54(6): 1637-1645
    [117] Xiang Q., Lee Y. Y., Torget R. W.. Kinetics of glucose decomposition during dilute-acid hydrolysis of lignocellulosic biomass[J]. Applied Biochemistry and Biotechnology, 2004, 113/116: 1127-1138
    [118] Aguilar R., Ramirez J. A., Garrote F., et al. Kinetic study of the acid hydrolysis of sugar cane bagasse[J]. Journal of Food Engineering, 2002, 55: 309-318
    [119] Rajeev K., Charles E. W. The impact of dilute sulfuric acid on the selectivity of xylooligomer depolymerization to monomers[J]. Carbohydrate Research, 2008, 343: 290-300
    [120] Kent D. B., Perry L. M. Thermochemical pretreatment of lignocellulose to enhance methane fermentation: I. monosaccharide and furfurals hydrothermal decomposition and product formation rates[J]. Biotechnology and Bioengineering, 1988, 31: 50-61
    [121] Kent D. B., James A. L., Perry L. M. Thermochemical pretreatment of lignocellulose to enhance methane fermentation: II. evaluation and application of pretreatment model[J]. Biotechnology and Bioengineering, 1988, 31: 62-70
    [122]李庆扬,王能超,易大义.数值分析[M].北京:清华大学出版社, 2001, 336-380
    [123]詹怀宇主编.制浆原理与工程[M].北京:中国轻工业出版社, 2009, 245-306
    [124]石淑兰,何福望主编.制浆造纸分析与检测[M].北京:中国轻工业出版社, 2003, 22-220
    [125] Chai X.-S., Zhu J. Y., Li J.. A simple and rapid method to determine hexeneuronic acid groups in chemical pulps[J]. Journal of Pulp and Paper Science, 2001, 27(5): 165-170
    [126] Li H.-L., Zhan H.-Y., Fu S.-Y., et al. Rapid determination of methanol in black liquors by full evaporation headspace gas chromatography[J]. Journal of Chromatography A, 2007, 1175(1): 133-136
    [127] Grundelius N. R.. Oxidation equivalents, OXE - an alternative to active chlorine[J]. Tappi Journal, 1993, 76(1): 133-135
    [128] Neto C. P., Evtuguin D. V., Furtado F. P., et al. Effect of pulping conditions on the ECF bleachability of Eucalyptus globules kraft pulps[J]. Industrial & Engineering Chemistry Research, 2002, 41(24): 6200-6206
    [129] Colodette J. L., Gomide J. L., Júnior D. L., et al. Effect of pulp delignification degree on fiber line performance and bleaching effluent load[J]. Bioresources, 2007, 2(2): 223-234

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700