双壁纳米碳管的电弧法制备、表征及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
双壁纳米碳管是由两层石墨烯片卷曲形成的无缝中空纳米管,其结构介于单壁和多壁纳米碳管之间,因此它兼具单壁和多壁纳米碳管较多的性能。双壁纳米碳管的制备是研究其特殊性能与应用的必要基础条件。本文研究了直流电弧法制备双壁纳米碳管的工艺过程和双壁纳米碳管的化学纯化方法,用透射电子显微镜(TEM)、热重分析仪(TG)和拉曼光谱仪(Raman spectrum)等对双壁纳米碳管进行了结构表征和纯度分析;同时对双壁纳米碳管在加氢催化、直接甲醇燃料电池及纳米复合材料领域的应用进行了探索。具体内容包括以下几个方面:
     (1)以廉价的无烟煤为碳源,通过干混法添加催化剂制成了煤基炭棒,以这种炭棒为直流电弧炉阳极,考察了不同催化剂和气氛条件对制备双壁纳米碳管的影响,研究结果表明单质铁催化剂和含氢气氛有利于制备高质量的双壁纳米碳管。利用液相浸渍法制备了催化剂尺寸较小的煤基炭棒,研究了以这种炭棒为阳极,氢气、氩气及它们的混合气氛对电弧放电制备双壁纳米碳管的影响,结果说明:在Ar和H_2(300 Torr,V_(Ar):V_(H2)=2:1)的混合气氛中,得到的双壁纳米碳管具有相对较高的纯度和产量;以铁为催化剂的产量比钴或镍的高。用富勒烯残余烟灰为原料,分别使用干混法和液相浸渍法制备了富勒烯烟灰基炭棒,并以这两种富勒烯烟灰基炭棒为阳极,在Ar和H_2(300 Torr,V_(Ar):V_(H2)=2:1)的混合气氛中,制备得到高质量的双壁纳米碳管。
     (2)用化学纯化法对双壁纳米碳管粗产品进行纯化,得到了纯度较高的双壁纳米碳管。发现用浓硫酸和浓硝酸的混和溶液可有效去除以煤为原料制得的双壁纳米碳管中的金属杂质,通过进一步的空气氧化可以获得纯度超过90wt.%的双壁纳米碳管。经过两次的空气氧化与浓盐酸的处理过程,以富勒烯残余烟灰为原料制得的双壁纳米碳管中大量的金属和绝大部分炭杂质被除去,最终可获得纯度超过80wt.%的双壁纳米碳管。在纯化过程中,随着双壁纳米碳管纯度的增加,产品的比表面积和中孔孔容均有较大的提高。
     (3)硝基氯苯催化加氢反应结果表明,双壁纳米碳管内的铁、钴或镍颗粒具有一定的加氢活性,可作为磁性分离催化剂使用。以双壁纳米碳管为载体浸渍担载钌后,加氢催化性能得到了较大的提高,且随着担载量的增加和反应温度的升高而提高。研究了纯双壁纳米碳管和其他炭材料浸渍担载钌催化剂时的差别,并分别考察了它们的催化加氢活性,结果表明:纯双壁纳米碳管表面缺乏更多的担载位时,钌颗粒容易发生聚集和长大,因此未表现出较好的活性。
     以担载铂钌双金属颗粒的纯双壁纳米碳管为直接甲醇燃料电池的阳极催化剂,循环伏安曲线和单电池性能的测试结果表明,双壁纳米碳管是一种性能优异的直接甲醇燃料电池阳极催化剂载体。
     通过向双壁纳米碳管内填充AgCl纳米线,制备了大量双壁纳米碳管与AgCl的纳米复合材料,拉曼表征结果表明AgCl纳米线与双壁纳米碳管的内管间存在着电子转移。
     (4)除双壁纳米碳管外,本文还研究了其他新型炭材料的电弧制备工艺,发现采用不同的工艺条件可以分别获得单壁纳米碳管、填充碳管或Y-型碳管。
Double-walled carbon nanotubes (DWCNTs) have many advantages over single-walledcarbon nanotubes (SWCNTs) and multi-walled carbon nanotubes (MWCNTs). To study theproperties and application of DWCNTs deeply and thoroughly, controllable synthesis ofDWCNTs must be addressed. In this thesis, the fabrication of DWCNTs by arc-discharge isstudied, and the potential applications in the field of hydrogenation, direct methanol fuel celland nanocomposites have been explored.
     One Chinese anthracite coal is used as carbon source that was mixed with catalystpowder and coal tar directly to prepare electrode rods. Synthesis of DWCNTs fromcoal-derived anodes with iron, alloy and ferreous salts as catalyst is studied in differentatmosphere. The results indicate that iron catalysts and hydrogen atmosphere are importantfactors for the production of DWCNTs.
     The coal-derived anode with iron nanoparticles can be prepared by liquid impregnationmethod. The effects of atmosphere on fabrication of DWCNTs are studied. The results showthat high quality DWCNTs can be obtained in large scale when the mixture of argon andhydrogen (300 Torr, V_(Ar):V_(H2)=2:1) is used in the process. The yield of DWCNTs fromcoal-derived anode using iron as catalyst is higher than that using cobalt or nickel as catalyst.
     Fullerene waste soot (FWS) was used to make anodes with Fe_2(SO_4)_3 and FeCl_2 ascatalyst precursor, and the anodes were used to produce DWCNTs. In the mixture of argonand hydrogen (300 Torr, V_(Ar):V_(H2)=2:1), high quality DWCNTs can be fabricated in large scalefrom these FWS-derived anodes.
     The as-synthesized DWCNTs from coal were purified with a mixture of concentratedsulfuric and nitric acids (3:1, 98wt.% and 70wt.%, respectively) which removes most ironparticles in high efficiency. After oxidation by air and being washed with HCl solution, thepurity of DWCNTs can reach ca.90wt.%.
     Most impurity in the as-synthesized DWCNTs from FWS can be removed by two stepspurification of being oxidized by air and washed with HCl acid. After purification process, thepurity of DWCNTs can reach ca.80wt.%.
     Raw DWCNTs from coal with iron, nickel or cobalt as catalyst show activity ofhydrogenation o-chloronitrobenzene (o-CNB). Meanwhile, the magnetic property of metalnanoparticles encapsulated with carbon shell in the raw DWCNTs is favorable for isolating the catalyst from reaction system. The conversion will increase evidently after the rawDWCNTs supported with Ru nanoparticles. As loading weight or reaction temperatureincrease, the conversion will be improved evidently.
     The properties of purified DWCNTs and other carbon materials supported with Runanoparticles behaving in hydrogenation o-CNB are researched. As a result, mostmonodisperse Ru particles on the purified DWCNTs is less than 3 nm, but conversion ofo-CNB is not high for the reason that there are still some large assemble particles in thecatalyst.
     Results of cyclic voltammetry and single cell performance indicate that high purityDWCNTs loading Pt and Ru may be a good anode catalyst for direct methanol fuel cells.
     The nanocomposites of DWCNTs filled with AgCl nanowires were synthesized bycapillarity in nitrogen atmosphere. Raman spectroscopy is used to characterize the product,and the Raman results indicate that in the filled sample the charge transfer occurs betweenAgCl nanowires and inner tube of DWCNT evidently.
     Furthermore, SWCNTs, carbon tubes filled with foreign material and Y-junction carbontubes synthesized by arc-discharge in suitable conditions are also studied in the paper.
引文
[1] Hebard A F, Rosseinsky M J. Superconductivity at 18K in potassium-doped C60. Nature. 1991, 350: 600-601.
    [2] Smilowitz L, Sariciftci N S, Wu R et al. Photoexcitation spectroscopy of conducting-polymer-C_(60)composites: Photoinduced electron transfer. Phys. Rev. B. 1993, 47: 13835-13842.
    [3] Blau W J, Byrne H J, Cardin D J. Large infrared nonlinear optical response of C_(60). Phys. Rev. Lett.. 1991, 67: 1423-1425.
    [4] Regueiro M N, Monceau P. Crushing C60 to diamond at room temperature. Nature, 1992, 355: 337.
    [5] Allemand P M, Khemani K, Koch A S et al. Molecular soft ferromagnetism in a fullerene C60. Science. 1991, 253: 301-303.
    [6] Saito R, Dresselhaus G, Dresselhaus M S. Physical properties of carbon nanotubes. London: Imperial College Pr., 1998.
    [7] Iijima S. Helical microtubules of graphitic carbon. Nature. 1991, 354(6348): 56-58.
    [8] Kiang C H, Endo M, Ajayan P M et al. Size effects in carbon nanotubes. Phys. Rev. Lett.. 1998, 81: 1869-1872.
    [9] Qiu J S, Wang Z Y, Zhao Z B et al. Synthesis of double-walled carbon nanotubes from coal in hydrogen-free.atmosphere. Fuel. 2007, 86: 282-286.
    [10] Odom T W, nafner J H, hieber C M. Scanning probe microscopy studies of carbon nanotubes. Topics Appl. Phys.. 2001, 80: 173-211.
    [11] Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature. 1993, 363: 603-605.
    [12] Henning T, Salama F. Carbon in the universe. Science. 1998, 282: 2204-2210.
    [13] Dresselhaus M S, Dresselhaus G, Saito R. Physics of carbon nanotubes. Carbon. 1995, 33: 883-891.
    [14] 成会明.纳米碳管制备、结构、物性及应用.北京:化学工业出版社,2002.
    [15] Tanaka K, Aoki H, Ago H. Interlayer interaction of two graphene sheets as a model of double-layer carbon nanotubes. Carbon. 1997, 35: 121-125.
    [16] Charlier A, McRae E, Heyd R et al. Classification for double-walled carbon nanotubes. Carbon. 1999, 37: 1779-1783.
    [17] Tuinstra F, Koenig J L. Raman spectrum of graphite. J. Chem. Phys.. 1970, 53: 1126-1130.
    [18] Dresselhaus M S, Eklund P C. Phonons in carbon nanotubes. Adv. Phys.. 2000, 49: 705-814.
    [19] Henrard L, Herna'ndez E, Bernier P, et al. van der Waals interaction in nanotube bundles: Consequences on vibrational modes. Phys. Review. B. 1999, 60: R8521-R8524.
    [20] Alvarez L, Righi A, Guillard T, et al. Resonant Raman study of the structure and electronic properties of single-wall carbon nanotubes. Chem. Phys. Lett.. 2000, 316: 186-190.
    
    [21] Jorio A, Souza F A G, Dresselhaus G, et al. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B. 2002, 65: 155412(1-9).
    
    [22] Saito R, Matsuo R, Kimura T, et al. Anomalous potential barrier of double-wall carbon nanotube. Chem. Phys. Lett.. 2001, 348: 187-193.
    
    [23] Yakobson B I, Smalley R E. Fullerene nanotubes: C1,000,000 and beyond. American Scientist. 1997, 85: 324-337.
    
    [24] Stone A J, wales D J. Theoretical studies of icosahedral C_(60) and some related species. Chem. Phys. Lett.. 1986, 128: 501-503.
    
    [25] Kuwahara S, Akita S, Shirakihara M, Sugai T et al. Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chem. Phys. Lett.. 2006, 429: 581-585.
    
    [26] Ma R Z, Wu J, Wei B Q et al. Processing and properties of carbon nanotubes-nano-SiC ceramic. J Mater. Sci.. 1998, 33: 5243-5246.
    
    [27] Dresselhaus M S, Dresselhaus, Saito R et al. Raman spectroscopy of carbon nanotubes. Phys. Rep.. 2005, 409: 47-99.
    
    [28] Saito R, Dresselhaus G, Dresselhaus M S. Trigonal warping effect of carbon nanotubes. Phys. Rev. B. 2000, 61: 2981-2990.
    
    [29] Brown S D M, Corio P, Marucci A et al. Anti-Stokes Raman spectra of single-walled carbon nanotubes. Phys. Rev. B. 2000, 61: R5137-R5140.
    
    [30] Wildoer J W G, Venema L C, Rinzler A G et al. Electronic structure of atomically resolved carbon nanotubes. Nature. 1998, 391: 59-62.
    
    [31] Odom T W, Huang J L, Kim P et al. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature. 1998, 391: 62-64.
    
    [32] Frank S, Poncharal P, Wang Z L et al. Carbon nanotube quantum resistors. Science. 1998, 280: 1744-1746.
    
    [33] Ruzicka B, Degiorgi L, Gaal R et al. Optical and dc conductivity study of potassium-doped single-walled carbon nanotube films. Phys. Rev. B. 2000, 61: R2468-R2471.
    
    [34] Jo C, Kim C, Lee Y H. Electronic properties of K-doped single-wall carbon nanotube bundles. Phys. Rev. B. 2002, 65: 035420(1-5).
    
    [35] Baierle R J, Fagan S B, Mota R et al. Electronic and structural properties of silicon-doped carbon nanotubes. Phys. Rev. B. 2001, 64: 085413(1-4).
    
    [36] Liu K, Avouris P, Martel R et al. Electrical transport in doped multiwalled carbon nanotubes. Phys. Rev. B. 2001, 63: 161404(1-4).
    [37] Kong J, Zhou C W, Yenilmez E et al. Alkaline metal-doped n-type semiconduting nanotubes as quantum dots. Appl. Phys. Lett.. 2000, 77: 3977-3979.
    [38] Cambedouzou J, Sauvajol J L, Rahmani A et al. Raman spectroscopy of iodine-doped double-walled carbon nanotubes. Phys. Rev. B. 2004, 69: 235422(1-6).
    [39] Li Y F, Hatakeyama R, Kaneko T et al. Electronic transport properties of Cs-encapsulated double-walled carbon nanotubes. Appl. Phys. Lett.. 2006, 89: 093110(1-3).
    [40] Yang Q H, Hou P X, Bai S et al. Adsorption and capillarity of nitrogen in aggregated multi-walled carbon nanotubes. Chem. Phys. Lett.. 2001, 345: 18-24.
    [41] 杨全红,刘畅,刘敏等.高储氢容量单壁纳米碳管的孔隙结构.中国科学(E辑).2003,33:973-978.
    [42] Inoue S, Ichikuni N, Suzuki T et al. Capillary condensation of N_2 on multiwall carbon nanotubes. J Phys. Chem. B. 1998, 102: 4689-4692.
    [43] Eswaramoorthy M, Sen R, Rao C N R. A study of micropores in single-walled carbon nanotubes by the adsorption of gases and vapors. Chem. Phys. Lett.. 1999, 304: 207-210.
    [44] Dillon A C, Jones K M. Storage of hydrogen in single-walled carbon nanotubes. Nature. 1997, 386: 377-379.
    [45] Liu C, Fan Y Y, Liu M et al. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science. 1999, 286: 1127-1129.
    [46] Park C, Anderson P E, Chambers A et al. Further studies of the interaction of hydrogen with graphite nanofibers. J Phys. Chem. B. 1999, 103: 10572-10581.
    [47] Chambers A, Park C, Terry R et al. hydrogen storage in graphite nanofibers. J Phys. Chem. B. 1998, 102: 4253-4256.
    [48] Chen Y, Shaw D T, Bai X D et al. Hydrogen storage in aligned carbon nanotubes. Appl. Phys. Lett.. 2001, 78: 2128-2130.
    [49] Ye Y, Ahn C C, Witham C et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett.. 1999, 74: 2307-2309.
    [50] Yang R T. Hydrogen storage by alkali-doped carbon nanotubes-revisited. Carbon. 2000, 38: 623-626.
    [51] Miyamoto J, Hattori Y, Noguchi D et al. Efficient H2 Adsorption by Nanopores of High-Purity Double-Walled Carbon Nanotubes. J Am. Chem. Soc.. 2006, 128: 12636-12637.
    [52] Mestl G, Maksimova N I, Keller N, et al. Carbon Nanofilaments in Heterogeneous Catalysis: An Industrial Application for New Carbon Materials. Angew. Chem. Int. Ed.. 2001, 40: 2066-2068.
    [53] Pereira M F R, Figueiredo J L, Orfao J J M, et al. Catalytic activity of carbon nanotubes in the oxidative dehydrogenation of ethylbenzene. Carbon. 2004, 42: 2807-2813.
    [54] Zhao Y, Li C H, Yu Z X, et al. Effect of microstructures of Pt catalysts supported on carbon nanotubes (CNTs) and activated carbon (AC) for nitrobenzene hydrogenation. Materials Chemistry and Physics. 2007, 103: 225-229.
    [55] Planeix J M, Coustel N, Coq B, et al. Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc.. 1994, 116: 7935-7936.
    [56] 吕德义,徐铸德,徐丽萍,等.碳纳米管作为载体在邻硝基甲苯多相催化加氢中的应用.浙江工业大学学报.2002,30:464-466.
    [57] Yen C H, Shimizu K, Lin Y Y et al. Chemical fluid deposition of bimetallic nanoparticles on multiwalled carbon nanotuebs for direct methanol fuel cell application. Energy&Fuel. 2007, 21: 2268-2271.
    [58] Konganand A, Vinodgopal K, Kuwabata S, et al. Highly dispersed Pt catalysts on single-walled carbon nanotubes and their role in methanol oxidation. J. Phys. Chem. B. 2006, 110: 16185-16188.
    [59] Li L, Xing Y C. Pt-Ru Nanoparticles supported on carbon nanotubes as methanol fuel cell catalysts. J. Phys. Chem. C. 2007, 111: 2803-2808.
    [60] Li W Z, Liang C H, Qiu J S, et al. Carbon nanotubes as support for cathode catalyst of a direct methanol fuel cell. Carbon. 2002, 40: 787-803.
    [61] Li W Z, Liang C H, Zhou W J, et al. Preparation and characterization of Multi-Wall Carbon Nanotubes supported platinum for cathode catalysts of direct mehtanol fuel cells. J. Phys. Chem. B. 2003, 107: 6292-6299.
    [62] Wu G, Xu B Q. Carbon nanotube supported Pt electrodes for methanol oxidation: A comparison between multi-and single-walled carbon nanotubes. Journal of Power Sources. 2007 in pressed.
    [63] Li W Z, Wang X, Chen Z W et al. Pt-Ru Supported on double-walled carbon nanotubes as high-performance anode catalysts for direct methanol fuel cells. J. Phys. Chem. B.. 2006, 110: 15353-15358.
    [64] Zhang J, Comotti M, Schuth F et al. Commercial Fe-or Co-containing carbon nanotubes as catalysts for NH_3 decomposition. Chem. Commun.. 2007, 1916-1918.
    [65] Ando Y, Zhao Z L, Sugai T et al. Growing carbon nanotubes. Materialstoday. 2004,7: 22-29.
    [66] Amelinckx S, Zhang X B, Bernaerts D et al. A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science. 1994, 265: 635-639.
    [67] Fan S S, Chapline M G, Franklin N R et al. Self-oriented regular arrays of carbon nanotubes and their field emission properties. Science. 1999, 283: 512-514.
    [68] Yacaman M J, Yoshida M M, Rendon L et al. Catalytic growth of carbon microtubules with fullerene structure. Appl. Phys. Lett.. 1993, 62: 202-204.
    [69] Hou P X, Bai S, Yang Q Het al. Multi-step purification of carbon nanotubes. Carbon. 2002, 40: 81-85.
    [70] 侯鹏翔,白朔,范月英等.气体流动状态对纳米碳纤维制备的影响.新型炭材料.2000,4:17-20.
    [71] Ci L J, Zhu H W, Wei B Q et al. Phosphorus-a new element for promoting growth of carbon filaments by the floating catalyst method. Carbon. 1999, 37: 1652-1654.
    [72] 朱宏伟,慈立杰,梁吉等.浮游催化法半连续制取碳纳米管的研究.新型炭材料.2000,1:48-51.
    [73] Iijima S, Ichihashi T. Single-shell carbon nanotubules of 1-nm diameter. Nature. 1993, 363: 603-605.
    [74] Bethune D S, Kiang C H. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature. 1993, 363: 605-607.
    [75] Journet C, Maser W K, Bernier Pet al. Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature. 1997, 388: 756-758.
    [76] Shi Z J, Lian Y F, Liao F H et al. Purification of single-wall carbon nanotubes. Solid State Comm.. 1999, 112: 35-37.
    [77] Liu C, Cong H T, Li F et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon. 1999, 37: 1865-1868.
    [78] Cheng H M, Li F, Su Get al. Large-scale and low-cost synthesis of single-walled carbon nanotubes by the catalytic pyrolysis of hydrocarbons. Appl. Phys. Lett.. 1998, 72: 3282-3284.
    [79] Kong J, Cassell A M, Dai H J. Chemical vapor deposition of methane for single-walled carbon nanotubes. Chem. Phys. Lett.. 1998, 292: 567-574.
    [80] Brotons V, Coq B, Planeix J M. Catalytic influence of bimetallic phases for the synthesis single-walled carbon nanotubes. J Mole. Cata. A. 1997, 116: 397-403.
    [81] Kitiyanan B, Alvarez W E. Harwell J H et al. Controlled production of single-wall nanotubes by catalytic decomposition of CO on bimetallic Co-Mo catalysts. Chem. Phys. Lett.. 2000, 317: 497-503.
    [82] Fu Q, Huang S M, Liu j. Chemical vapor depositions of single-walled carbon nanotubes catalyzed by uniform Fe_2O_3 nanoclusters synthesized using diblock copolymer micells. J Phys. Chem. B. 2004, 108: 6124-6129.
    [83] Huang S M, Fu Q, An L et al. Growth of aligned SWNT arrays from water-soluble molecular clusters for nanotube device fabrication. Phys. Chem. Chem. Phys.. 2004, 6: 1077-1079.
    [84] Zhou W W, Han Z Y, Wang J Y et al. Copper catalyzing growth of single-walled carbon nanotubes on substrates. Nano Lett.. 2006, 6: 2987-2990.
    [85] Bhaviripudi S, Mile E, Steiner S A et al. CVD synthesis of single-walled carbon nanotubes from gold nanoparticle catalysts. J Am. Chem. Soc. 2007, 129: 1516-1517.
    [86] Takagi D, Homma Y, Hibino H et al. Single-walled carbon nanotube growth from highly activated metal nanoparticles. Nano Lett.. 2006, 6: 2642-2645.
    
    [87] Hata K, Futaba D N, Mizuno K et al. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science. 2004, 306: 1362-1364.
    
    [88] Guo T, Nikolaev P, Rinzler a G et al. Self-assembly of tubular fullerenes. J Phys. Chem. B. 27: 10694-10697.
    
    [89] Yudasaka M, Komatsu T, Ichihashi T et al. Single-wall carbon nanotube formation by laser ablation using couble-targets of carbon and metal. Chem. Phys. Lett.. 1997,278: 102-106.
    
    [90] Hutchison J L, Kiselev N A, Krinichnaya E P et al. Double-walled carbon nanotubes fabricated by a hudrogen arc discharge method. Carbon. 2001, 39: 761-770.
    
    [91] Saito Y, Nakahira T, Uemura S. Growth conditions of double-walled carbon nanotubes in arc discharge. J Phys. Chem. B. 2003, 107: 931-934.
    
    [92] Huang H, Kajiura H, Tsutsui S et al. High-quality double-walled carbon nanotube super bundles grown in a hydrogen-free atmosphere. J phys. Chem. B. 2003, 107: 8794-8798.
    
    [93] Qiu H X, Shi Z J, Guan L H et al. High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter. Carbon. 2006, 44: 516-521.
    
    [94] Yang Q H, Tong Y, Liu C et al. Some indications of the formation mechanism for double-walled carbon nanotubesby hydrogen-arc discharge. Carbon. 2005, 2027-2030.
    
    [95] Li L X, Li F, Liu C et al. Synthesis and characterization of double-walled carbon nanotubes from multi-walled carbon nanotubes by hydrogen-arc discharge. Carbon. 2005, 43: 623-629.
    
    [96] Wei J Q, Jiang B, Wu D H et al. Large-scale synthesis of long double-walled carbon nanotubes. J phys. Chem. B. 2004, 108: 8844-8847.
    
    [97] Ren W C, Li F, Chen J et al. Morphology, diameter distribution and Raman scattering measurements of double-walled carbon nanotubes synthesized by catalytic decomposition of methane. Chem. Phys. Lett.. 2002, 359: 196-202.
    
    [98] Lyu S C, Lee T J, Yang C W et al. Synthesis and characterization of high-quality double-walled carbon nanotubes by catalytic decomposition of alcohol. Chem. Comm.. 2003, 12: 1404-1405.
    
    [99] Gunjishima I, Inoue T, Yamamuro S et al. Synthesis of vertically aligned, double-walled carbon nanotubes from highly active Fe-V-0 nanoparicles. Carbon. 2007, in pressed.
    
    [100] Hiraoka T, Yamada T, Hata K et al. Synthesis of single- and double-walled carbon nanotube forests on conduction metal foils. J Am. Chem. Soc. 2006, 128: 13338-13339.
    
    [101] Smith B W, Monthioux M, Luzzi D E. Carbon nanotube encapsulated fullerenes:a unique class of hybrid materials. Chem. Phys. Lett.. 1999, 315: 31-36.
    [102] Bandow S, Takizawa M, Hirahara K et al. Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett.. 2001, 337: 48-54.
    
    [103] Smith B W, Luzzi D E. Formation mechanism of fullerene peapods and coaxial tubes:a path to large scale synthesis. Chem. Phys. Lett.. 2000, 321: 169-174.
    
    [104] Hirahara K, Suenaga K, Bandow S et al. Phys. Rev. Lett.. One-dimentional metallofullerene crystal generated inside single-walled carbon nanotubes. 2000, 85: 5384-5387.
    
    [105] Biro L P, Horvath Z E, Mark G I et al. Carbon nanotube Y junctions:growth and properties. Diam. Relat. Mater.. 2004, 13: 241-249.
    
    [106] Chico L, Crespi V H, Benedict L X et al. Pure carbon nanoscale devices:Nanotube heterojunctions. Phys. Rev. Lett.. 1996, 76: 971-974.
    
    [107] Meunier V, Nardelli M B, Bernholc et al. Intrinsic electron transport properties of carbon nanotube Y-junctions. Appl. Phys. Lett.. 2002, 81: 5234-5236.
    
    [108] Zhou D, Seraphin S. Complex branching phenomena in the growth of carbon nanotubes. Chem. Phys. Lett.. 1995, 238: 2686-289.
    
    [109] Osvath Z, Koos A A, Horvath Z E et al. Arc-grown Y-branched carbon nanotubes observed by scanning tunneling microscopy (STM). Chem. Phys. Lett.. 2002, 365: 338-342.
    
    [110] Wang Z Y, Zhao Z B, Qiu J S. Synthesis of branched carbon nanotubes from coal. Carbon. 2006, 44: 1321-1324.
    
    [111] Satishkumar B C, Thomas P J, Govindaraj A et al. Y-junction carbon nanotubes. Appl: Phys. Lett.. 2000, 77: 2530-2532.
    
    [112] Gothard N, Daraio C, Gaillard J et al. Controlled growth of Y-junction nanotubes using Ti-doped vapor catalyst. Nano Lett.. 2004, 4: 213-217.
    
    [113] Li W Z, Wen J G, Ren Z F. Straight carbon nanotube Y junctions. Appl. Phys. Lett.. 2001, 79: 1879-1881.
    
    [114] Choi Y C, Choi W. Synthesis of Y-junction single-wall carbon nanotubes. Carbon. 2005, 43: 2737-2741.
    
    [115] Li J, Papadopoulos C, Xu J. Growing Y-junction carbon nanotubes. Nature. 1999, 402: 253-254.
    
    [116] Kong L B. Synthesis of Y-junction carbon nanotubes within porous anodic aluminum oxide template. Solid State Comm.. 2005, 133: 527-529.
    
    [117] Sui Y C, Leon J A G, Bermudez A et al. Synthesis of multi branched carbon nanotubes in porous anodic aluminum oxide template. Carbon. 2001, 39: 1709-1715.
    
    [118] Ruoff R S, Lorents D C, Chan B et al. Single crystal metals encapsulated in carbon nanoparticles. Science. 1993, 259: 346-348.
    [119] Liu M Q, Cowley L M. Encapsulation of manganese carbides within carbon nanotubes and nanoparticles. Carbon. 1995, 33: 749-756.
    [120] Hernadi K, Fonseca h, Nagy J B et al. Fe-catalyzed carbon nanotube formation. Carbon. 1996, 34: 1249-1257.
    [121] Cui S, Lu C Z, Qiao Y L et al. Large-scale preparation of carbon nanotubes by nickel catalyzed decomposition of methane at 600℃. Carbon. 1999, 37: 2070-2073.
    [122] Matsui K, Pradhan B K, Kyotani T et al. Formation of nickel oxide nanoribbons in the cavity of carbon nanotubes. J Phys. Chem. B. 2001, 105: 5682-5688.
    [123] Matsui K, Kyotani T, Tomita A. Hydrothermal synthesis of single-crystal Ni(OH)_2 nanorods in a carbon-coated anodic alumina film. Adv. Mater.. 2002, 14: 1216-1219.
    [124] 张滨,刘畅,成会明 等.纳米碳管内包覆外来物质的研究进展.新型炭材料.2003,18:174-180.
    [125] 王治宇,赵宗彬,邱介山.碳纳米管填充技术研究.化学进展.2006,18:563-572.
    [126] Chen Y K, Chu A, Cook J et al. Synthesis of carbon nanotubes containing metal oxides and metals of the d-block and f-block transition metals and related studies. J Mater. Chem.. 1997, 7: 545-549.
    [127] Dujardin E, Ebbesen T W, Hiura H et al. Capillarity and wetting of carbon nanotubes. Science. 1994, 265:1850-1852.
    [128] Bandow S, Rao A M, Williams K A et al. Purification of single-wall carbon nanotubes by microfiltration. J Phys. Chem. B. 1997, 101: 8839-8842.
    [129] Shelimov K B, Esenaliev R O, Rinzler A G et al. Purification of single-wall carbon nanotubes by ultrasonically assisted filtration. Chem. Phys. Lett.. 1998, 282: 429-434.
    [130] 朱春野,谢自立,郭坤敏等.碳纳米管纯化研究进展.化工进展.2003,22:482-485.
    [131] Ebbesen T W, Ajayan P M, Hiura H et al. Purification of nanotubes. Nature. 1994,367: 519.
    [132] Tsang S C, Harris P J F, Green M L H. Thinning and opening of carbon nanotubes by oxidation using carbon dioxide. Nature. 362: 520-522.
    [133] Vivekchand S R C, Jayakanth R, Govindaraj A et al. The problem of purifying single-walled carbon nanotubes. Small. 2005, 1: 920-923.
    [134] Hou P X, Liu C, Tong Y et al. Purification of single-walled carbon nanotubes synthesized by the hydrogen arc-discharge method. J Mater. Res.. 2001, 16:2526-2529.
    [135] Itkis M E, Perea D E, Niyogi S et al. Purity evaluation of as-prepared single-walled carbon nanotube soot by use of solution-phase near-IR spectroscopy. Nano Lett.. 2003, 3: 309-314.
    [136] 李永峰.煤基纳米和微米炭材料的电弧法制备研究:博士学位论文.大连:大连理工大学.2004.
    [137] Saito R, Dresselhaus G, Dresselhaus M S. Electronic structure of double-layer grapheme tubules. J. Appl. Phys.. 1993, 73: 494-500.
    [138] 赵宗彬,邱介山,王同华,等.以煤为碳源直流电弧法制备单壁纳米碳管绳.新型炭材料.2006.21:19-23.
    [139] Qiu J S, Li Y F, Wang Y P et al. Nigh-purity single-wall carbon nanotubes synthesized from coal by arc discharge. Carbon. 2003, 41: 2170-2173.
    [140] Qiu J S, Zhang F, Zhou Y et al. Carbon nanomaterials from eleven caking coals. Fuel. 2002, 81: 1509-1514.
    [141] Chen Z G, Li F, Ren W C et al. Double-walled carbon nanotubes synthesized using carbon black as the dot carbon source. Nanotechnology. 2006, 17: 3100-3104.
    [142] 周颖,邱介山,周杰等.用富勒烯残余烟灰制备炭分离膜的初步研究.新型炭材料.1999,14:42-47.
    [143] Zhang Q L, O' Brien S C, Heath J R et al. Reactivity of large carbon clusters: spheroidal carbon shells and their possible relevance to the formation and morphology of soot. J. Phys. Chem. 1986: 90: 525-528.
    [144] Kroto H W, Allaf A W, galm S P. C_(60): buckminsterfullerene. Chem. Rev. 1991, 91: 1213-1235.
    [145] Kroto H W. Fullerene cage clusters the key to the structure of solid carbon. J. Chem. Soc. Faraday Trans. 1990, 86: 2465-2468.
    [146] Harris P J F, Tsang S C, Claridge J B. High-resolution electron microscopy studies of a microporous carbon produced by Arc-evaporation. J. Chem. Soc. Faraday Trans. 1994, 90: 2799-2802.
    [147] 任文才.纳米碳管的可控制备、生长机理及物性研究:博士学位论文.沈阳:中国科学院金属研究所.2005.
    [148] Guo Y, Okazaki T, Kadoya T et al. Spectroscopic study during single-wall carbon nanotubes production by Ar, H_2, and H_2-Ar DC arc discharge. Diam. Relat. Mater.. 2005,14: 887-890.
    [149] Gorbunov A, Jost O, Pompe W et al. Solid-liquid-solid growth mechanism of single-wall carbon nanotubes. Carbon. 2002, 40: 113-118.
    [150] Harris P J F. Solid state growth mechanisms for carbon nanotubes. Carbon. 2007, 45: 229-239.
    [151] Gavillet J, Loiseau A, Journet C et al. Root-growth mechanism for single-wall carbon nanotubes. Phys. Rev. Lett.. 2001, 87: 275504(1-4).
    [152] 钱湛芬.炭素工艺学.北京:冶金工业出版社,2001.p50-52.
    [153] 张继周.煤结构模型的研究与展望.能源技术与管理.2005,5:37-38.
    [154] Pang L S K, Wilson M A. Nanotubes from coal. Energy & Fuels. 1993, 7: 436-437.
    [155] Pang L S K, Prochazka L, Quezada R A et al. Competitive reactions during plasma arcing of carbonaceous materials. Energy & Fuels. 1995, 9: 38-44.
    [156] Pang L S K, Vassallo A M, Wilson M A. Fullerenes from coal: A self-consistent preparation and purification process. Energy & Fuels. 1992, 6: 176-179.
    [157] Qiu J S, Zhou Y, Yang Z G et al. Preparation of fullerenes using carbon rods manufactured from Chinese hard coals. Fuel. 2000, 79: 1303-1308.
    [158] Zhao X L, Inoue S, Jinno M et al. Macroscopic oriented web of single-wall carbon nanotubes. Chem. Phys. Lett.. 2003, 373: 266-271.
    [159] Ding F, Rosen A, Bolton K. Dependence of SWNT Growth Mechanism on Temperature and Catalyst Particle Size: Bulk versus Surface Diffusion. Carbon. 2005, 43: 2215-2217.
    [160] Ding F, Rosen A, Bolton K. Nucleation and growth of single-walled carbon nanotubes: A molecular dynamics study. J. Phys. Chem. B..2004, 108: 17369-17377.
    [161] Bing F, Rosen A, Bolton K. The role of the catalytic particle temperature gradient for SWNT growth from small particles. Chem. Phys. Lett.. 2004, 393: 309-313.
    [162] Ding F, Rosen A, Bolton K. Size dependence of the coalescence and melting of iron clusters: A molecular-dynamics study, Phys. Rev. B. 2004, 70: 075416(1-6).
    [163] Ding F, Rosen A, Bolton K. Iron-carbide cluster thermal dynamics for catalysed carbon nanotube growth. J. Vac. Sci. Technol. A. 2004, 22: 1471-1476.
    [164] Ding F, Rosen A. Bolton K.. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth. J. Chem. Phys. 2004, 121: 2775-2779.
    [165] Kanzow H, Ding A. Formation mechanism of single-wall carbon nanotubes on liquid-metal particles. Phys. Rev. B. 1999, 60: 11180-11186.
    [166] Gavillet J, Thibault J, Stephan O, et al. Nucleation and growth of single-walled nanotubes: The role of metallic catalysts. J. nanosci, nanotech. 2004, 4: 346-359.
    [167] Scanlon J C, Ebert L B. X-ray diffraction study of fullerene soot. J. Phys. Chem. 1993, 97: 7138-7140.
    [168] Dresselhaus M S, Dresselhaus G, Jorio A et al. Roman spectroscopy on isolated single wall carbon nanotubes. Carbon. 2002, 40: 2043-2061.
    [169] Kataura H, Kumazawa Y, Maniwa Y et al. Diameter control of single-walled carbon nanotubes. Carbon. 2000, 38: 1691-1697.
    [170] Ajayan P M, Yakobson B. Oxygen breaks into carbon world. Nature. 2006, 441: 818-819.
    [171] Kim Y A, Muramatsu H, Kojima M et al. The possible way to evaluate the purity of double-walled carbon nanotubes over single wall carbon nanotubes by chemical doping. Chem. Phys. Lett.. 2006, 420: 377-381.
    [172] Osswald S, Flahaut E, Gogotsi Y. In situ Roman spectroscopy study of oxidation of double and single-wall carbon nanotubes. Chem. Mater.. 2006, 18: 1525-1533.
    [173] 张宏哲.碳纳米管负载金属催化剂的制备及性能研究:博士学位论文.大连:大连理工大 学.2006.
    [174] Peigney A, Laurent C, Flahaut E et al. Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon. 2001, 39: 507-514.
    [175] Qiu H X, Shi Z J, Gu Z N, et al. Controllable preparation of Triple-Walled Carbon Nanotubes and their growth mechanism. Chem. Commun.. 2007, 1092-1094.
    [176] Shota K, Seiji A, Masashi S et al. Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chem. Phys. Lett.. 2006, 429: 581-585.
    [177] Costa P M F J, Friedrichs S, Sloan J et al. Imaging lattice defects and distortions in alkali-metal iodides encapsulated within double-walled carbon nanotubes. Chem. Mater.. 2005, 17: 3122-3129.
    [178] Li Y F, Hatakeyama R, Okada T et al. Synthesis of Cs-filled double-walled carbon nanotubes by a plasma process. Carbon. 2006, 44: 1586-1589.
    [179] Li Y F, Hatakeyama R, Kaneko T et al. Electronic transport properties of Cs-encapsulated double-walled carbon nanotubes, Appl. Phys. Lett.. 2006, 89: 093110(1-3).
    [180] Peng D L, Zhao X, Inoue S et al. Magnetic properties of Fe clusters adhering to single-wall carbon nanotubes. J. Mag. Mag. Mater.. 2005, 292: 143-149.
    [181] Basinska A, Jozwiak W K, Goralski J et al. The behaviour of Ru/Fe_2O_3 catalysts and Fe_2O_3 supports in the TPR and TPO conditions. Appl. Cata. A. 2000, 190: 107-115.
    [182] Kowalczyk Z, Jodzis S, Rarog W et al. Effect of potassium and barium on the stability of a carbon-supported ruthenium catalyst for the synthesis of ammonia. Appl. Cata. A. 1998, 173: 153-160.
    [183] 齐静,高颖,唐水花等.直接甲醇燃料电池电催化剂载体碳纳米带的合成与表征.催化学报.2006,27(8):708-712.
    [184] 周卫江,李文震,周振华等.直接甲醇燃料电池阳极催化剂PtRu/C的制备和表征.高等学校化学学报,2003,24(5):858-862.
    [185] Sloan J, Wright D M, Woo H G et al. Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Comm.. 1999, 8: 699-700.
    [186] Jeong G H, Hatakeyama R, Hirata T et al. Formation and structural observation of cesium encapsulated single-walled carbon nanotubes. Chem. Comm.. 2003, 1: 152-153.
    [187] Cambedouzou J, Sauvajol J L, Rahmani A et al. Raman spectroscopy of iodine-doped double-walled carbon nanotubes. Phys. Rev. B. 2004, 69: 235422(1-6).
    [188] Ziegler K J, Gu Z N, Peng H Q et al. Controlled oxidative cutting of single-walled carbon nanotubes. J. Am. Chem. Soc.. 2005, 127: 1541-1547.
    [189] Lee J, Shimoda W, Tanaka T. Temperature dependence of surface tension of liquid Sn-Ag, In-Ag and In- Cu alloys. Meas. Sci. Tech.. 2005, 16: 438-442.
    [190] Ricci E, Novakovic R. Wetting and surface tension measurements on gold alloys. Gold Bull.. 2001, 34: 41-49.
    [191] Ajayan P M, Iijima S. Capillarity-induced filling of carbon nanotubes. Nature. 1993, 631: 333-334.
    [192] Guerret P C, Le B Y. Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature. 1994, 372: 761-765.
    [193] 王青,戴剑锋,李维学等.Y型分叉碳纳米管的研究.兰州理工大学学报.2006,32:10-12.
    [194] Heyning O T, Bernier P, Glerup M. A low cost method for the direct synthesis of highly Y-branched nanotubes. Chem. Phys. Lett.. 2005, 409: 43-47.
    [195] Zhu H W, Ci L J, Xu Cl et al. Growth mechanism of Y-junction carbon nanotubes. Diam. Relat. Mater.. 2002, 11: 1349-1352.
    [196] Walt A.H, Philippe P, Claire B et al. Liquid carbon, carbon-glass beads, and the crystallization of carbon nanotubes. Science. 2005, 11: 907-910.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700