高分子/炭黑复合材料流变行为—导电功能的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
与金属材料相比较,高分子基导电复合材料不仅具备独特的电学和力学性质,还具有质量轻、成本低、易加工、耐腐蚀等特点,在静电屏蔽、自限温发热带、自恢复保险丝等一系列领域具有重要的应用。通常,聚合物基导电复合材料的导电行为源于导电粒子所形成的、贯穿基体的三维渗流网。现有研究尚不能清晰地揭示导电网络的形成及其对温度、机械作用等外界刺激的响应机制。
     本论文以炭黑(CB)为填充物,以乙烯四氟乙烯共聚物(ETFE)、高密度聚乙烯(HDPE)、等规聚丙烯(iPP)和溶液聚合丁苯橡胶(SSBR)为基体,研究相应填充物体系流变行为-导电功能的相关性。首次建立了熔体基于储能模量(G′)、损耗模量(G″)的动态流变-导电行为同步测试方法和基于法向应力(F_N)的静态流变-导电行为同步测试方法。以流变-导电行为同步测试为主要研究手段,结合差示扫描量热分析(DSC)等手段,系统考察CB填充高聚物复合材料熔融态电阻(R)与G′、G″和动态损耗正切tanδ随时间、剪切作用的变化以及基体等温与非等温结晶所造成的电阻与流变学参数变化,试图建立复合材料熔体导电性能与粘弹特征间的关联,揭示高分子基体结晶对复合材料导电与粘弹性能的影响,探索温度与剪切场下复合材料聚集态结构形成与演化的微观机制。
     研究结果表明,ETFE/CB导电复合材料的渗流区间对应CB体积分数((?)_(CB))=0.05~0.11,PTC强度随(?)_(CB)增加而降低。当(?)_(CB)=0.11时,复合体系具有良好的PTC循环稳定性,而(?)_(CB)=0.15时,复合体系PTC循环稳定性较差。室温下,电阻率ρ-储能模量G′关系曲线图也呈逾渗现象,逾渗区间为G′=676~876MPa。
     动态流变-导电性能同步测试表明,除本征电阻松弛外,剪切应变(γ)作用可造成渗流网络的破坏,R在临界应变以上大幅度增大。随γ增大,G′与R分别在G′由线性到非线性转变时的临界应变(γ_(CG))与R由导电到绝缘转变时临界应变(γ_(CR))处发生突变。对于熔融态的ETFE/CB与HDPE/CB复合材料以及未交联的SSBR/CB体系,γ_(CR)>γ_(CG)。随(?)_(CB)增加,γ_(CR)降低,γ_(CG)增大。对于SSBR/CB交联体系而言,γ_(CR)<γ_(CG),二者均与(?)_(CB)无关。对于熔融态HDPE/CB体系,γ_(CR)与γ_(CG)均随温度升高而增大。
     在HDPE/CB复合材料等温结晶过程中,流变参数与R均在特征时间值处发生了突变。动态方法得到的特征时间(t_(G′))小于静态方法得到的特征时间(t_F),二者均随(?)_(CB)增加及结晶温度T_c降低而缩短。由于剪切诱导结晶,t_(G′)随γ及频率(ω)增大逐渐减小。在低ω区域,物理凝胶时间(t_c)与t_(G′)一致。流变仪平行板夹具表面粗糙度显著影响HDPE/CB复合材料的t_(G′)与t_F,从而影响成核与晶体生长。
     与HDPE/CB复合材料类似,iPP/CB复合材料等温结晶的动态特征时间t_(G′)小于静态特征时间t_F。与HDPE/CB复合材料不同,流变仪平行板夹具表面粗糙度对iPP/CB复合材料的特征时间t_(G′)与t_F无明显影响。
     在HDPE/CB与iPP/CB复合材料非等温结晶过程中,随温度降低流变参数与R均在特征温度处发生突变。λ较低时,动态测试方法得到的T_(G′)非常接近DSC曲线结晶峰温度(T_p),而静态方法得到的特征温度T_F低于T_(G′)。
     研究发现,高分子基体结晶首先造成渗流网络破坏。当结晶程度达到一定值后,CB粒子在无定形区聚集,进而形成渗流网络。基体结晶以及由此所引起CB粒子分散状态的变化共同决定了动态流变参数。由于动态与静态方法测试原理的不同,在电阻与流变参数发生突变的临界时间、临界温度处,高分子基体的相对结晶度不同。动态方法所得临界变量处基体相对结晶度低于静态方法。
Conductive polymer composites not only have unique electrical and mechanical properties, but also possess the characteristics of light weight, low cost, easier processing, and corrosion resistance, in comparison with metal materials. They have been widely used in the areas of electrostatic shielding, temperature self-limiting heater and self-repairing fuse. The conductive behavior of conductive polymer composites is related to the three-dimensional percolation network of conductive particles throughout the matrix. However, the previous studies could not distinctly disclose the formation mechanism of conductive network in the polymer matrix and the response of the conductive network to the thermal and the mechanical actions.
     In this thesis, the carbon black (CB) filled polymer composites are selected as the research objects. Methods for simultaneous measurement of rheological and conductive properties of conductive polymer composites in the melt state and during the crystallization are developed for the first time. The dynamical method is based on measurement of storage modulus (G′) and loss modulus (G″) while static method is based on measurement of normal force (F_n). By applying simultaneous measurement, resistance (R) and dynamical rheological parameters of the composites at the melt state are discussed in relation to time and shearing action in order to establish the relationship between conduction and viscoelasticity. Influences of isothermal and nonisothermal crystallization of the polymer matrix to variations of R and dynamical rheological parameters are investigated in order to disclose the effect of crystallization of matrix to the conduction and viscoelasticity of composites. The study is helpful for exploring the mechanism for the formation and the evolvement of the aggregated structure in the composites under the actions of shear and thermal fields.
     Conductive behavior of ethylene-tetrafluorothylene copolymer (ETFE) / CB composites was investigated. The percolation of conduction takes place at CB volume fraction ((?)_(CB)) from 0.05 to 0.11. The PTC intensity decreases with increasing In case of (?)_(CB) above 0.11. The composite with (?)_(CB)= 0.11 shows a highly reproducible PTC switching characteristic during thermal cycles. However, the thermal stability becomes poor at (?)_(CB)=0.15. At room temperature, volume resistivity (ρ) as a function of G′reveals a percolation-like phenomena at G′from 676 MPa to 876 MPa.
     The simultaneous measurement of dynamical rheological and conductive behavior shows that shear may destroy the percolation network besides the intrinsic resistance relaxation, resulting in a sharp increase in R above a critical strain. Both G′and R take sudden changes at critical strainsγ_(CG) andγ_(CR), respectively, with increasing strain (γ). A relationγ_(CR)>γ_(CG) is revealed in ETFE/CB and high-density polyethylene (HDPE)/CB composites at temperatures above the melting point and also in the unvulcanized solution polymerized styrene-butadiene rubber (SSBR)/CB composite increasing (?)_(CB) leadsγ_(CR) to reduce whileγ_(CG) to increase. On the other hand,γ_(CR) andγ_(CG) remains unvariable with varying (?)_(CB) andγ_(CR) <γ_(CG) is revealed in the vulcanized SSBR/CB composite. Furthermore,γ_(CR) andγ_(CG) increase with raising temperature for the HDPE/CB composite in the melt.
     The simultaneous measurement during the isothermal crystallization of HDPE/CB composite shows that rheological parameters and R occurs sudden changes simultaneously at a characteristic time. The dynamic characteristic time (t_G′) is less than the static characteristic time (t_F) and both reduce with increasing (?)_(CB) and reducing crystallization temperature (T_c). During the dynamic crystallizing, t_G′reduces with increasing y and frequencyωdue to shear induced crystallization.In low-frequency area, physical gel time (t_C) is consistent with t_G′. The roughness of rheometer parallel plate surface may influence the nucleation and growth of crystal in HDPE/CB composites, as viewed from the great changes in t_G′and t_F detected from two rheometer parallel plate with different roughness.
     Similar to HDPE/CB composites, t_G′of isotactic polypropylene (iPP)/CB composites is less than t_F. The roughness of rheometer parallel plate surface does not influence t_G′and t_F of iPP/CB composite significantly, which is different to HDPE/CB composite.
     The simultaneous measurement during the nonisothermal crystallization of HDPE/CB and iPP/CB composites shows that the rheological parameters and R occur sudden changes simultaneously at a characteristic temperature. When X is small, the dynamic characteristic temperature (T_G′) is closed to the crystallization peak temperature (T_p) by differential scanning calorimetry (DSC), while the static characteristic temperature (T_F) is lower than T_G′.
     The simultaneous measurement of rheological and conductive behavior reveals that the crystallization of the matrix destroys the percolation network firstly. When the crystallinity is up to a certain value, CB particles gather in the amorphous region to form the percolation network. The dynamic rheological properties of the composites are related to the matrix crystallization and the resultant change of CB particle distribution. Due to the different testing principles, the dynamical and static measurements detect different crystallinity in polymer matrix at the critical time and the critical temperature where R and rheological parameters change rapidly. The critical crystallinity from the dynamical method is lower than that from the static method.
引文
[1] Meyer J. Glass transition temperature as a guide to selection of polymers suitablefor PTC materials, Polym. Eng. Sci., 1973,13(6): 462
    
    [2] Narkis M., Vaxman A. Resistivity behavior of filled electrically conductivecrosslinked polyethylene, Polym. Eng. Sci., 1984,29: 1639
    
    [3] Yacubowicz J., Narkis M. Electrical and dielectric properties of segregated carbonblack-polyethylene systems, Polym. Eng. Sci., 1990,30(8): 459
    
    [4] Zhang X. W., Pan Y., Shen L., Zheng Q., Yi X. S. Novel low-melting-pointalloy-loaded polymer composite. I. Effect of processing temperature on theelectrical properties and morphology, Appl. Polym. Sci., 2000, 77(5): 1044
    
    [5] Omastova M., Prokes J., Podhradska S., Chodak I. Stability of electrical andmechanical properties of polyethylene/carbon black composites, CromolecularSymposia, 2001,170(1): 231
    
    [6] Norman R. M. Conductive Rubbers and Plastics, Elsevier, New York, 1970
    
    [7] Mair H. J. Polymers-Electrically conducting mouldings, Kunststoffe, 1983, 73(9):516
    
    [8] Webling B. Electrically conductive polymer, Kunststoffe, 1986,76 (10): 930
    
    [9] Kleinheins G. H. Radiation crosslinked conductive polymers and their applications,Kunststoffe, 1984, 74(12): 737
    
    [10]张雄伟,黄锐.LDPE/炭黑复合导电材料PTC/NTC效应形成机理的探讨,成都 科技大学学报,1994,5:38
    
    [11] Martin J. E., Adolf D. The sol-gel transition in chemical gels, Annu. Rev. Phys.Chem., 1991,42:311
    
    [12] Chambon F., Winter H. H. Stopping of crosslmking reaction in a PDMS polymer atthe gel point, Polymer Bulletin, 1985,13: 499
    
    [13] Winter H. H., Chambon F. Analysis of linear viscoelasticity of a crosslinkingpolymer at the gel point, Journal of Rheology, 1986, 30: 367
    
    [14] Kohler F. US Patent, US 3 243 753, 3/29/66, 1966
    
    [15] Ohe K., Natio Y A new resistor having an anomalously large positive temperaturecoeffcient, Japaneses Appl. Phys., 1971,10: 99
    
    [16] Klason C. Anomalous behavior of electrical conductivity and thermal noise incarbon black-containing polymers at Tg and Tm, Appl. Polym. Sci., 1975,19(3):831
    
    [17] Allak H. M., Brinkman A. W., Woods J. I-V characteristics of carbon black-loadedcrystalline nolvethvlene, Mater. Sci., (U K), 1993, 28: 117
    
    [18] Narkais M., Vacam A. Resistivity behavior of filled electrically conductivecrosslinked polyethylene., J. Appl. Polym. Sci.,1984,29: 1639
    
    [19]雷忠利,戚长谋,等.导电复合材料中的双逾渗行为及其应用,高分子通报, 2002,6:69
    
    [20] Feng J. yun., Chan Chi-Ming. Carbon black-filled immiscible blends of poly(vinylidene fluoride) and high density polyethylene: The relationship between??morphology and positive and negative temperature coefficient effects, Polym. Eng.Sci., 1999,39: 1207
    
    [21] Mallettf J., Arqueza G. M. Carbon black filled PET/PMMA blends: Electrical andmorphological studies, Polym. Eng. Sci., 2000,40(10): 2272
    
    [22] Gubbels F., Blacher S., Vanlathem E.,et al. Design of electrical composites:determining the role of the morphology on the electrical properties of carbon blackfilled polymer blends, Macromolecules, 1995,28: 1559
    
    [23] Tang H., Piao J., Chen X ., et al.. The positive temperature coefficient phenomenonof vinyl polymer/CB compositesl, J. Appl. Polym. Sci., 1993,48: 1795
    
    [24] Yu G, Zhang M.Q., Zeng H.M. Effect of filler treatment on temperaturedependence of resistivity of carbon-black-filled polymer blends, J. Appl. Polym.Sci, 1999,73:489
    
    [25] Narkis M., Ram A., Flashmer F . Electrical properties of carbon black filledpolyethylene, Polym. Eng. Sci., 1978,18: 649
    
    [26] Chuang H. K., Han CD. Rheological behavior of polymer blends, J. Appl. Polym.Sci., 1984,29:2205
    
    [27] Bretas R. E. S., Powell R. L. Dynamic and transient rheological properties of glassfilled polymer melts, Rheol Acta, 1985,24: 69
    
    [28] Takahashi M., Masuda T. Nonlinear viscoelasticity of ABS polymers in the moltenstate, Rheol., 1989, 33(5): 709
    
    [29] Aoki Y. Viscoelastic properties of blends of poly(acrylonitrile-co-styrene) andpoly[styrene-co-(N-phenylmaleimide)], Macromolecules, 1990, 23: 2309
    
    [30] Aranguren M. I., Mora E., DeGroot J. V., Macosko C. W. Effect of reinforcingfillers on the rheology of polymers melts, Rheol., 1992, 36(6): 1165
    
    [31] Bousmina M., Muller R. Linear viscoelasticity in the melt of impact PMMA.Influence of concentration and aggregation of dispersed rubber particles, Rheol.,1993, 379(4): 663
    
    [32] Graebling D., Benkira A., Gallot Y, Muller R. Dynamic viscoelastic behavior ofpolymer blends in the melt-experimental results for PDMS/POE-DO, PS/PMMAand PS/PEMA blends, Eur.Polym., 1994, 30(3): 301
    
    [33] Lacroix C, Bousmina M., Carreau P.J., et al.. Properties of PETG/EVA blends: 1. viscoelastic, morphological and interfacial properties, Polymer, 1996, 37(14): 2939
    
    [34]郑强,赵铁军 多相/多组分聚合物动态流变行为与相分离的关系,材料研究学 报,1998,11(3):225
    
    [35]郑强,荒木修,升阳利史郎 用动态粘弹函数关系表征PMMA/a-SAN共混物的 相分离,高等学校化学学报,1998,19(8):1339
    
    [36] Memon N. A. Rheological properties and the interface in polycarbonate/impactmodifier blends: effect of modifier shell molecular weight, Polym.Sci.Part B:polym.Phys., 1998,36: 1095
    
    [37] Solomon M. J., Almusallam A. S., Seefeldt K. R, et al.. Rheology of polypropylene/clay hybrid materials, Macromolecules, 2001, 34: 1864
    
    [38] Iza M.,Bousmina M.,Jerome R.Rheology of compatibilized immiscibleviscoelastic polymer blends, Rheol Acta, 2001,40: 10
    
    [39] Zheng Q., Zhang X. W., Pan Y, Yi X.S. Polystyrene/Sn-Pb alloy blends.I. Dynamic??rheological behavior, Appl. Polym. Sci., 2002, 86: 2166
    
    [40] Zhang X. W., Pan Y, Zheng Q., Yi X. S. Polystyrene/Sn-Pb alloy blends.II. Effect of alloy particle surface treatment on dynamic rheological behavior, Appl. Polym. Sci., 2002, 86:3173
    
    [41]杜淼,王利群,杨碧波,宋栩冰,郑强.聚甲基丙烯酸甲酯/聚(苯乙烯-丙烯腈) 共混物体系相分离的特征动态流变响应,高等学校化学学报,2002,23(5):961
    
    [42] Zheng Q., Cao Y X., Du M. Preparing temperature-dependent dynamic rheologicalproperties of polypropylene filled with ultra-fine powdered rubber, Mater.Sci.Lett.,2004,39:1813
    
    [43] Sung Y T., Han M. S., Hyun J. C, Kim W. N., Lee H. S. Rheological propertiesand interfacial tension of polypropylene-poly(styrene-co-acrylonitrile) blendcontaining compatibilizer, Polymer, 2003,44: 1681
    
    [44] Ajji A., Choplin L. Rheology of PS/PVME blends near the phase transition,Polym.Sci. Part B: Polym.Phys., 1991,29: 1573
    
    [45] Vinckier I., Moldenaers P., Mewis J. Relationship between rheology andmorphology of model blends in steady shear flow, Rheol., 1996,40(4): 613
    
    [46] Utracki L.A. Polymer Alloys and Blends, Carl Hanser, New York, 1989
    
    [47] Friedrich C, Scheuchenpflug W., Neuhausler S. Morphological and rheologicalproperties of PS melts filled with grafted and ungrafted glass beads, Appl. Polym.Sci., 1995,57:499
    
    [48]杜淼,王利群,郑强.聚甲基丙烯酸甲酯/聚(苯乙烯-丙烯腈)共混体系相分离 的特征动态流变响应,高等学校化学学报,2002,23(5):961
    
    [49]郑强,荒木修,升田利史郎.用动态粘弹函数关系表征PMMA/α-MSAN共混 物的相分离,高等学校化学学报,1998,19(8):1339
    
    [50] Zheng Q., Song Y H., Wu G. Relationship between the positive temperaturecoefficient of resistivity and dynamic rheological behavior for carbon black-filledhigh-density polyethylene, Polym. Sci. Part B: Polym. Phys., 2003,41: 983
    
    [51] Wu G, Asai S., Hattori T. Estimation of flocculation structure in filled polymercomposites by dynamic rheological measurements, Colloid Polym. Sci., 2000,27(8): 220
    
    [52] Mitchell C.A., Krishnamoorti T.Rheological properties of diblockcopolymer/layered-silicate nanocomposites, Polym. Sci. Part B: Polym. Phys., 2002,40: 1434
    
    [53] Sternstein S. S., Zhu Ai-Jun. Reinforcement mechanism of nanofilled polymermelts as elucidated by nonlinear viscoelastic behavior, Macromolecules, 2002, 35:7262
    
    [54] Amari T., Uesugi K., Suzuki H. Viscoelastic properties of carbon black suspensionas a flocculated percolation system, Progress in Organic Coatings, 1997, 31: 171
    
    [55] Mitchell C. A., Jeffrey. Dispersion of Functionalized Carbon Nanotubes inPolystyrene, Macromolecules, 35 (23): 8825
    
    [56] Mitchell C. A., Bahr J. L., Arepalli S. et al.. Dispersion of functionalized carbonnanotubes in polystyrene, Macromolecules, 2002, 35: 8825
    
    [57] Wang K H., Choi M. H., et al.. Morphology and physical properties ofpolyethylene/silicate nanocomposite prepared by melt intercalation, Polym. Sci.??Part B: Polym. Phys., 2002,40: 1454
    
    [58] Potschke P., Fomes T. D., et al.. Rheological behavior of multiwalled carbonnanotube/polycarbonate composites, Polymer, 2002,43: 3247
    
    [59] Gandhi K., Salovey R. Dynamic mechanical behavior of polymers containingcarbon black, Polym. Eng. Sci., 1988,28(14): 877
    
    [60] Shenov A. V. Rheology of filled polymer systems, Dordrecht: Kluwer AcademicPublishers, 1999
    
    [61] Utracki L A. Flow and flow orientation of composites containing anisometricparticles, Polym. Compos., 1986, 7:274
    
    [62] Utracki L A. Rheologv and processing of multiphase systems[M]. In: OttenbriteRM, LA. Utracki, Inoue S. editors. Current topics in polymer science. rheology andpolymer processing/multiphase systems, vol Ⅱ. Munich: Carl Hanser, 1987, p7-59
    
    [63] Dealy M., Wissbrun K F. Melt rheology and its role in plastic processing theory andapplication[M], Dordrecht: Kluwer Academic Publishers, 1999
    
    [64] Han C. D. Rheological properties of calcium carbonate-filled polypropylene melts,Appl. Polym. Sci., 1974, 18:821
    
    [65] Michael, Solomon J., Lu Q. Rheology and dynamics of particles in viscoelasticmedia, Current Opinion in Colloid & Interface Sci., 2001, 6: 430
    
    [66] Han C.D., Kim J.K. Molecular theory for the viscoelasticity of compatible polymermistures, 2. Tube model with reptation and constraint release contributiongs,Macromolecules, 1989, 22: 4292
    
    [67] Li L., Masuda T. Effect of dispersion of particles on viscoelasticity of CaCO_3-filledpolypropylene melts, Polym. Eng. Sci., 1990, 30: 841
    
    [68] Leonov A. I. On the rheology of filled polymers, Rheol., 1990, 34(7): 1039
    
    [69] Sternstein S. S., Zhu A.J. Reinforcement mechanism of nanofilled polymer melts aselucidated by nonlinear viscoelastic behavior, Macromolecules, 2002, 35: 7262
    
    [70] YI Xiao-Su, Hu Y., Tao X. Preliminary study on Simultaneous Measuring theForce-Depth-Piezoresistance Relation of Carbon Fiber Polymer Composites underQuasi-static Indentation Conditions. Mater. Sci. Letters, 2001, 18(20): 1725
    
    [71]陶小乐,胡永明,益小苏.碳纤维复合材料层板在准静态球头压入条件下的压 入深度-压力-电阻性质,材料工程,2001,4(215):19
    
    [72] Payne A. R. A note on the conductivity and modulus of carbon black-loadedrubbers, J. Appl. Polym. Sci., 1965, 9: 1073
    
    [73] Voet A., Cook F. R. Investigation of carbon chains in rubber vulcanizates by meansof dynamic electrical conductivity, Rubber Chem. Technol, 1968,41: 1207
    
    [74]益小苏 复合导电高分子材料的功能原理[M],国防工业出版社,2004
    
    [75] Pan X. D., Mckinley G. H. Simultaneous measurement of viscoelasticity and electrical conductivity of an electrorheological fluid, Langmuir, 1998, 14: 985
    
    [76] Feng J. Y., Chan C. M., Li J. X. A method to control the dispersion of carbon black in an immiscible polymer blend, Polym. Eng. Sci., 2003,43: 1058
    
    [77] Kirkpatrick S. Percolation and conduction, Rev. Mod. Phys,, 1973,45: 574
    
    [78] Stauffer D., Aharony, A. Introduction to percolation theory, Talor & Francis: London, 1992, Chapters 2 and 5
    
    [79] Vionnet-Menot S., Grimaldi C, Maeder T., Strassler S., Ryser P. Phys. Rev. B,??2005,71:4201
    
    [80] Voet A. Behavior of filled polymer, Rubber Chem. Technol, 1981, 54: 42
    
    [81] Heinrich G., Kluppel, M. Adv. Reinforcement of elastomers, Polym. Sci., 2002,160:1
    
    [82] Huang J. C. Carbon black fulled conducting polymers and polymer blends Adv.Polym. Tech., 2002,21:299
    
    [83] Kluppel M. The role of disorder in filler reinforcement of elasomers on variouslength scales, Adv. Polym. Sci., 2003,164:1
    
    [84] Medalia A. I. Electrical conduction in carbon black composites, Rubber Chem.Technol, 1986, 59: 432
    
    [85] Roldughin V. I., Vysotskii V. V. Percolation properties of metal-filled polymerfilms, structure and mechanisms of Conductivity, Prog. Org.Coat., 2000, 39: 81
    
    [86] Hess W. M. Characterization of dispersions, Rubber Chem. Technol, 1991, 64: 386
    
    [87] Yanovsky Y. G. Polymer rheology: Theory and practice; Chapman & Hall: London;New York, 1993, Chapter 5
    
    [88] Wang M. J. The role of filler networking in dynamic properties of filled rubber,Rubber Chem. Technol, 1998,71: 520
    
    [89] Leblanc J. L. Prog. Polym. Sci., 2002,27: 627
    
    [90] Litvinov V. M., Steeman P. A. M. EPDM-Carbon black interactions and thereinforcement mechanisms, as studied by low-resolution ~1H NMR, Macromolecules,1999, 32: 8476
    
    [91] Leblanc J. L. A molecular explanation for the origin of bound rubber in carbonblack filled rubber compounds, J. Appl. Polym. Sci., 1997, 66: 2257
    
    [92] Utracki L. A. Polymer alloys and blends: thermodynamics and rheology; HanserPublishers: Munich, New York, 1990, Parts 1 and 3
    
    [93]吴刚.填充类导电复合材料结构与动态粘弹行为研究[博士论文],杭州,浙江 大学,2004
    
    [1] Feng J. Y., Chan C. M., Li J. X. A method to control the dispersion of carbon black in an immiscible polymer blend, Polym. Eng. Sci., 2003,43: 1058
    
    [2]罗延龄,赵振兴.LLDPE/EVA/CB导电复合材料辐射交联效应研究,功能材料 与器件学报,2002,8(1):81
    
    [3]汪济奎,王庚超,方斌.热处理对PVDF复合体系形态及性能的影响,工程塑 料应用,1997,25(2):31
    
    [4]罗延龄,赵振兴.表面处理对LDPE-CB复合物PTC特性的影响,石化技术与 应用,2001,19(3):144
    
    [5]王洪涛,王晓玲.电流冲击法提高CB/HDPEPTC材料的稳定性研究,物理测试, 2002,3:12
    
    [6]谢建玲,王雪梅,汪浩.炭黑填充聚乙烯PTC效应及其稳定性,高分子材料科 学与工程,2002,18(2):86
    
    [7]王济娥,王玉琦,陈汴琨.阻氧层对炭黑填充聚乙烯复合材料性能的影响,复 合材料学报,1995,12(4):61
    
    [8] Lee M. G, Nho Y. C. Electrical resistivity of carbon black-filled high-densitypolyethylene (HDPE) composite containing radiation crosslinked HDPE particles,Radiation Physics and Chemistry, 2001, 61: 75
    
    [9] Norman R. M. Conductive Rubbers and Plastics, Elsevier, New York, 1970
    
    [10] Mair H. J. Polymers-Electrically conducting mouldings, Kunststoffe, 1983, 73(9):516
    
    [11] Webling. B. Electrically conductive polymer, Kunststoffe, 1986, 76 (10): 930
    
    [12] Kleinheins G. H. Radiation crosslinked conductive polymers and their applications,Kunststoffe , 1984, 74(12): 737
    
    [13]张雄伟,黄锐.LDPE/炭黑复合导电材料PTC/NTC效应形成机理的探讨,成 都科技大学学报,1994,5:38
    
    [14] Bedark R. Method for producing multicolor patterns in synthetic plastic sheetmaterial, [P]. US, 3914361, 1975,10: 21
    
    [15] Vernet S., Asaka G Mobile selector for common carrier radio telephone service, [P].US, 2987615, 1961,4:4
    
    [16] Bueche F. A new class of switching materials, J. Appl. Phys., 1973,44: 532
    
    [17] Narkis M., Vaxman A. Resistivity behavior of filled electrically conductivecrosslinked PE, J. Appl. Polym. Sci., 1984,29: 1639
    
    [18] Narkis M., Ram A., Flashner F. Electrical properties of carbon black filledpolyethylene, Polym. Eng. Sci., 1978, 18 : 649
    
    [19] Chen X. B., Devaux J., Issi J. P., et al.. The conducting behavior and stability ofconducting polymer composites, Polym. Eng. Sci., 1995, 35,637
    
    [20] Zhang M., Jia W., Chen X., et al. Influences of crystallization histories onPTC/NTC effects of PVDF/CB composites, J. Appl. Polym. Sci., 1996, 62 : 743
    
    [21] Tang H., Piao J., Chen X., et al. The positive temperature coefficient phenomenonof vinyl polymer/CB composites, J. Appl. Polym. Sci., 1993,48: 1795
    [22] Sherman R. D., Middleman L. M., Jacobs S. M. Electron transport processs in conductor-filled polymers, Polym. Eng. Sci.,1983,23: 36
    [23] Jana P. B., De S. K, Chaudhuri S., Pal A. K. Rubber Chem, Technol, 1992, 65: 7
    [24] Narkis M., Ram A., Flashner F. Electrical properties of carbon black filled polyethylene, Polym. Eng. Sci., 1978,18: 649
    [25] Narkis M., Vaxman A. Resistivity behavior of filled electrically conductive crosslinked polyethylene, J. Appl. Polym. Sci., 1984,29:1639
    [26] Lee G. J., Han M. G., Su C. C, et al. Effect of crosslinking on the positive temperature coefficient stability of carbon black-filled HDPE/ethylene -ethylacrylate copolymer blend system, Polym. Eng. Sci., 2002,42: 1740
    [27] Di W. H., Zhang G., Zhao Z. D., Peng Y. Ethylene-(vinyl acetate) copolymer/ carbon fiber conductive composite: effect of polymer-filler interaction on its electrical properties, Polym. Int., 2004, 53: 449
    [28] Narkis M., Ram A., Flashner F. Polyethylene/carbon black switching materials, J. Appl. Polym. Sci., 1978,22: 1163
    [29] Feng J. Y., Chan C. M. Double positive temperature coefficient effects of carbon black-filled polymer blends containing two semicrystalline polymers, Polymer, 2000,41:4559
    [30] Narkis M., Ram A., Stein Z. Electrical properties of carbon black filled crosslinked polyethylene, Polym. Eng. Sci., 1981,21: 1049
    [31] Lakadawala K., Salovey R. Rheology of polymers containing carbon black, Polym. Eng. Sci., 1987,27: 1035
    [32] Lakadawala K., Salovey R. Rheology of copolymers containing carbon black, Polym. Eng. Sci., 1987,27:1043
    [33] Lakadawala K., Salovey R. Dynamic mechanical behavior of polymers containing carbon black, Polym. Eng. Sci., 1988,28: 877
    [34] Romani F., Corrieri R., Braga V. Monitoring the chemical crosslinking of propylene polymers through rheology, Polymer, 2002,43: 1115
    [35] Wu G, Song Y H., Zheng Q., et al. Dynamic rheological properties for HDPE/CB composite melts, J. Appl. Polym. Sci., 2003, 88: 2160
    
    
    [1] Onogi S. Rheology for Chemists, Tokyo, Kagaku Dojin, 1982, 53
    
    [2] Ajji A., Prud R. E. Rheology and phase separation in polystyrene/poly(viny/methyl/ether) blends, J. Polym. Sci. Part B: Polym. Phys., 1988,26: 2279
    
    [3] Brekner M., Cantow H., Schneider H. Interactions in compatible polymer systems:Viscoelasticity and glass transition of polystyrene-poly(vinylnethylether) blends,Polym. Bull., 1985,14: 17
    
    [4] Bates F. S., Fredrichson G. H. Block copolymer thermodynamics: theory andexperiment, Annu. Rev. Phys. Chem., 1990,41: 544
    
    [5] Bates F. S., Rosedale J. H., Fredrickson G H. Fluctuation effects in a symmetricdiblock copolymer near the order-disorder transition, J. Chem. Phys., 1990,92(10): 6258
    
    [6] Adams J. L., Register R. A. Rheology and the microphase separation transition instyrene-isoprene block copolymers, Macromolecules, 1994,27: 6026
    
    [7] Yarnaguchi D., Hashimoto T., Han C. D., et al. Order-disorder transition,microdomain structure, and phase behavior in binary mixtures of low molecularweight polystyrene-block-polyisoprene copolymers, Macromolecules, 1997, 30:5832
    
    [8] Sokamoto N., Hashimoto T., Han C. D. Order-order and order-disorder transitionsin a polystyrene-block-polyisoprene-block-polystyrene copolymer, Macromolecules, 1997, 30: 1621
    
    [9] Yanovsky Y. G. Polymer Rheology: Theory and Practice, London: Chapman &Hall, 1993,212
    
    [10]Araik K., Ferry J. D. Temperature dependence of viscoelastic properties ofcarbon-black-filled rubbers in small shearing deformations, Rubber Chem.Technol., 1986,59:592
    
    [11] Burchard W., Rose S. B. Physical Networks: Polymer and Gels, London: ElsevierScience, 1990, 1
    
    [12]Li L., Aoki Y. Rheological images of poly(vinyl chloride) gels. 1.The dependenceof sol-gel transition on concentration, Macromolecules, 1997, 30: 7835
    
    [13]Majangos C, Lopez D., Santamaria A. Study of poly(vinyl chloride) gels bymeans of stereospecific substitution reactions, Macromolecules, 1993,26: 5693
    
    [14]Izuka A., Winter H. H. Molecular weight dependence of viscoelasticity ofpolycaprolactone critical gels, Macromolecules, 1992, 25: 2422
    
    [15]吴刚.填充类导电复合材料结构与动态粘弹行为研究[博士论文],杭州,浙江 大学,2004
    
    [16] Payne A. R. A note on the conductivity and modulus of carbon black-loadedrubbers, J. Appl. Polym. Sci., 1965, 9: 1073
    
    [17]Voet A., Cook F. R. Investigation of Carbon Chains in Rubber Vulcanizates byMeans of Dynamic Electrical Conductivity, Rubber Chem. Technol., 1968, 41:1207
    [18] Pan X. D., Mckinley G. H. Simultaneous measurement of viscoelasticity and electrical conductivity of an electrorheological fluid, Langmuir, 1998,14: 985
    
    [19]Heinrich G, Kliippel M. Recent advances in the theory of filler networking in elastomers, Adv. Polym. Sci., 2002,160: 1
    
    
    [1]张雄伟,黄锐.LDPE/炭黑复合导电材料PTC/NTC效应形成机理的探讨,功能 材料,1994,5(79):39
    
    [2] Sau K P., Chali T. K., Hastgir K. Conductive rubber composites from differentblends of ethylene-propylene-diene rubber and nitrile rubber, Journal of MaterialScience, 1997, 32(11): 5717
    
    [3] Karasek L, Sumita M. Charctrization dispersion state of filler and polymer fillerinteraction in rubber-carbon black composition, Journal of Material Science, 1996,31
    
    [4]宋义虎,郑强,潘颐,益小苏.单轴压力对高密度聚乙烯/碳黑导电复合材料电 阻特性的影响,高等学校化学通报,2000,21(1):47
    
    [5]罗延龄.炭黑填充低密度聚乙烯导电塑料的热敏性能研究,塑料加工,2000, 28(1):29
    
    [6] Zheng Q., Song Y. H., Wu G, Song X. B. Relationship between the positive temperature coefficient of resistivity and dynamic rheological behavior for carbon black-filled high-density polyethylene, Polym Sci Part B: Polym. Phys., 2003, 41: 983
    
    [7] Hindermann-Bischoff M., Ehrburger-Dolle F. Electrical conductivity of carbon black-polyethylene composites experimental evidence of the change of cluster connectivity in the PTC effect, Carbon, 2001, 39: 375
    
    [8]丁小斌,杨万辉,朱贞洪,苏洪好.温度对高密度聚乙烯一炭黑材料电性能的 影响,高分子材料科学与工程,1994,(5):109
    
    [9]赫秀娟,王丽杰,刘志城,陈欣方.HDPE/EPDM/CB复合物的PTC效应,高等 学校化学学报,2001,(1):163
    
    [10]沈烈,益小苏.聚乙烯/炭黑复合材料导电体系的结构形态,高分子学报,2001, (1):130
    
    [11]贾少晋,徐忠庭,张志成,张宪锋,都志文,张桂喜,江平开,王宗光.PE/CB 复合材料的辐照效应,功能高分子学报,2003,(4):545
    
    [12] Y H.Y. The influence of mold pressing parameters on PTC of HDPE/CBcomposites, Wuhan Univ Tech-Mater Sci, 2005, (1): 49
    
    [13] Herman K, Gerngross O., Abitz W. Zur rOtgenographischen strukcurerforschungdes gelatinemicells, Z. Phys. Chem., 1930, B10: 371
    
    [14] Flory P. J. Thermodynamics of crystallization in high polymers. FF4. a theory ofcrystalline states and fusion in polymers, copolymers, and their mixtures withdiluents, Chem. Phys., 1949, 17: 223
    
    [15] Flory P. J. On the morphology of the crystalline state in polymers, Am. Chem. Soc,1962, 84: 2857
    
    [16] Keller A. A note on single crystals in polymers: Evidence for a folded chainconformation, Phil. Mag., 1957, 2: 1171.
    
    [17] Keller A. Growth and perfection of crystals, Int. Conf. on Crystal Growth, Cooperstown, New York, John Wiley, 499
    [18] Keller A. Investigations on banded spherulites, Polym. Sci., 1959,39: 151
    [19] Keller A., O'Connor A. Large periods in polyethylene: the origin of low-angle X-ray scarring, 1957, Nature. Lond., 180: 1289
    [20] Keller A., O'Connor A. Study of single crystals and their associations in polymers, 1958, Disc. Faraday Soc, 25: 114
    [21] (a) Lauritzen JIJr, Hoffman J. D. Theory of formation of polymer crystals with folded chain in dilute solution, J. Res. Natl. Bur. Stand., Sect. A, 1960, 64: 73
    (b) Hoffman JD, Lauritzen JIJr., Crystallization of bulk polymers with chain folding: Theory of growth of lamellar spherulites, Res. Natl. Bur. Stand., Sect. A, 1961, 65: 297
    [22] Hoffman J. D. Theoretical aspects of polymer crystallization with chain folds: bulk polymers, SPE transactions, 1964,4: 315
    [23] Flory P. J. On the morphology of the crystalline state in polymers, J. Am. Chem. Soc, 1962,84:2857
    [24] Flory P. J. In structural orders in polymers Ed. Ciardelli, F. and Gusti, P. 1981 Permagon Press, New York.
    [25] Bunn C. W., Cobbold A. J, Palmer R. P. The fine structure of polytetrafluoroethylene, Polym. Sci, 1958,28: 365
    [26] Wunderlich B, Arakawa T. Polyethylene crystallized from the melt under elevated pressure, Polym. Sci Part A, 1964,2: 3697
    [27] Wunderlich B. Macromolecular physics, Volume 1. Crystal structure, morphology, defects, New York: Ed. Academic Press, 1973.
    [28] Hoffman J. D, Davis G. T, Lauritzen JIJr. "The Rate of crystallization of linear polymers with chain folding," In Treatise on Solid State Chemistry, Vol. 3, ed. N. B. Hannay. Plenum Press, New York, 1976.
    [29] (a) Hoffman J. D. Role of reptation in the rate of crystallization of polyethylene fractions from the melt, Polymer 1982, 23: 656
    (b) Hoffman J. D, Regime III crystallization in melt-crystallized polymers: The variable cluster model of chain folding, Polymer, 1983, 24: 3
    (c) Hoffman J. D. Transition from extended-chain to once-folded behaviour in pure n-paraffins crystallized from the melt, Polymer 1991, 32: 2828
    (d) Hoffman J. D. The relationship of C∞ to the lateral surface free energy a: estimation of C∞ for the melt from rate of crystallization data, Polymer 1992, 33: 2643
    [30] Clark E. J, Hoffman J. D. Regime III crystallization in polypropylene, Macromolecules, 1984, 17: 878
    [31] Hoffman J. D. Onset of chain folding in low-molecular-weight poly(ethylene oxide) fractions crystallized from the melt, Macromolecules, 1986, 19: 1124
    [32] Hoffman J. D, Miller R. L. Test of the reptation concept: crystal growth rate as a function of molecular weight in polyethylene crystallized from the melt, Macromolecules, 1988, 21: 3038
    [33] Hoffman J. D, Miller R. L, Marand H, Roitman D. B. Relationship between the lateral surface free energy sigma and the chain structure of melt-crystallized polymers, Macromolecules, 1992, 25: 2221
    [34] Hoffman J. D., Miller R. L. Kinetics of crystallization from the melt and chain folding in polyethylene fractions revisited: theory and experiment, Polyemr, 1997, 38:3151
    [35] Hoffman J. D. Rate of Spherulitic crystallization with chain folds in Polychlorotrifluoroethylene, Chem. Phys., 1962,37: 1723
    [36] Avrami M. Kinetics of phase change. I general theory, Chem. Phys., 1939, 7: 1103
    
    (b) Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei, Chem. Phys., 1940, 8: 212
    (c) Avrami M. Granulation, phase change, and microstructure kinetics of phase change. III, Chem. Phys., 1941,9:177 [37] Avrami M. Kinetics of phase change. I general theory, Chem. Phys. 1939, 7: 1103
    (b) Avrami M. Kinetics of phase change. II transformation-time relations for random distribution of nuclei, Chem. Phys., 1940, 8: 212
    (c) Avrami M. granulation, phase change, and microstructure kinetics of phase change. III, Chem. Phys., 1941, 9: 177
    [38] Evans U. R. Trans. Faraday Soc, 1945,41: 365
    [39] Mandelkern L., Quinn F. A., Flory P. J. Crystallization kinetics of high polymers. I. Bulk polymers, Appl. Phys., 1954, 25: 830
    [40] Mandelkern L. Crystallization kinetics of high polymers. II. Polymer-diluent mixtures, Appl. Phys., 1955, 26: 443
    
    [41] Ozawa T. Kinetics of non-isothermal crystallization, Polymer, 1971, 12: 150
    [42] Monasse B., Haudin J. M. Thermal dependence of nucleation and growth rate in polypropylene by nonisothermal calorimetry, Coll, Polym. Sci., 1986, 264: 117
    [43] Hieber C. A. Correlations for the quiescent crystallization kinetics of isotactic polypropylene and poly(ethylene terephthalate), Polymer, 1995, 36: 1455
    [44] Sajkiewicz P., Carpaneto L, Wasiak A. Application of the Ozawa model to non-isothermal crystallization of poly(ethylene terephthalate), Polymer, 2001, 42: 5365
    [45] Liu Z. H., Marechal P., Jerome R. Melting and crystallization of poly(vinylidene fluoride) blended with polyamide 6, Polymer, 1997, 38: 5149
    [46] Bogoeva G, Janevski A., Grozdanov A. Crystallization and melting behavior of iPP studied by DSC, Appl. Polym. Sci., 1998, 67: 395
    [47] Macosko C. W. Rheological changes during crosslinking, Brit. Polym., 1985, 17: 239
    [48] Danking J. K. In development in polymer characterization, Applied science, London, 1982
    [49] Lipshitz S., Macosko C. W. Rheological changes during a urethane network polymerization, Polym. Eng. Sci., 1976, 16: 803
    
    [50] Valles E. M., Macosko C. W. The effect of network structure in the equation of rubber elasticity, Rubber Chem. Tech., 1976,49: 1232
    
    [51] Castro J. M., Macosko C.W., Perry S. J. Viscosity changes during urethane polymerization with phase separation, Polym. Commun., 1984, 25: 82
    [52] Apicella A., Masi P., Nicolais L. Rheological behaviour of a commercial TGDDM-DDS based epoxy matrix during the isothermal cure, Rheol. Acta, 1984, 23:291
    [53] Adam M., Delsanti M., Durand D. Mechanical measurements in the reaction bath during the polycondensation reaction, near the gelation threshold, Macromolecules, 1985,18:2285
    [54] Malkin A.Y. Rheologie in polymersyntheseprozessen und bei der rerntzung von oligomeren, Plaste und Kautschuk, 1985,32: 281
    
    [55] Allain C, Salome L. Hydrolysed polyacrylamide/Cr~(3+) gelation: critical behavior of the rheologi cal properties at the sol-gel transition, Polym. Commun., 1987,28: 109
    
    [56] Axelos M. A. V., Kolb M. Crosslinking biopolymers: experimental evidence for scalar percolation theory, Phys. Rev. Lett., 1990, 64: 1457
    [57] Winter H. H. Can the gel point of a cross-linking polymer be detected by the G'-G" crossover? Polym. Eng. Sci., 1987,27: 1698
    [58] Tung C. Y. M., Dynes P. J. Relationship between viscoelastic properties and gelation in thermosetting systems, Appl. Polym. Sci., 1982,27: 569
    [59] Chambon F., Petrovic Z. S., MacKnight W. J., Winter H. H. Rheology of model polyurethanes at the gel point, Macromolecules, 1986,19: 2146
    [60] Boutahar K., Carrot C, Guillet J. Crystallization of polyolefms from rheological measurements-relation between the transformed fraction and the dynamic moduli, Macromolecules, 1998,31: 1921
    [61] Boutahar K., Carrot C, Guillet J. Polypropylene during crystallization from the melt as a model for the rheology of molten-filled polymers, Appl. Polym. Sci., 1996, 60: 103
    [62] Winter H. H., Chambon F. Analysis of linear viscoelasticity of a crosslinking polymer at the gel point, Rheol., 1986, 30: 367
    [63] Chambon F., Winter H. H. Linear viscoelasticity at gel point of a crosslinking PDMS with imbalance stoichimetry, Rheol., 1987, 31: 683
    [64] Chin B. D., Winter H. H. Field-induced gelation, yield stress, and fragility of an electro-rheological suspension, Rheol. Acta, 2002,41: 265
    [65] Li L., Mallin D. T., Aoki Y. J. Rheological images of poly(vinyl chloride) gels, 1. Dependence of sol-gel transition on concentration, Macromolecules, 1997, 30: 7835
    [66] Gelfer M. Y, Winter H. H. Effect of branch distribution on rheology of LLDPE during early stages of crystallization, Macromolecules, 1999, 32: 8974
    [67] YI Xiao-Su, Wu G., Pan Y. Properties and applications of filled conductive polymer composites, Polym. Intcrnational, 1997(44): 117
    [68] Jin J., Tao X., Pan Y, YI Xiao-Su. Study on the time dependent electrical behavior of carbon black-loaded polyethylene composites by isothermal annealing (invited lecture). Proc. of 3~(rd) China-Japan Seminar on Advanced Engineering Plastics, Polymer Alloys and Composites. Sept. 20/21, 1998 Chengdu China: 66
    [69] Kohler F. U. S. Pat. 3 243 753, March 1966
    
    
    [70] Ohe K., Naito Y. A new resistor having an anomalously large positive temperaturecoeffcient, Jap. Appl. Phys, 1971(10):.99
    
    [71] Meyer J. Glass transition temperature as a guide to selection of polymers suitablefor PTC materials, Polym. Eng. Sci.,1973,13(6): 462
    
    [72] Utracki L.A. Polymer Alloys and Blends, Carl Hanser, New York, 1989
    
    [73]胡洪国,郑强,陶小乐.超细SiO_2填充聚甲基乙烯基硅氧烷的动态流变特性, 高等学校化学学报,2004,25:985
    
    [74]郑强,胡洪国.SiO_2增强聚硅氧烷体系:键和橡胶与流变特性,功能材料,2004, 35:1
    
    [75]吴刚,郑强,江磊,宋义虎.HDPE氧化交联与动态流变行为,高等学校化学学 报,2004,25:357
    
    [76]陈春荣,郑强,胡洪国.PMVE/Sio2复合体系中粒子表面处理对动态粘弹特性 的影响,高等学校化学学报,2004,25:1969
    
    [77] Zheng Q., Zuo M. Investigation of structure and properties for polymer systems based on dynamic rheological approaches, Chinese Polym. Sci., 2005, 23: 341
    
    [78] Cao Y. X., Zheng Q., Du M. Relationships between thermo-oxidation and dynamic rheological behavior of EPDM, Acta Polym. Sini., 2005,3: 408
    
    [79]陈青.聚合物等温结晶时间尺度的流变学研究吴刚[博士论文],杭州,浙江大 学,2006
    
    [1] Utracki L.A. Polymer alloys and blends, Carl Hanser, New York, 1989
    
    [2]胡洪国,郑强,陶小乐.超细SiO_2填充聚甲基乙烯基硅氧烷的动态流变特性, 高等学校化学学报,2004,25:985
    
    [3]郑强,胡洪国.SiO_2增强聚硅氧烷体系:键和橡胶与流变特性,功能材料,2004, 35:1
    
    [4]吴刚,郑强,江磊,宋义虎.HDPE氧化交联与动态流变行为,高等学校化 学学报,2004,25:357
    
    [5]陈春荣,郑强,胡洪国.PMVE/Sio_2复合体系中粒子表面处理对动态粘弹特性 的影响,高等学校化学学报,2004,25:1969
    
    [6] Zheng Q., Zuo M. Investigation of structure and properties for polymer systemsbased on dynamic rheological approaches, Chinese J. Polym. Sci., 2005, 23: 341
    
    [7] Cao Y. X., Zheng Q., Du M. Relationships between thermo-oxidation and dynamicrheological behavior of EPDM, Acta Polym. Sini., 2005, 3: 408
    
    [8] Schwittay C, Mours M., Winter H. H. Rheological expression of physical gelationin polymers, Faraday Disc, 1995, 101: 93
    
    [9] Winter H. H., Chambon F. Analysis of linear viscoelasticity of a crosslinkingpolymer at the gel point, J. Rheol., 1986,30:367
    
    [10]Pogodina N. V., Winter H. H., Polypropylene crystallization as a physical gelationprocess, Macromolecules, 1998,31: 8164
    
    [11]Mours M., Winter H. H., Time-resolved rheometry, Rheol. Acta, 1994, 33: 385
    
    [12] Winter H. H., Morganelli P., Chambon F. Stoichiometry effects on rheology ofmodel polyurethanes at the gel point, Macromolecules, 1988,21: 532
    
    [13] Lin Y. G, Mallin D. T., Chien J. C. W., Winter H. H. Dynamic mechanicalmeasurement of crystallization-induced gelation in thermoplastic elastomericpoly(propylene), Macromolecules, 1991, 24: 850
    
    [14] Li L, Mallin D. T., Aoki Y. J. Rheological images of poly(vinyl chloride) gels, 1.Dependence of sol-gel transition on concentration, Macromolecules, 1997, 30:7835
    
    [15]Boutahar K., Carrot C. and Guillet J. Crystallization of polyolefins fromrheological measurements-relation between the transformed fraction and thedynamic moduli, Macromolecules, 1998, 31: 1921
    
    [16]Boutahar, K., Carrot C, Guillet J. Polypropylene during crystallization from themelt as a model for the rheology of molten-filled polymers, J. Appl. Polym. Sci.,1996,60:103
    
    [17] Carrot C, Guillet J., Boutahar K. Rheological behavior of a semi-crystallinepolymer during isothermal crystallization, Rheol. Acta., 1993, 32: 566
    
    [18]Bousmina M. Rheology of polymer blends; linear model for viscoelastic emulsions,Rheol. Acta, 1999,38:73
    
    [19]Lipshitz S., Macosko C. W. Rheological changes during a urethane networkpolymerization, Polym. Eng. Sci., 1976, 16: 803
    [20]Valles E. M., Macosko C. W. The effect of network structure in the equation of rubber elasticity, Rubber Chem. Tech., 1976,49: 1232
    [21] Castro J. M., Macosko C. W., Perry S. J. Viscosity changes during urethane polymerization with phase separation, Polym. Commun., 1984, 25: 82
    [22]Apicella A., Masi P., Nicolais L., Rheological behaviour of a commercial TGDDM-DDS based epoxy matrix during the isothermal cure, Rheol. Acta, 1984, 23:291
    [23]Adam M., Delsanti M., Durand D. Mechanical measurements in the reaction bath during the polycondensation reaction, near the gelation threshold, Macromolecules, 1985,18:2285
    [24]Malkin A. Y. Rheologie in polymersyntheseprozessen und bei der rerntzung von oligomeren, Plaste und Kautschuk, 1985,32: 281
    [25] Winter H. H. Can the gel point of a cross-linking polymer be detected by the G'-G" crossover? Polym. Eng. Sci., 1987,27: 1698
    [26]Axelos M. A. V., Kolb M. Crosslinking biopolymers: experimental evidence for scalar percolation theory, Phys. Rev. Lett., 1990,64: 1457
    [27]te Nijenhuis K., Winter H. H., Mechanical properties at the gel point of a crystallizing poly(vinyl chloride) solution, Macromolecules, 1989,22: 411
    [28]Chambon F., Winter H. H. Linear viscoelasticity at gel point of a crosslinking PDMS with imbalance stoichimetry, J. Rheol., 1987,31: 683
    [29]Michon C, Cuvelier G., Launay B. Concentration dependence of the critical viscoelastic properties of gelation at the gel point, Rheol. Acta. 1993,32: 94
    [30] Tanner R. I. Engineering rheology, Oxford, New York, 1985
    [1] Liu Z. H., Song Y. H., Zhou J. F., Zheng Q. Simultaneous measurement of rheological and conductive properties of carbon black filled ethylene-tetrafluorothylene copolymer, J Mater Sci, 2007,42: 8757
    [2] Chen Q., Fan Y. R., Zheng Q. A novel approach to rheological characterization for the gelation in polymer crystallization, Chin J Polym Sci, 2005,23: 423
    [3] Mucha M., Marszlek J., Fidrych A. Crystallization of isotactic polypropylene containing carbon black as a filler, Polymer, 2000,41: 4137
    [4] Macha M., Krolikowski Z. Application of DSC to study crystallization kinetics of polypropylene containing fillers, Journal of Thermal Analysis and Calorimetry, 2003, 74: 549
    [5] Wang K., MAI K., Zeng H. Isothermal crystallization behavior and melting characteristics of injection sample of nucleated polypropylene, J Appl Polym Sci, 2000, 78: 2547
    [6] Inaba N., Sato K., Suzuki S., Hashimoto T. Morphology control of binary polymer mixtures by spinodal decomposition and crystallization. I. Principle of method and preliminary results on PP/EPR, Macromolecules, 1986, 19: 1690
    [7] Inaba N., Yamada T., Suzuki S., Hashimoto T. Morphology control of binary polymer mixtures by spinodal decomposition and crystallization. I. Further studies on polypropylene and ethylene-propylene random copolymer, Macromolecules, 1988,21:407
    [8] Lim S. W., Lee K. H., Lee C. H. Liquid-liquid phase separation and its effect on crystallization in the extruded polypropylene/ethylene-propylene-rubber blend, Polymer, 1999, 40: 2837
    [9] Lee J. K., Lee J. H., Lee K. H., Jin B. S. Phase separation and crystallization behavior in extruded polypropylene/ethylene-propylene Rubber blends, J. Appl. Polym. Sci., 2001, 81: 695
    [10] Chen C. Y, Yunus W. M. Z. W., Chiu H. W., Kyu T. Phase separation behavior in blends of isotactic polypropylene and ethylene-propylene diene terpolymer, Polymer, 1997,38:4433
    [11]Xu J. T, Feng L. X, Yang S. L., Wu Y. N., Yang Y. Q., Kong X. M. Separation and identification of ethylene-propylene block copolymer, Polymer, 1997, 38: 4381
    [12]Velasco J. I., De Sajia J. A., Martinez A. B. Crystallization behavior of polypropylene filled with surface-modified talc, J Appl Polym Sci, 1996,61:125
    [13]Probst N., Carbon B., Donnet J. B., Bansal R. C., Wang M. J. Marcel Deckker, New York, 1993
    [14]Reboul J. P. Carbon Black-Polymer Composites, ed. E. K. Sichel, Marcel Deckker, New York, 1982
    [15]Miyasaka K., Watanabe K., Jojina E., et al. Electrical conductivity of carbon-polymer composites as a function of carbon content, J. Mater. Sci., 1982, 17: 1610
    [16]Medalia A. I. Electrical conduction in carbon black composites, Rubber Chem Technol, 1986, 59: 432
    [17] Malliaris A., Turner D. J. Influence of particle size on the electrical resistivity of compacted mixtures of polymeric and metallic powders, J. Appl. Phys., 1971, 42: 614
    [18] Carrot C, Guillet J., Boutahar K. Rheological behavior of a semi-crystalline polymer during isothermal crystallization, Rheol. Acta, 1993, 32: 566
    [19] Teh J. W., Blom H. P., Rudin A. A Study on the crystallization behavior of polypropylene, polyethylene and their blends by dynamic-mechanical and thermal methods, Polymer 1994, 35: 1680
    [20]Boutahar K., Carrot C, Guillet J. Crystallization of polyolefins from rheological measurements-relation between the transformed fraction and the dynamic moduli, Macromolecules, 1998,31: 1921
    [21] Boutahar, K., Carrot, C, Guillet J. Polypropylene during crystallization from the melt as a model for the rheology of molten-filled polymers, J. Appl. Polym. Sci., 1996,60:103
    [1] Kuo M. C, Huang J. C., Chen M. Non-isothermal crystallization kinetic behavior of alumina nanoparticle filled poly(ether ether ketone), Materials Chemistry and Physics, 2006,99: 258
    [2] Peng Z., Kong L. X., Li S. D. Non isothermal crystallisation kinetics of selLassembled polyvinyIaIcohoI / silica nano composite, Polymer, 2005,46: 1949
    [3] Iiu Z. J., Yan D. Y. Non isothermal crystallization kinetics of polyamide 1010 / montmorillonite nanocomposite, Polymer Engineering and Science, 2004,44: 861
    [4] de Medeiros E. S., Tocchetto R. S., de Carvalho I. H., Santos I. M. G., Souza A. G. Nucleating effect and dynamic crystallization of a poly(propylene) / talc system, Journal of Thermal Analysis and Calorimetry, 2001, 66: 523
    [5] Jeziorny A. Parameters characterizing the kinetics of the non-isothermal crystallization of poly (ethylene terephthalate)determined by DS, Polymer, 1978, 19:1142
    
    [6] Ozawa T. Kinetics of non isothermal crystallization, Polymer, 1971,12: 150
    [7] Liu T. X., Mo Z. S., Wang S. G., Zhang H. F. Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone), Polymer Engineering&Science, 1997,37: 56
    [8] Khanna Y. P., A Barometer of crvstallization rates of polymeric materials, Polymer Engineering&Science, 1990,30: 1615
    
    [9] Liu Z. H., Song Y. H, Zhou J. F, Zheng Q. J Mater Sci, 2007,42: 8757
    [10] Mubarak Y, Harkin-Jones E., Martin P. J., Ahmad M. Modeling of non-isothermal crystallization kinetics of isotactic polypropylene, Polymer, 2001,42: 3171
    [11]Monasse B., Haudin J. M. Thermal dependence of nucleation and growth rate in polypropylene by nonisothermal calorimetry, Colloid. Polym. Sci., 1986, 264: 117 [12]Bogoeva G., Janevski A., Grozdanov A. Crystallization and melting behavior of iPP studied by DSC, J. Appl. Polym. Sci., 1998, 67: 395
    [13]Eder M., Wlochowicz A. Kinetics of non-isothermal crystallization of polyethylene and polypropylene, Polymer, 1983,24: 1593
    [14]Hieber C. A. Correlations for the quiescent crystallization kinetics of isotactic polypropylene and poly(ethylene terephthalate), Polymer, 1995, 36: 1455
    [15]Di Lorenzo M. L., Silvestre C. Non-isothermal crystallization of polymers, Prog. Polym. Sci., 1999,24:917
    [16]Binsbergen F. L. Polymer, 1970, 11: 253.
    [17]Binsbergen F. L. J. Polym. Sci, Polym Symp, 1977, 59: 11.
    [18]Rybnikar F. J. Appl. Polym. Sci., 1982, 27: 1479.
    [19]Fujiyama M., Wakino T. J. Appl. Polym. Sci., 1991,42: 2749.
    [20]Fujiyama M., Wakino T. J. Appl. Polym. Sci., 1991,42: 2739.
    [21]Zhang Q, Shi Y, Wang H., Li Y, Li Y. Huagong Xuebao, 1992,43(5): 615.
    [22]Kim C.Y, Kim Y C, Kim S. C. Polym. Eng. Sci., 1993, 33: 1445.
    [23]Sterzynski T., Lambla M., Crozier H. Adv.Polym.Technol., 1994, 13: 25.
    
    
    [24] Smith T. L., Masilamani D., Bui L. K., Khanna Y. P, Bray R. G, Hammond W. B,Carran S., Bellers Jr., Macromole-cules, 1994,27: 3147.
    
    [25] Smith T. L, Masilamani D, Bui L. K., Brambilla R., Khanna Y. P., Gabriel K. A. J.Appl. Polym. Sci., 1994,52:591.
    
    [26]Gahleitner M., Wolfschwenger J., Bachner C, Bernreitner K., Beil W. J. Appl.Polym. Sci., 1996,61:649
    
    [27]Shepard T. A., Delsorbo C. R., Louth R. M, Wal-born J. L., Norman D. A., HarveyN. G, Spontak R. J. J. Polym. Sci.: PartB: Polym Phys, 1997,35: 2617.
    
    [28]Rabello M. S., While I. R. J. Appl. Polym. Sci., 1997, 64: 2505.
    
    [29]Macauley N. J., Harkin-Jones E. M. A., Murphy W. R. Polym. Eng. Sci., 1998, 38,516
    
    [30]Ito H., Kikutani T., Toada K., Takimot J., Koyama K. Modelling and numericalsimulation of polymer crystallization in injection moulding process, In Proceedingsregional PPS meetings, Goteborg Sweden, 1998
    
    [31] Carrot C, Guillet J., Boutahar K. Rheological behavior of a semi-crystallinepolymer during isothermal crystallization, Rheol. Acta., 1993, 32: 566
    
    [32] Chen Q., Fan Y.R., Zheng Q. A novel approach to rheological characterization forthe gelation in polymer crstallization, Chinese J. Polym. Sci., 2005,23: 423
    
    [33]Fan Y. R., Chen Q., Zheng Q. Characterization of physical gelation in theisothermal polymer crystallization, Int. Congr. on Rheol., 2004, 11:1
    
    [34]陈青,范毓润,李文春,郑强.HDPE等温结晶中液-固转变的流变特性,高等 学校化学学报,2006,2:365

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700