乙醇辉光放电等离子体电解制氢及动力学模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气是清洁的新能源,有着广泛的应用,用辉光等离子体电解乙醇制氢,等离子体所含的高能粒子可以引发各种化学反应,使产物的产量高于常规电解的产量,出现了非法拉弟的特性。由于等离子体内部反应的复杂性和难探测性,本文采用实验分析、光发射光谱诊断、动力学模拟三种手段相结合,研究乙醇在放电等离子体层中和等离子体与溶液两相界面处的反应转化,以及各种放电因素对过程的影响。
     实验表明,乙醇溶液辉光放电等离子体电解(GDPE)过程中电子是引发等离子体化学反应的主要因素,乙醇GDPE过程中各种键断裂的机率由键能和数量来决定。生成的各种活性粒子相互发生作用,最后生成氢气、一氧化碳、甲烷、乙烷、丙烷、丁烷、甲醛、乙醛、甲酸、乙酸等。乙醇溶液GDPE过程中产生大量氢气,相同条件下,阴极产氢量高于阳极,而单位能耗低于阳极;同一极性下,电压越高,电导率越大,氢气产量越大,单位体积能耗越小。
     利用光发射光谱技术测量乙醇GDPE过程中各种活性粒子的发射光谱,主要观察到H自由基的三条巴尔末线(434 nm,486 nm,656 nm)、CH+(395.3 nm)、C2(469.8 nm)、OH(513.5 nm)、C2(560.1 nm)、Na(589.0 nm)、K(769.9 nm)、O+(819.2 nm)的发射光谱。计算得到99.5 %乙醇GDPE过程中的电子温度为7700 K到11600 K之间,GDPE过程中等离子体场内核心区的电子密度为8.2×1015 cm-3。
     在实验分析和光谱诊断的基础上,进行乙醇辉光放电分解的动力学分析,建立合理的动力学模型,选择最符合实验结果的乙醇分解的反应路径,利用Matlab编程求解。模拟结果氢气的含量,产物的生成情况与实验相符合。各自由基的反应时间都少于或等于10-10s,加上反应逸出时间,接近分子脱离放电通道的时间10-9s,符合等离子体反应的规律。模拟结果进一步分析了乙醇GDPE过程中两个区域的不同反应过程,电子能量强的放电区域,生成的是小分子产物,电子能量弱的反应区域,生成的是相对大的分子产物。H、CH2、HCO自由基含量的增加,CH3、CH含量的减少,有利于氢气的生成。
Hydrogen is a kind of clean energy source, which has been widely used. Anew hydrogenproduction technique, hydrogen generation from glow discharge plasma electrolysis ofethanol conversion was introduced in this paper. Glow discharge electrolysis (GDPE) isregarded as an unconventional electrolysis where electrochemical processes occur in glowdischarges and at the interface between plasma and electrolyte. The remarkable feature ofGDPE is that its chemical yields produced by the glow discharge electrode are much higherthan the Faraday law value and the products are novel for conventional electrolysis. Becausechemical reactions in plasma are complex and unpredictable, it’s a good way to research thispaper bymeans of experimental analysis, spectral diagnostics and dynamic simulation.
     Electrons were proved to be the most important radicals to trigger the plasma chemicalreactions on ethanol during GDPE. Molecules of ethanol were bombed and excited in glowdischarge plasmas and at the interface between plasmas and solutions, producing a lot ofactive radicals. Hydrogen, carbon monoxide, methane, ethane, propane, butane, formaldehyde,acetaldehyde, formic acid and acetic acid were the main products of GDPE on ethanolsolutions. The yields of hydrogen and energy consumption were affected by dischargedpolarity, discharged voltage and conductivity. Under the same reaction conditions, the amountof hydrogen yield in cathode was higher than that in anode, while the energy consumptionwas lower than that in anode. In the same polarity, the higher the voltage, the greater theyields of hydrogen becomes, and the energyconsumption.
     Optical emission speetroseopy (OES) is a powerful diagnostie tool—a simple methodwithout disturbing thereactions. In the paper, the distributions of different radicals such as H,CH+, C2, OH, C2, Na, K, O+ which were detected in the spectra range of 300 nm to 900 nmwere studied. After calculating, the electron temperature in plasma center ranger from 7700 Kto 11600 K, and the electron densityis 8.2×1015cm-3.
     Based on the combination of the experimental analysis and spectral diagnostics, amathematical model was proposed subsequently to describe the behavior of radicals in theglow discharges center and at the interface between plasma and electrolyte. The result ofsimulation was in good agreement with that of the experiment. The kinetic analysis indicatedthat in the region of glow discharges center, the products were small molecules and in theregion of the interface between plasmas and solutions, the products were relatively largemolecules. The increasing of H, CH2, HCO radical content, the reducing of CH3 and CHradical content, which is advantageous to the hydrogen production.
引文
[1] Chen F.F., Chang J.P. Lectures notes on principles of plasma processing [M]. New York:KluwerAcademic. 2003:1-3, 79, 151-164
    [2]赵化侨.等离子体化学与工艺[M].安徽:中国科学技术大学出版社, 1998: 1-2,108-116
    [3]金佑民.樊友二.低温等离子体物理基础[M].北京:清华大学出版社, 1983: 1-15
    [4]陈杰瑢.低温等离子体化学及其应用[M].北京:科学出版社, 2001. 1-40
    [5]白希尧,张芝涛,白敏冬,等.非平衡等离子体化学研究现状与进展[J].科学通报,2002, 47(5): 321-322
    [6] Massines F., Segur P., Gherardia N., et al. Physics and chemistry in a glow dielectricbarrier discharge at atmospheric pressure: diagnostics and modeling [J]. Surface andCoatingsTechnology, 2003, 174: 8-14
    [7]吴承康.我国等离子体工艺研究进展[J].物理, 1999, 7: 388-393
    [8]刘强,孙鹤鸿.水中脉冲电晕放电等离子体特性及气泡运动[J].高电压技术, 2006,32(2): 54-56
    [9]张九林.介质阻挡放电降解对氧苯酚废水实验研究[D].华南理工大学硕士学位论文, 2005: 10-17
    [10]徐学基,诸定昌.气体放电物理[M].上海:复旦大学出版社, 1996, 309-327
    [11] Franklin R.N. The plasma sheath boundary region [J]. Phys. D: Appl. Phys. 2003,36:309-320
    [12] Bohm D. The characteristics of electrical discharges in magnetic fields [M]. New York :GuthrieA,Wakerling R K. LMcGraw-Hill, 1949, Chapter 3. 77
    [13] Tokar M.Z. Fluid approximation of the bohm criterium for plasmas of several ion species[J]. Cont. Plasma Phys. 1994, 34(2-3), 139-144
    [14] Gao J.Z. A novel technique for wastewater treatment by contact glow-dischargeelectrolysis [J]. Pakistan Journal of Biological Sciences, 2006, 9(2):323-329
    [15] Gao J.Z., Yu J., Lu Q.F. et al. Plasma degradation of 1-naphthylamine by glow dischargeelectrolysis [J].Akistan Journal of Biological Sciences, 2004, 7(10):1715-1720
    [16] Sengupta S.K, Singh R., Srivastva A.K. A study on the non-faradic yields of anodiccontact glow discharge electrolysis using cerous ion as the scavenger: An estimate of theprimary yield of OH radicals [J]. Indian Journal of Chemistry, 1998, 37A:558-560
    [17] Kellogg H.Anode effect in aqueous electrolysis [J]. Electro-chem. Soc., 1950: 133-142
    [18] Hickling A., Ingram M.D. Contact glow-discharge electrolysis [J]. Trans Faraday Soc.,1964, 60: 783-792
    [19] Hickling A., Newns G.R. Glow-discharge electrolysis: Part V the contact glow dischargeelectrolysis of liquid ammonia [J]. Chem. Soc., 1961, 5186-5191
    [20] Hickling A., Ingram M.D. Glow-discharge electrolysis [J]. Electroanal Chem., 1964, 8:65-81
    [21] Sengupta S.K, Paulit S.R. Studies in Galvano1uminescence: Part 2 chemical effects ofcathode glow [J]. Indian Chem. Soc., 1975, 52: 91-97
    [22] Gao J.Z., Wang X.Y., Hu Z.A., et al. A review on chemical effects in aqueous solutioninduced by plasma with glow discharge [J]. Plasma Science & Technology, 2001, 3(3):765-774
    [23] Hiroki A., Pimblott S.M., LaVerne J.A. Hydrogen peroxide production in the radiolysisof water with high radical scavenger concentrations [J]. Phys. Chem. A, 2002, 106:9352-9358
    [24] Michael J.K., Locke B.R. Hydrogen, oxygen, and hydrogen peroxide formation inaqueous phase pulsed corona electrical discharge [J]. Ind. Eng. Chem. Res., 2005, 44:4243-4248
    [25] Grymonpre D.R., Sharma A.K., Finney W.C., et al. The role of Fenton’s reacation inaqueous phase pulsed streamer corona reactors [J]. Chemical Engineering Journal, 2001,82: 189-207
    [26]刘江华,方新湘,周华.我国氢能源开发与生物制氢研究现状[J].新疆农业科学.2004(专刊), 85-87
    [27]陈励.能源工程[M].广州:华南理工大学出版社, 2006: 118-128
    [28]严宗诚,陈砺,王红林.液下辉光放电等离子体重整低碳醇水溶液制氢[J].化工学报, 2006, 57(6): 1432-1437
    [29]叶芳,徐榕,郭航,等.直接甲醇燃料电池膜及阴极模拟[J].工程热物理学报, 2006,27(6): 1017-1019
    [30]严宗诚.博士学位论文[D].广州:华南理工大学, 2007
    [31] Futamura S., Kabashima H. Application of nonthermal plasma to chemical reactions [J].Japan Petroleum Institute, 2002, 45: 329-341
    [32] Kabashima H., Einaga H., Futamura S. Hydrogen generation from water with nonthermalplasma[J], Chemistry Letters, 2001, 30(12): 340
    [33]李慧青,邹吉军,张月萍,等.电晕放电等离子体甲醇分解制氢[J].化工学报,2004, 55(12): 1989-1993
    [34] Yanguas G.A., Hueso J.L., Caballero A., et al. Reforming of ethanol in a microwavesurface-wave plasma discharge [J].Applied Physics Letters, 2004, 85(18): 4004-4006
    [35] Matsuura H., Tanikawa T., Takaba H., et al. Direct hydrogen production from alcoholusing pulse-electron emission in an unsymmetrical electric field [J]. Applied SurfaceScience, 2004, 229: 63-66
    [36]陶建生.硕士学位论文[D].广州:华南理工大学, 2007
    [37] Chun H., Wang Y.Z., Tang H.X. Destruction of phenol aqueous solution by photocatalysis or direct photolysis [J]. Chemosphere, 2000, 41: 1205-1209
    [38] Antonaraki S., Androulaki E., Dimotikali D., et al. Papa constantinou, Photolyticdegradation of all chlorophenols with poly oxometallates and H2O2 [J]. PhotochemPhotobiolA: Chem., 2002, 148: 191-197
    [39] Dong R.A., Chen C.H., Maithreepala R.A., et al. The inuence of pH and cadmium suldeon the photocatalytic degradation of 2-chlorophenol in titanium dioxide suspensions [J].Water Res., 2001, 35: 2873-2880
    [40] Malik M.A., Ghaffar A. Water puri cation by electrical discharges [J]. Plasma SourcesSicTechnol., 2001, 10: 82-91
    [41]陆泉芳,俞洁.辉光放电等离子体处理有机废水研究进展[J],水处理技术2007,33(1): 9-14
    [42]李岩.低温等离子体技术在水溶液化学中的应用[D].兰州:西北师范大学, 2006:20-21
    [43] Kokufuta E., Shibasaki T., Nakamura, et al. Degradation of polyethyleneglycol in alocalized reaction zone during glow discharge electrolysis [J]. Chem Soc, ChemCommunication, 1985: 100-102
    [44] Tezuka M., Iwasaki M. Plasma-induced degradation of aniline in aqueous solution [J].Thin Solid Films, 2001, 386: 204-207
    [45] Tezuka M., Iwasaki M. Oxidative degradation of phenols by contact glow dischargeelectrolysis [J]. Denki Kagaku, 1997, 65: 1057-1060
    [46] Tezuka M., Iwasaki M. Plasma induced degradation of chlorophenols in an aqueoussolution [J].Thin Solid Films, 1998, 316: 123-127
    [47] Tezuka M., Iwasaki M. Liquid-phase reactions induced by gaseous plasmadecomposition of benzoic acids in aqueous solution [J]. Plasmas&Ions, 1999, 1: 23-26
    [48] Gao J.Z., Liu Y.J., Yang W., et al. Oxidative degradation of phenol in aqueous induced byplasma from a direct glow discharge [J]. Plasma Sources Science&Technology, 2003, 12:533-537
    [49] Gao J.Z., Pu L.M., Yang W., et al. Oxidative degradation of nitrophenols in aqueoussolution induced by plasma with submersed glow discharge electrolysis [J]. PlasmaProcesses and Polymers, 2004, 1: 171-176
    [50]陆泉芳,俞洁,刘永军,等.接触辉光放电等离子体降解水体中的对氯硝基苯[J].西北师范大学学报(自然科学版), 2003, 39(1): 49-53
    [51]高锦章,陆泉芳,俞洁,等.接触辉光放电等离子体降解水体中硝基苯[J].甘肃科学学报, 2003, 15(1): 30-34
    [52] Gao J.Z., Hu Z.A., Wang X.Y. , et al. Degradation ofα-naphthol by plasma in aqueous solution [J]. Plasma Science&Technology, 2001, 3(1): 641-646
    [53] Gao J.Z., Wang X.Y, Hu Z.A. Plasma degradation of dyes in water with contact glowdischarge eletrolysis [J].Water research, 2003, 37: 267-272
    [54]高锦章,俞洁,李岩,等.辉光放电等离子体技术处理印染废水的研究[J].环境化学, 2005, 24(2): 183-185
    [55] Gao J.Z., Hu Z.A., Wang X.Y., et al. Oxidative degradation of acridine oranne induced byplasma with contact glow discharge electrolysis [J]. Thin Solid Films, 2001, 390:154-158
    [56] Harada K., Iwasaki T. Syntheses of amino acids from aliphatic carboxylic acid by glowdischarge electrolysis [J]. Nature, 1974, 250: 426-428
    [57] Harada K., Suzuki S. Formation of amino acids from elemental carbon by glow dischargeelectrolysis [J]. Nature, 1977, 266: 275-276
    [58] Sengupta S.K., Singh R., Shvastava A.K. Chemical effects of anodic contact glowdischarge electrolysis in aqueous formic acid solutions: Formation of oxalic acid [J].Indian Journal of Chemistry, 1995, 34A: 459-461
    [59] Gao J.Z., Fu Y., Wang A.X., et al. A new approach to synthesize oxalic acid fromFformic acid by contact glow discharge plasma [J]. Chemistry Journal International,2008, 10(8): 41-45
    [60] Btown E.H., Wilhide W.D., E1more K.L. A new method for the preparation of oxamide[J]. Journal of Organic Chemistry, 1962, 27: 3698-3699
    [61] Tezuka M., Iwasaki M. Aromatic cyanation in contact glow discharge electrolysis ofacetonitrile [J]. Thin Solid Films, 2002, 407: 169-173
    [62] Kokufuta E., Shibasaki T., Sodeyama T., et al. Simultaneously occurring hydroxylation,hydration, and hydrogenation of the C=C bond of aliphatic carboxylic acids in aqueoussolution byglow discharge electrolysis [J]. Chem. Lett. 1985, 10: 1569-1572
    [63] Liu Y.J., Jiang X.Z., Wang L. One-step hydroxylation of benzene to phenol induced byglow discharge plasma in an aqueous solution [J]. Plasma Chemistry and PlasmaProcessing, 2007, 27: 496-503
    [64] Denaro A.R., Hough K.O. Polymerization by glow discharge electrolysis [J].ElectrochimicaActa, 1973, 18: 863-868
    [65] Sengupta S.K., Sandhir U., Misra N. A study on acrylamide polymerization by anodiccontact glow-discharge electrolysis: Anovel tool [J]. Journal of Polymer Science: Part A:Polymer Chemistry, 2001, 39: 1584-1588
    [66] Gao J.Z., Wang A.X., Li Y., et al., Synthesis and characterization of superabsorbentcomposite by using glow discharge electrolysis plasma [J]. Reactive&FunctionalPolymers, 2008, 68: 1377–1383
    [67]王爱香.接触辉光放电电解等离子体的产生及其在聚合中的应用[D].兰州:西北师范大学, 2008: 65-80
    [68]胡庆,蒙林,鄢阳,等.低温等离子体放电的数值模型[J].成都大学学报, 2006,25(3): 178-182
    [69]韩德刚,高盘良.化学动力学基础[M].北京:北京大学出版社, 2001: 10
    [70] Levitskii A. Chemical reactions in non-equilibrium plasma [J]. Institute of petrochemicalsynthesis. Russian Academyof Sciences. Moscow. 1983: 5-30
    [71]徐学基,揭亚雄.介质阻挡放电击穿过程的研究[J].复旦学报(自然科学版), 1997,36(3): 268-274
    [72] Ghazala A., Katsuki S., Schoenbach K.H, et al. Decontamination of water by means ofpulsed-corona discharges [J]. IEEE Trans Plasma Sci. 2002, 30(4): 1449-1453
    [73] Lozovsky V.A., Derzy I., Cheskis S. Nonequilibrium concentrations of the vibrationallyexcited OH radical in a methane flame measured by cavity ring-down spectroscopy [J].Chem Phys Lett 1998, 284(5-6): 407-411
    [74] Ono R., Oda T. Formation and structure of primary and secondary streamers in positivepulsed corona discharge-Effect of oxygen concentration and applied voltage [J]. Phys D:Appl Phys, 2003, 36(16): 1952-1958
    [75] Starch D.G., Kushner M.J. Destruction mechanisms for formaldehyde in atmosphericpressure low temperature plasma [J]. Phys D:Appl. Phys, 1993;73 (1): 51-55
    [76] Ershov A., Borysow J. Dynamics of OH (X2 II, V=0) in high energy atmosphericpressure electrical pulsed discharge [J]. Phys D:Appl Phys, 1995, 28: 68-74
    [77] Dorai R., Hassouni K., Kushner M.J. Interaction between soot particles and NOx duringdielectric barrier discharge plasma remediation of simulated diesel exhaust [J]. Phys D:Appl Phys , 2000;88(10): 6060-6071
    [78]王丽娜,刘忠伟,朱爱民,等.介质阻挡放电等离子体中·OH和HO2·自由基的数值模拟研究[J].物理化学学报, 2008, 24(8): 1400-1404
    [79]陈松玲.低温等离子体净化汽车尾气[D].江苏:江苏大学硕士学位论文, 2005
    [80]李婷婷,王心亮,魏冬香,等.气体NO/SO2/N2/O2等离子体反应机理及动力学分析[J].工程热物理学报, 2007, 28(3): 531-533
    [81]张静,吕福功,徐勇,等.介质阻挡放电脱除甲醛的化学动力学模拟[J].物理化学学报, 2007, 23(9): 1425-1431
    [82]齐向娟.介质阻挡放电等离子体转化甲烷过程的动力学模拟[D].天津:天津大学硕士学位论文, 2002
    [83] Yu Y. Direct non-oxidative methane conversion by non-thermal plasma: modeling study[J]. Plasma Chemistryand Plasma Processing, 2003;23(2): 327-346
    [84] Meeks E., Moffat H.K., Grcar J.F., et al. AURORA: A Fortran program for modelingwell stirred plasma and thermal reactors with gas and surface reactions [C]. SandiaNational Laboratories Report SAND96-8218,Albuquerque, NM (1996)
    [85] Ellen M., Jong W.S. Modeling of plsama-etch processes using well stirred reactorapproximations and including complex gas-phase and surface reactions [J]. IEEETransactions on Plasma Science 1995, 23(4): 539-547
    [86] Kee R.J., Rupley F.M., Miller J.A. CHEMKIN-II: A FORTRAN chemical kineticspackage for the analysis of gas-phase chemical kinetics[C]. Sandia National Lab. ReportNo. SAND89-8009, 1989
    [87] Kee R.J., Rupley F.M., Meeks K., et al. CHEMKIN-III: A fortran chemical kineticspackage for the analysis of gas-phase chemical and plasma kinetic [C]. Sandia NationalLab. Report No. SAND96-8216, 1996
    [88]何方方.冷等离子体裂解甲烷制C2的实验研究及动力学模拟[D].四川:四川大学硕士学位论文, 2004
    [89] Antonius I., Nowarat C., Jae W.C., et al. Kinetic modeling of plasma methane conversionin a dielectric barrier discharge [J]. Fuel ProcessingTechnology, 2008; 89(2): 214-219
    [90] Istadi, Amin N.A. Modeling and optimization of catalytic–dielectric barrier dischargeplasma reactor for methane and carbon dioxide conversion using hybrid artificial neuralnetwork genetic algorithm technique [J]. Chemical Engineering Science. 2007, 62(23):6568-6581
    [91] Mukkavilli S., Lee C.K., Varghese K., et al. Modeling of the electrostatic coronadischarge reactor [J]. IEEETrans. Plasma Sci., 1988, 16(6): 652-660
    [92] Mok Y.S., Ham S.W. Conversion of NO to NO2 in air by a pulsed corona dischargeprocess [J], Chem. Eng. Sci., 1998, 53(9): 1667-1678
    [93] Orlandini I., Riedel U. Chemical kinetics of NO removal by pulsed corona discharge [J].Journal of Physics 2003, 33: 2467-2474
    [94] Yan N.Q., Wu Z.C., Tan T. Modeling of formaldehyde destruction under pulsed dischargeplasma [J]. Environ. Sci. HealthA., 2000, 35(10): 1951-1964
    [95] Mok Y.S., Nam C.M., Cho M.H. Decomposition of volatile organic compounds and nitricoxide by non-thermal plasma discharge processes [J]. IEEE Trans. Plasma Sci., 2002,30(1): 408-416
    [96]刘新,王树东.非热等离子体烟气脱硫湿式反应的动力学机制[J].化工学报, 2005,56(2): 257-261
    [97] Shu Z., , Lin Z., , Yue L., et al. Modeling of the production of OH and O radicals in apositive pulsed corona discharge plasma [J].Vacuum. 2008, 83(1): 238-243
    [98]李慧青.电晕放电甲醇分解制氢及其模拟研究[D].天津:天津大学博士学位论文,2005
    [99]吕永康.等离子体热裂解煤制乙炔热力学和动力学分析[D].太原:太原理工大学博士学位论文, 2003
    [100] Regner H., Penckert C., Bitter D. Internationeral syspasiums on plasma chemistry [J].Italy: Pugnochivso, 1989, 117-128
    [101] Slovetskii D.I., Mankelevich Y.A., Slovetskii S.D., et al. Mathematical Modeling of thePlasma Chemical Pyrolysis of Methane [J]. Plasma Chemistry. 2002, 36(1): 44-52
    [102] Antomius I., Jae W.C., Hwaung L., et al. Kinetic modeling of plasma methaneconversion using gliding arc[J]. Journal of Natural Gas Chemistry, 2005, 14(1): 13-22
    [103]余云鹏,林舜辉,林旭升,等.氩直流辉光放电等离子体中电子运动及能量的模拟[J].核聚变与等离子体物理, 2004, 24(3): 236-240
    [104] Hassouni K., Leroy O., Farhat S., et al. Modeling of H2 and H2/CH4 moderate-pressuremicrowave plasma used for diamond deposition [J]. Plasma Chemistry and PlasmaProcessing, 1998, 18(3): 325-362
    [105] Matyash K., Schneider R., Bergmann A., et al. modeling of hydrocarbon species inECRmethane plasmas [J]. Journal of Nuclear Materials, 2003, 434: 313-316
    [106]王桂贇,王延吉,宋宝俊,等.光催化分解水制氢用含钛氧化物催化剂的研究[J].河北工业大学学报, 1997, 31(06): 01-6
    [107]王佛松,王夔,陈新滋.展望21世纪的化学[M].北京:化学工业出版社, 2000,1-6
    [108]吴川,张华明,衣宝廉.化学制氢技术研究进展[J].化学进展, 2005, 17(3):423-429
    [109]王艳辉,王树东,吴迪镛. PEMFC制氢技术现状[J].环境污染治理技术与设备,1999, 1: 73-77
    [110] Maggic G., Freni S., Cavallarc S. Light alcohols/methane thane fuelled moltencarbonate fuel cells: a comparative study[J]. Power Sources, 1998, 74: 17-23
    [111] Kabeshima H., Einaga H., Futamura S. Hydrogen generation from water, methane, andmethanol with non-thermal plasma [J]. IEEETrans. Ind.Appl., 2003, 39(2): 340-345
    [112]严宗诚,陈砺,王红林.生产氢气的新方法—接触辉光等离子体电解制氢[J].可再生能源, 2004, 3: 41-43
    [113]林玉枝.直流辉光放电等离子体特性的数值计算[J].福州大学学报(自然科学版),1996, 24(5): 31-34
    [114]徐家鸾,金尚宪.等离子体物理学[M].北京:原子能出版社, 1981: 159
    [115] Hickling A., Ingram M.D. Contact glow-discharge electrolysis [J]. Trans. Faraday Soc.,1964: 783-793
    [116] Suanta K.S., Singh O.P. Contact glow discharge electrolysis: a study of its onset andlocation [J]. Electroanal. Chem., 1991, 369: 189-197
    [117] Bogaerts A., Gijbels R. Two-dimensional model of a direct current glow discharge:Description of the electrons, argon ions, and fast argon atoms [J]. Anal. Chem. 1996, 68:2296-2300
    [118] Bogaerts A. Comprehensive modelling network for dc glow discharges in argon [J].Plsams Sources Sci.Technol. 1999, 8: 210-219
    [119]胡志强,甑汉生,施迎难.气体电子学[M].北京:电子工业出版社, 1985: 75-98
    [120]杨津基.气体放电[M].上海:科学出版社, 1983: 75-89
    [121]邓红艳,王加扣,吴卫东,等.低温低压氢等离子体的光谱分析[J].原子与分子物理学报, 2005, 22(2): 256-259
    [122] Pearse R.W.R., Gaydon A.G.. The identification of molecular spectra [M]. New York:JohnWileyand Sons Lnc., 1976: 4-26, 83-265
    [123]王倩,徐新,郭芳林,等.乙醇重整制氢催化剂的国内研究进展[J].中外能源.2008, 13: 23-29
    [124]王晶.博士学位论文[D].广州:中国科学技术大学, 2008
    [125]胡又平,李格升,高孝红,等.含水乙醇低温等离子体重整制氢研究[J].武汉理工大学学报, 2009, 33(5): 928-931
    [126]孙杰,吴锋,丘新平,等.燃料电池的氢源技术-乙醇重整制氢研究进展[J].电源技术, 2004, 28(7): 452-457
    [127]吴季兰,苏雅丽,戚生初,等.乙醇辐解机理研究[J].物理化学学报, 1991, 7(1):22-29
    [128] Cai Z.L., Zhang X.J., Wu J.L. Reactions and kinetics of baiclin with reducing species, H,esolv- andα-hydroxyethyl radical in deaerated ethanol solution underγ-irradiation [J]. Radiat. Phys. Chem, 1995, 45(2): 217-222
    [129] Almubarak M.A., Wood A. Chemical action of glow discharge electrolysis on ethanol inaqueous solution[J]. J. Electrochem. Soc, 1977, 124(9): 1356-1360
    [130] Park J., Xu Z.F., Lin M.C. Thermal decomposition of ethanol. II. Acomputational studyof the kinetics and mechanism for the H + C2H5OH reaction [J]. Chem. Phys. 2003,118(22): 9990-9996
    [131] Xu Z.F., Park J., Lin M.C. Thermal decomposition of ethanol. III. A computationalstudy of the kinetics and mechanism for the CH3 + C2H5OH reaction [J]. Chem. Phys.2004, 120(14): 6593-6599
    [132] GregoryP.S., David M.G., Michael F., et al. http://www.me.berkeley.edu/gri_mech/
    [133] Hickling A., Ingram M.D. Contact glow-discharge electrolysis [J]. Trans. Faraday Soc.,1964: 783-793
    [134] Susanta K. S., Singh R., Srivastava A.K. AStudy on the origin of nonfaradaic behaviorof anodic contact glow discharge electrolysis [J]. Electrochem. Soc., 1998, 145(7):2209-2213
    [135] Jemmer P. Mathematical modeling and interpretation of reactive plasma chemistry [J].Mathematical and Computer. Modelin, 1999, 30: 61-76
    [136] Morgan W.L. A critical evaluation of low-energy electron impact cross sectionsfor plasma processing modeling. Plasma Chemistry and Plasma Processing [J]. 1992, 12:4
    [137] Hayashi M. In swarm studies and ineleastic electron-molecule collisions [M]. New York:Springer-Verlag, 1987
    [138] Capitelli M., Bardsley H.J.N. In nonequilibrium processes in partially iIonized gases.[M]. NewYork: Plenum Press, 1990
    [139] Davis D.K., Kline L.E., Bies W.E. Measurements of swarm parameters and collisioncross sections in methane glow discharges [J]Appl. Phys. 1989, 65: 3311
    [140] Janev R.K., Lange W.D.R., Evans K., et al. Elementary processes in hydrogen heliumplasma [M]. NewYork: Springer-Verlag. 1987
    [141] Park J., Zhu R.S., Lin M.C. Thermal decomposition of ethanol. I. Ab Initio molecularorbital/Rice–Ramsperger–Kassel–Marcus prediction of rate constant and productbranching ratios [J]. Chem. Phys. 2002, 117(7): 3224-3231

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700