基于直写的纳米银导电浆料及导电墨水的研制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子产品向小型化、柔性化方向发展,传统的微米级导电浆料已不能满足当前电子元器件对更低加工温度和更小特征尺寸的要求。开发适应低热处理温度、小尺寸加工工艺的纳米银导电浆料/墨水已经成为导电浆料发展的必然趋势。然而当前这种纳米银导电浆料/墨水的研究和生产还主要集中在一些发达国家,在我国相关研究才刚刚起步。因此,开展纳米银导电浆料/墨水的研究、制备有着重要的意义。
     首先,本文介绍了化学还原法制备纳米银颗粒的原理,以硼氢化钠为还原剂,月桂酸为保护剂,通过还原银氨络合物制备出了纳米银颗粒。探讨了不同还原剂、保护剂及其浓度等对制备效果的影响。该法制备工艺简单,制备出的纳米银颗粒纯度高,粒径集中分布于5-30nm,平均粒径为17nm。
     然后,以自制的纳米银粉为导电功能相,以司班-85、松油醇、乙基纤维素等为有机载体的主要成分,制备出了纳米银导电浆料。研究了纳米银导电浆料的配方和相应的混合及分散工艺。制备的纳米银浆料分散均匀且粘度高,可在300℃以下烧结成形。对该浆料进行初步的微笔直写实验,制备的线条宽度最小可达120μm,烧结后导线的标准方阻为6.1m?/□。
     最后,以固体颗粒在液相中的分散机理为依据,探讨了不同分散剂和相关助剂对纳米银颗粒在水中的分散稳定性的影响,确定了以OP-10乳化剂为分散剂的纳米银导电墨水的配方及分散方法。实验结果表明,制备出的纳米银导电墨水导电相含量可达28%wt,均匀性好,并可在300℃进行烧结,烧结后的膜层具有一定的导电性。
With the development of miniaturization and flexibility of electronic products, the traditional micro-conductive paste can not match the process of lower sintering temperature and smaller feature size in current fabrication of electronic components. The trend will be made to develop nano-silver paste/ink suiting for low heat-processing temperature and fine fabrication feature size. However, most of the research work about the nano-silver paste/ink was dedicated in the developed country, and little effort has been made in China. It is significant to develop nano-silver paste/ink in our country.
     Firstly, the mechanisms of preparing nano-silver particles with chemical reduction -protection method were introduced. The nano-silver particles were prepared from the reduction of silver-ammonia complex, taking sodium borohydride as reducing agent, and dodecanoic acid as dispersing agent. The influence of the dispersing and reducing agent on the preparation was explored. The diameters of the prepared silver particles from this process were mostly ranging from 5nm to 30nm, and the average size was about 17nm.
     Secondly, the nano-silver paste was formulated with the as-synthesized nano-silver particles as conductive phase, the mixture of Span-85, terpineol and ethyl cellulose as organic vehicle. The formula and the dispersing process of the paste were explored. The prepared nano-silver paste with uniform dispersion and high viscosity could be sintered at 300℃. The width of the conductive line was the minimum of 120μm, obtaining from the preliminary micro-pen direct-writing test, and its standard sheet resistance was about 6.1m? /□.
     Finally, according to the dispersing mechanism of solid particles in liquid phase, the effects of dispersants and additives on the nano-silver dispersing stability were testified. The dispersing method and nano-ink formula were decided with emulsifier OP-10 as the disperse agent. The prepared uniform ink was 28% in solid content, and could be sintered at 300℃. The coatings had certain conductivity.
引文
[1]赵德强,马立斌,杨君等.银粉及电子浆料产品的现状及趋势.电子元件与材料, 2005, 24(6): 54~56
    [2] C. A. Harper.厚膜电子材料.第一版.冶金工业部贵金属研究所厚膜电子材料小组译.北京.工业部厚膜电路情报网, 1975. 8~9
    [3]张勇.厚膜导电浆料技术.贵金属, 2001, 22(4): 65~69
    [4] S.B. Rane, P.K. Khanna, T. Seth et al. Firing and processing effects on microstructure of fritted silver thick film electrode materials for solar cells. Materials Chemistry and Physics, 2003, 82: 237~245
    [5]马如璋.功能材料概论.北京:冶金出版社, 1999: 21
    [6]沈锡宽.印刷电路技术.北京:科学出版社, 1992: 102~104
    [7]龚建勋,刘正义,邱万奇等.真空蒸镀聚乙烯醇薄膜.真空科学与技术学报, 2005, 24(5): 359~362
    [8]李祥友.激光微细熔覆电子浆料柔性布线技术与设备: [博士学位论文].武汉:华中科技大学图书馆, 2005
    [9] HJ. Jiang, K-S Moon, JX. Lu et al. Conductivity enhancement of nana silver-filled conductive adhesives by particle surface fictionalization. Journal of Electronic Materials, 2005, 34(11): 1432~1439
    [10]倪星元.纳米材料的理化特性及应用.北京.化学工业出版社, 2006: 51
    [11]陈秀萍.纳米材料对浆料性能的影响.棉纺织技术, 2006(1), 24~27
    [12]韩国印可得株式会社.有机银络合物、其制造方法及其成形薄层的方法.中国发明专利, CN 101107257A. 1~4
    [13]杨咏来,徐恒泳,李文钊.纳米粒子催化剂及其研究进展.材料导报, 2003, 17(2): 13~14
    [14] S. Tong. Conduction mechanism of electronic thick film material of base metal.Journal of Electronic Materials, 1997, 6(14): 981~983
    [15] P.V. Nikitin, S. Lam, and K.V.S. Rao. Low cost silver Ink RFID tag antennas: W.Everett, IEEE Antennas and Propagation Symposium, Washington DC: IEEE, 2005. 253~254
    [16] Q. Jiang, HX. Shi, M. Zhao. Melting thermodynamics of inorganic Nan crystals. Chemical Physics, 1999, 11: 2176~2180
    [17]曹茂盛,关长斌,徐甲强.纳米材料导论.第一版.哈尔滨:哈尔滨工业大学出版社, 2001: 24~39
    [18]深圳市尊业纳米材料有限公司.纳米银粉, 2005-3-10. http://www.junyenano.com/chn/product/ag.html, 2009-4-3
    [19]段春英,周静芳.银纳米颗粒的制备及表征.化学研究, 2003, 14(3): 18~20
    [20]沈剑沧.银纳米颗粒的合成与表面增强拉曼光谱.兰州大学学报, 2007, 43(5): 139~141
    [21]郑化桂,曾京辉,梁家和.溶剂化团簇银的制备及表征.物理化学学报, 1999, 15(11): 980~955
    [22] M.J. Hostetler, J.E. Wingate, CJ. Zhong et al. Alkanethiolate Gold Cluster Molecules with Core Diameters from 1.5 to 5.2 nm: Core and Monolayer Properties as a Function of Core Size. Langmuir, 1998, 14: 17~30
    [23]武汉沪正纳米科技有限公司.纳米银凝胶, 2004-5-7. http://www.nanohb.com/cp.asp?id=80, 2009-4-3
    [24] S. Park, D. Seo, J. Lee. Preparation of Pb-free silver paste containing Nan particles. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2008, 313: 197~201
    [25] HG. Jiang, K-S. Moon, Y. Li. Surface Functionalized Silver Nano- particles for Ultra high Conductive Polymer Composites. Chem. Mater, 2006, 18: 2969~2973
    [26] D. Wakuda, K-S. Kim, K. Suganuma. Room temperature sintering of Ag Nan particles by drying solvent. Script Materially, 2008, 59: 649~652
    [27] J.G. Bai, J.N. Calata, and G-Q. Lu. Processing and Characterization of Nan silver Pastes for Die-Attaching Sic Devices. IEEE Transactions on Electronics Packaging Manufacturing, 2007, 30( 4): 241~244
    [28] A. Kamyshny, M.B. Moshe, S. Aviezer. Ink-Jet printing of metallic Nan particles and micro emulsions. Micromole Rapid Common, 2005, 26: 281~288
    [29] K. Murata, J. Matsumoto, A. Tezuka. Super-fine ink-jet printing: toward the minimal manufacturing system. Microsystems Techno, 2005, 12: 2~7
    [30] Z. Radivojevic, K. Andersson, K. Hashizume. Optimized Curing of Silver Ink Jet Based Printed Traces. THERMINIC. 2006, September: 27~29
    [31] M. Carter, J. Colvin. Characterization of conductive inks deposited with Mask less Musicale Material Deposition. Dr. James, W. Sears. TMS 2006 Annual Meeting. San Antonio, TX, USA: MAML SDSM&T, 2006. 12~16
    [32]海隐化学科技株式会社.有机银化合物及其制备方法、有机银墨水及其直接布线方法.中国,发明专利, CN 1767951A, 2006. 2~16
    [33] EXAX株式会社.用于形成导电团的银有机溶胶墨水.中国,发明专利, CN 101258449A, 2008. 1~17
    [34] Cima NanoTech. Inkjet, 2005-6-10. http://www.cimananotech.com, 2009-4-4
    [35] Harima. NP Series Nano Paste: Metal paste For Fine Pattern Formation, 2007-8-6. http://www.harima.co.jp/en/products/electronics/products_en.html#cpseries, 2009-4-4
    [36]谢燕青.纳米银导电浆料制备及微笔直写工艺研究: [硕士学位论文].武汉:华中科技大学图书馆,2008.
    [37]李红,安庆锋.微乳液法制备纳米材料的研究进展.纳米技术与精密工程, 2007, 5(1): 23~24
    [38]李德刚,陈慎豪,赵世勇等.相转移法制备银纳米粒子单层膜.化学学报, 2002, 60(3): 408~412
    [39]疼乐金,钟学明,赵祎.还原保护法制备纳米银粉及其表征.广东化工, 2008, 35(10): 35~37
    [40]李先学,韩跃新,印万忠.纳米银粉制备过程中表面表面活性剂的作用研究.矿冶, 2004, 13(3): 51~53
    [41]程敬泉.银、金纳米材料的超生化学、电化学制备与表征: [博士论文].天津:天津大学图书馆, 2005
    [42]何声太,姚建年,汪裕萍等,银纳米粒子自组织二维有序阵列,物理学报, 2001, 50(4): 765~767
    [43]钱逢麟,竺玉书.涂料助剂.北京:化学工业出版社, 1990. 189~228
    [44]周良文.微笔直写悬空微桥结构的关键技术研究: [硕士学位论文].武汉:华中科技大学图书馆,2008
    [45]冯绪胜,刘洪国,郝京诚等.胶体化学.北京:化学工业出版社, 2005. 65~69

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700