高分子纳米复合气敏材料及气体传感器
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文共设计制备以下五个系列共12种新型复合高分子气敏材料:盐酸羟胺盐修饰多壁纳米碳管(CNTs)/聚甲基丙烯酸甲酯(PMMA);Pd~0/CNTs;聚合物接枝多壁纳米碳管及纳米碳黑;不同末端基团超支化聚合物/CNTs;聚苯胺及其复合物。采用FT-IR、NMR、GPC、TGA、TEM、SEM、UV-Vis、XRD、AFM和拉曼光谱等手段表征了其组成和结构。通过浸涂、自组装原位生长以及静电纺丝方法制备了气敏元件。研究了其对甲醇、氨气等有机和无机气体的响应特性,讨论了复合物组成及结构、气敏薄膜微观结构以及元件制备工艺等对气敏元件响应特性的影响,探讨了复合物气敏机理。
     研究了混酸处理CNTs气敏元件对氨气、甲醇以及三乙胺蒸汽的响应特性,讨论了其基于p型半导体的气敏机理。在此基础上,采用盐酸羟胺盐对其进行修饰,并与PMMA复合,以浸涂法制备气敏元件。研究了其对醇类和氨气的响应特性,发现修饰后纳米碳管表现出n型半导体特性,其与PMMA复合物对甲醇有快速可逆的选择性响应,响应和回复时间分别约为9s和2s。提出了纳米碳管经修饰后,发生了从p型到n型半导体的转变,讨论了其基于n型半导体的气敏机理。
     通过溶液共混,乙醇或硼氢化钠还原的方法,制备了聚乙烯基吡咯烷酮(PVDP)/Pd~0/CNTs、Pd~0/CNTs和壳聚糖/Pd~0/CNTs复合气敏材料,以浸涂法制备了气敏元件。发现PVDP/CNTs复合物,在室温下对甲醇和乙醇蒸汽的响应灵敏度接近。而对甲醇蒸汽的响应灵敏度(S_(甲醇))是单独CNTs的2~5倍,PVDP/Pd~0/CNTs复合物的S_(甲醇)是单独CNTs的4~10倍,而且其S_(甲醇)/S_(乙醇)可达3~4倍,显示出对甲醇蒸汽具有一定的选择性。此外,PVDP/Pd~0/CNTs复合物的响应稳定性和重复性也较好。Pd~0/CNTs及壳聚糖/Pd~0/CNTs均可在室温下检测甲烷,其对2%(v/v)的甲烷气体的响应灵敏度分别约为5%和7.3%。
     采用氮氧自由基调控的自由基活性聚合法,制备了苯乙烯和4-乙烯基吡啶均聚物及共聚物接枝的纳米碳管和纳米碳黑气敏复合材料,通过浸涂法制备了气敏元件。研究了复合物对低浓度甲醇、四氢呋喃以及氯仿蒸汽的响应特性,发现复合物对气体的响应与聚合物的组成结构、气敏膜微观形态以及气体性质有关,纳米碳管复合物的响应灵敏度高于纳米碳黑复合物。讨论了复合物基于直接接触及隧道效应的导电机理,并提出了对于纳米碳管复合物的气敏机理为吸附气体后聚合物的溶解膨胀,造成导电通道的破坏,以及纳米碳管与气体之间的电荷转移的协同作用。而纳米碳黑复合物的气敏机理仅为吸附气体后聚合物的溶解膨胀,造成导电通道的破坏,而且碳黑复合物对低浓度和高浓度有机蒸汽的气敏机理不同。
     采用熔融缩聚的方法制备了具有三种不同末端基团(-OH(HBPE)、-COOH(AHPB)、-NH_2(HBPA))的超支化聚合物,并与CNTs复合制备了气敏材料,通过浸涂法制备了气敏元件。研究了复合物对甲醇、三乙胺以及乙酸蒸汽的响应特性。复合物对气体的响应与超支化聚合物的末端基团密切相关,能与末端基团发生反应的有机蒸汽具有很高的响应灵敏度,较低的检测限,但其响应回复性较差。提出了超支化聚合物末端基团与特定气体发生化学反应,诱发电荷转移的气敏机理。
     通过溶液原位生长、有机酸聚合掺杂以及共混掺杂等方法制备了聚苯胺及其与纳米碳管复合物,通过在自组装修饰电极上原位生长、浸涂以及静电纺丝法制备了气敏元件,研究了其对三乙胺气体的响应特性。发现原位生长聚苯胺对三乙胺蒸汽具有响应快速,灵敏度高,回复性和重复性好,检测限低(可达ppb级)等优点,提出其响应机理为吸附气体与聚苯胺发生酸碱掺杂反应及其与掺杂酸作用的竞争反应机理。与CNTs复合后其响应灵敏度提高了一倍,这可能因为聚苯胺和纳米碳管之间形成大π电子离域,使电荷转移更加容易。樟脑磺酸共混掺杂的可溶聚苯胺的气敏特性优于对甲苯磺酸聚合掺杂的聚苯胺,而响应灵敏度由掺杂水平决定。静电纺丝制备的聚苯胺纤维型敏感元件,由于纤维比表面积较大,利于气体的吸附扩散,其响应特性明显优于薄膜型元件。
Gas sensitive materials of five series of polymer nanocomposites, namely, composites of multi-walled carbon nanotubes (CNTs) chemically modified with hydroxylamine hydrochloride salt and poly(methyl methacrylate) (PMMA), composites of palladium (Pd~0) nanocomposites and CNTs, composites of polymer-grafted CNTs and nano-sized carbon black (CB), composites of CNTs and hyperbrenched polymers (HBP) with three kinds end groups, polyaniline (PANI) and its composites with CNTs, were designed and perpared, and characterized by FT-IR, NMR, GPC, TGA, TEM, SEM, UV-Vis, XRD, AFM and raman spectroscopy. Resistive type gas sensors based on the composites were prepared by the method of dip-coating, in-situ polymerization and electrospinning, etc. Their gas sensing properties towards the vapors of methanol, triethylamine, ammonia, etc. have been investigated at room temperature. The effects of the strutcure, composition and morphology of the composites and the methods of sensor preparation on their gas responses were disscused, and the sensing mechanism was explored.
     Gas sensing properties of the acid-treated CNTs were investigated towards the vapors of ammonia, methanol and triethylamine, and the sensing mechanism of the p-type semi-conductor was disscused. The CNTs were modified with hydroxylamine hydrochloride salt and formed composites with PMMA. Gas sensors based on the composites were prepared by the method of dip-coating. They exhibited a decreased resistivity unpon exposure to the vapors of reducing ammonia and methanol, indicating responses of an n-type semi-conductor. In addition, the response towards methanol vapor is fast, reversible and reproducible at room temperatue with response and recovery time of 9s and 2s, respectively.
     The composites of polyvinylpyrrolidone (PVPD)/Pd~0/CNTs, Pd~0/CNTs and chitosan/Pd~0/CNTs were developed by reducing the mixture of palladium salt, polymer and CNTs. Gas sensors based on the composites were prepared by dip-coating. It was found that PVPD/Pd~0/CNTs composite exhibited the sensitivity 1~4 times higher than that of CNTs alone towards methanol vapor at room temperature, while its sensitivity to methanol and ethanol vapors of the same concentration was almost equal. The PVPD/Pd~0/CNTs composites showed the sensitivity 1~2 times higher than that of PVPD/CNTs in the detection of methanol vapor. In addition, its sensitivity to methanol vapor is 2-3 times higher than that to ethanol vapor, suggesting a selective response to methanol vapor. The responses also showed good linearity, repeatability and stability. The composites of Pd~0/CNTs and chitosan/Pd~0/CNTs exhibited a sensitivity of 5% and 7.3%, respectively, towards 2% methane at room temperature, and the responses were recoverable, stable and reproducible. A sensing mechanism taking into account of the catalytic effect of palladium was proposed.
     Composites of CNTs and CB grafted with polystyrene, poly(4-vinylpyridine), poly(styrene-b-4-vinylpyridine) and poly(styrene-co-4-vinylpyridine) were prepared by a nitroxide mediated "living" free radical polymerization, and used for preparation of gas sensors by dip-coating. The electrical responses of the composites towards low concentration organic vapors of methanol, tetrahydrofuran and chloroform were investigated at room temperature. It was found that the gas sensitive properties of the composites towards the organic vapors depended on the structure, composition, morphology of the composites and the nature of the vapors. The sensitivity of CNTs composites was higher than that of CB composites. The CNTs composites exhibited a sensing mechanism different from that of CB composites. In addition, the CB composite showed different mechanism towards vapors of high and low concentration.
     Hyperbranched polymers with different end groups were prepared by melt polycondensation, and formed composites with CNTs to prepare gas sensors by dip coating. The response of the composites towards organic vapors of methanol, triethylamine and acetic acid were investigated. It was found that the sensitivity of the composites was closely related to the end groups of the hyperbranched polymers. The chemical reactions between the end groups of the polymers and the vapors resulted in a high sensitivity and low detection limit of their composites with CNTs. A sensing mechanism was put forward based on the interactions of the vapors with the end groups of the hyperbranched polymers.
     PANI and its composites with CNTs were prepared by in-situ polymerization and deposited on electrodes modified by self-assembled polyelectrolytes to prepare gas sensors. Their electrical responses to triethylamine vapor were investigated. It was found that the responses of in-situ polymerized PANI were fast, highly sensitive, reversible and reproducible, with the detection limit of ppb level. A sensing mechanism of competition between the reactions of organic vapor with PANI and the doping acid were proposed. The PANI/CNTs composite exhibited a sensitivity twice higher than that of PANI alone, which might relate toπ-electron delocalization between PANI and CNTs. Soluble PANI was prepared by polymerization of aniline in the presence of p-toluene sulfonic acid and doping polyaniline base with D-camphor-10-sulfonic acid (CSA). Their sensitivity to triethylamine vapor was related to the doping levels of PANI. Nanofibers of the CSA doped soluble PANI were prepared by electrospinning. It was found that the fibers exhibited better sensing properties than that PANI films in the detection of triethylamine vapor, which was might be due to their higher surface area.
引文
[1]W.H.Brattain;J.Bardeen,Surface properties of germanium.Bell.Syst.Tech.J.,(1953),32,1.
    [2]T.Seiyama;A.Kato;K.Fujishi;M.Nagatani,A new detector for gaseous components using semiconductive thin films.Anal Chem.,(1962),34(11),1502-1503.
    [3]M.Bendahan;R.Boulmani;J.L.Seguin;K.Aguir,Characterization of ozone sensors based on WO_3reactively sputtered films:influence of O_2 concentration in the sputtering gas,and working temperature.Sens.Actuators B,Chem.,(2004),100(3),320-324.
    [4]A.Salehi,Preparation and characterization of proton implanted indium tin oxide selective gas sensors.Sens.Actuators B,Chem.,(2003),94(2),184-188.
    [5]H.Tang;K.Prasad;R.Sanjines;F.Levy,TiO_2 anatase thin films as gas sensors.Sens.Actuators B,Chem.,(1995),26(1-3),71-75.
    [6]X.F.Chu;X.Q.Liu;G.Y.Men,Effects of CdO dopant on the gas sensitivity properties of ZnFe_2O_4semiconductors.Sens.Actuators B,Chem.,(2000),65(1),64-67.
    [7]I.Raible;M.Burghard;U.Schlecht;A.Yasuda;T.Vossmeyer,V_2O_5 nanofibres:novel gas sensors with extremely high sensitivity and selectivity to amines.Sens.Actuators B,Chem.,(2005),106(2),730-735.
    [8]A.Ryzhikov;M.Labeau;Al.Gaskov,Al_2O_3(M=Pt,Ru)catalytic membranes for selective semiconductor gas sensors.Sens.Actuators B,Chem.,(2005),109(1),91-96.
    [9]N.Sanz;M.Lomello-Tafin;J.C.Valmalette;P.G.M.Isa,Preparation and characterization of Au/ZrO_2nanoparticles obtained by oxidation of ZrXAuY alloy.Mater Sci.Eng.C,(2002),19(1-2),79-83.
    [10]Y.Yamada;Y.Seno;Y.Masuoka;K.Yamashita,Nitrogen oxides sensing characteristics of Zn_2SnO_4thin film.Sens.Actuators B,Chem.,(1998),49(3),248-252.
    [11]S.J.Ippolito;S.Kandasamy;K.Kalantar-zadeh;W.Wlodarski;K.Galatsis;G.Kiriakidis;N.Katsarakis;M.Suchea,Highly sensitive layered ZnO/LiNbO_3 SAW device with InO_x selective layer for NO_2 and H_2 gas sensing.Sens.Actuators B,Chem.,(2005),111-112(11),207-212.
    [12]X.H.Wu;Y.D.Wang;Y.F.Li;Z.L.Zhou,Electrical and gas-sensing properties of perovskite-type CdSnO_3 semiconductor material.Mater.Chem.Phys.,(2003),77(2),588-593.
    [13]D.Kotsikau;M.Ivanovskaya;D.Orlik;M.Falasconi,Gas-sensitive properties of thin and thick film sensors based on Fe_2O_3-SnO_2 nanocomposites.Sens.Actuators B,Chem.,(2004),101(1-2),199-206.
    [14]Z.Ling;C.Leach,The effect of relative humidity on the NO_2 sensitivity of.a SnO_2/WO_3heterojunction gas sensor.Sens.Actuators B,Chem.,(2004),102(1),102-106.
    [15]J.R.Sambrano;L.A.Vasconcellos;J.B.L.Martinsb;M.R.C.Santos;A.B.E.Longo,A theoretical analysis on electronic structure of the(110)surface of TiO_2-SnO_2 mixed oxide.J.Molecular Structure,Theochem,(2003),629(1),307-314.
    [16]M.Kugishima;K.Shimanoe;N.Yamazo,C_2H_4O sensing properties for thick film sensor using La_2O_3-modified SnO_2.Sens.Actuators B,Chem.,(2006),118(1-2),171-176.
    [17]A.Forleo;L.Francioso;M.Epifani;S.Capone;A.M.Taurino;P.Siciliano,NO_2-gas-sensing properties of mixed In_2O_3-SnO_2 thin films.Thin Solid Films,(2005),490(1),68-73.
    [18] U. S.Choi; G.Sakai; K. Shimanoe; N. Yamazoe, Sensing properties of SnO_2-Co_3O_4 composites to CO and H_2. Sens. Actuators B, Chem., (2004), 98 (2-3), 166-173.
    
    [19] N. Yamazoe; G.Sakai; K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia, (2003), 7 (1), 63-75.
    
    [20] G.Korotcenkov, Gas response control through structural and chemical modification of metal oxide films: state of the art and approaches. Sens. Actuators B, Chem., (2005), 107 (1), 209-232.
    
    [21] S. D. Choi; D. D. Lee, CH_4 sensing characteristics of K-, Ca-, Mg- impregnated SnO_2 sensor. Sens. Actuators B, Chem., (2001), 77 (1), 335-338.
    
    [22] P. Ivanov; E. Llobet; X. Vilanova; J. Brezmes; J. Hubalek; X. Correig, Development of high sensitivity ethanol gas sensors based on Pt-doped SnO_2 surfaces. Sens. Actuators B, Chem., (2004), 99 (3), 201-206.
    
    [23] A. M. Ruiz; A. Cornet; K. Shimanoe; J. R. Morante; N. Yamazoe, Effects of various metal additives on the gas sensing performances of TiO_2 nanocrystals obtained from hydrothermal treatments. Sens. Actuators B, Chem., (2005), 108 (1-2), 34-40.
    
    [24] N. S. Ramgir; Y. K. Hwang; S. H. Jhung; H. K. Kim; J. S. Hwang; I. S. Mulla; J. S. Chang, CO sensor derived from mesostructured Au-doped SnO_2 thin film. Appl. Surf. Sci., (2006), 252 (12), 4298-4305.
    
    [25] S. M. A. Durrania; E. E. Khawaja; M. F. Al-Kuhaili, CO-sensing properties of undoped and doped tin oxide thin films prepared by electron beam evaporation. Talanta, (2005), 65 (5), 1162-1167.
    
    [26] S. A. Patil; L. A. Patil; D. R. Patil; G.H. Jain; M. S. Wagh, CuO-modified tin titanate thick film resistors as H_2-gas sensors. Sens. Actuators B, Chem., (2006), 123 (1), 233-239.
    
    [27] A. V. Tadeev; G.Delabouglise; M. Labeau, Influence of Pd and Pt additives on the microstructural and electrical properties of SnO_2-based sensors. Mater. Sci. Eng. B, (1998), 57 (1), 76-83.
    
    [28] M. S. Selim, Room temperature sensitivity of SnO_2-ZrO_2 sol-gel thin films. Sens. Actuators B, Chem., (2000), 84 (1), 76-80.
    
    [29] R. S. Niranjan; V. A. Chaudhary; I. S. Mulla; K. Vijayamohanan, A novel hydrogen sulfide room temperature sensor based on copper nanocluster functionalized tin oxide thin films. Sens. Actuators B, Chem., (2002), 85 (1), 26-32.
    
    [30] N. G.Patel; P. D. Patel; V. S. Vaishnav, Indium tin oxide (ITO) thin film gas sensor for detection of methanol at room temperature. Sens. Actuators B, Chem., (2003), 96 (1), 180-189.
    
    [31] R. Srivastava; R. Dwivedi; S. K. Srivastava, Development of high sensitivity tin oxide based sensors for gas/odour detection at room temperature. Sens. Actuators B, Chem., (1998), 50 (3), 175-180.
    
    [32] B. Y. Wei; M. C. Hsu; P. G.Su; H. M. Lin; R. J. Wu; H. J. Lai, A novel SnO_2 gas sensor doped with carbon nanotubes operating at room temperature. Sens. Actuators B, Chem., (2004), 101 (1-2), 81-89.
    
    [33] L. A. Patil; D. R. Patil, Heterocontact type CuO-modified SnO_2 sensor for the detection of a ppm level H_2S gas at room temperature. Sens. Actuators B, Chem., (2006), 120 (1), 316-323.
    
    [34] N. Yamazoe, New approaches for improving semiconductor gas sensors. Sens. Actuators B, Chem., (1991), 5 (1-4), 7-19.
    
    
    [35] X. Kong; Y. Li, High sensitivity of CuO modified SnO_2 nanoribbons to H_2S at room temperature. Sens. Actuators B, Chem., (2005), 105 (2), 449-453.
    [36]C.Yu;Q.Hao;S.Saha;L.Shi;X.Kong;Z.L.Wang,Integration of metal oxide nanobelts with Microsystems for nerve agent detection.Appl.Phys.Lett.,(2005),86,063101.
    [37]Q.Wan;Q.H.Li;Y.J.Chen;T.H.Wang;X.L.He;X.G.Gao;J.P.Li,Positive temperature coefficient resistance and humidity sensing properties of Cd-doped ZnO nanowires.Appl.Phys.Lett.,(2004),84(16),3085-3087.
    [38]Q.Wan;Q.H.Li;Y.J.Chen;T.H.Wang;X.L.He;J.P.Li;C.L.Lin,Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors.Appl.Phys.Lett.,(2004),84(18),3654-3656.
    [39]T.H.Wang;H.T.Wang;B.S.Kang;F.Ren;L.C.Tien;P.W.Sadik;D.P.Norton;S.J.Pearton;J.Lin,Hydrogen-selective sensing at room temperature with ZnO nanorods.Appl.Phys.Lett.,(2005),86,243503.
    [40]X.F.Chu;C.H.Wang;D.L.Jiang;C.M.Zheng,Ethanol sensor based on indium oxide nanowires prepared by carbothermal reduction reaction.Chem.Phys.Lett.,(2004),399(4-6),461-467.
    [41]D.H.Zhang;Z.Q.Liu;C.Li;T.Tang;X.L.Liu;S.Han;B.Lei;C.W.Zhou,Detection of NO_2down to ppb levels using individual and multiple In_2O_3 nanowire devices.Nano Lett.,(2004),4(10),1919-1924.
    [42]C.Li;D.H.Zhang;B.Lei;S.Han;X.L.Liu;C.W.Zhou,Surface treatment and doping dependence of In_2O_3 nanowires as ammonia sensors.J.Phys.Chem.,B,(2003),107(45),12451-12455.
    [43]E.Comini;L.Yubao;Y.Brando;G.Sberveglieri,Gas sensing properties of MoO_3 nanorods to CO and CH_3OH.Chem.Phys.Lett.,(2005),407(4-6),368-371.
    [44]O.K.Varghese;D.W.Gong;M.Paulose;K.G.Ong;C.A.Grimes,Hydrogen sensing using titania nanotubes.Sens.Actuators B,Chem.,(2003),93(1-3),338-344.
    [45]S.Baker,Phthalocyanine Langmuir Blodgett film gas detector.IEE Proc,Part Ⅰ:Solid-State Electron Devices,(1983),130(5),260-264.
    [46]P.S.Vincett;Z.D.Popovic;L.McIntyre,A novel structural singularity in vacuum-deposited thin films:The mechanism of critical optimization of thin film properties.Thin Solid Films,(1981),82(4),357-376.
    [47]Y.L.Lee;C.H.Chang,NO_2 sensing characteristics of copper phthalocyanine films:Effects of low temperature annealing and doping time.Sens.Actuators B,Chem.,(2006),119(1),174-179.
    [48]Y.L.Lee;C.Y.Hsiao;R.H.Hsiao,Annealing effects on the gas sensing properties of copper phthalocyanine films.Thin Solid Films,(2004),468(1-2),280-284.
    [49]L.Valli,Phthalocyanine-based Langmuir-Blodgett films as chemical sensors.Adv.Coll.Interf.Sci.,(2005),116(1-3),13-44.
    [50]J.D.Wright,Gas absorption on phthalocyanines and its effects on electrical properties.Prog.Surf.Sci.,(1989),31(1-2),1-60.
    [51]C.Z.Gu;L.Y.Sun;T.Zhang;T.J.Li;M.Hirata,Study on vapour-sensitivity of LB film chem FET with new structure.Thin Solid Films,(1994),244(1-2),909-912.
    [52]D.Crouch;S.C.Thorpe;M.J.Cook;I.Chambrier,Langmuir-Blodgett films of an asymmetrically substitute phthalocyanine:Improved gas-sensing properties.Sens.Actuators B,Chem.,19(1-3),411-414.
    [53]李亚君;蔡小平,四(2,4-二叔戊基苯氧基)酞菁铜(Ⅱ)的合成及其LB膜.应用化学,(1991),8(2),52-55.
    [54]W.Jakubik;M.Urbaczyk;A.Opilski,Sensor properties of lead phthalocyanine in a surface acoustic wave system.Ultrasonics(2001),39(3),227-232.
    [55]F.Armand;H.Ferez;S.Fouriaux;O.Araspin;J.P.Pradeau;C.G.Claessens;E.M.Maya;P.Vazquez;T.Tortes,Tetraamidometallo-phthalocyanines Langmuir-Blodgett Films:Morphology versus central metal effects on NO_2 detection.Synth.Met.,(1999),102(1-3),1476-1477.
    [56]T.Ceyhan;A.Altindal;M.K.Erbil;O.Bekaroglu,Synthesis,characterization,conduction and gas sensing properties of novel multinuclear metallo phthalocyanines(Zn,Co)with alkylthio substituents.Polyhedron,(2006),25(3),737-746.
    [57]B.Scho11horn;J.P.Germain.;A.Pauly;C.Maleysson;J.P.Blanc,Influence of peripheral electron-withdrawing substituents on the conductivity of zinc phthalocyanine in the presence of gases.Part 1:reducing gases.Thin Solid Films,(1998),326(1-2),245-250.
    [58]M.Sulu;A.Altindal;O.Bekaroglu,Synthesis,characterization and electrical and CO_2 sensing properties of triazine containing three dendritic phthalocyanine.Synth.Met.,(2005),155(1),211-221.
    [59]V.Parra;M.R.Vilar;N.Battaglini;A.M.Ferraria;A.M.B.do Rego;S.Boufi;M.L.Rodriguez-Mendez;E.Fonavs;I.Muzikante;M.Bouvet,New hybrid films based on cellulose and hydroxygallium phthalocyanine.Synergetic effects in the structure and properties.Langmuir,(2007),23(7),3712-3722.
    [60]J.P.Viricelle;A.Pauly;L.Mazet;J.Brunet;M.Bouvet;C.Varenne;C.Pijolat,Selectivity improvement of semi-conducting gas sensors by selective filter for atmospheric pollutants detection.Mater.Sci.Eng.C,(2006),26(2-3),186-195.
    [61]M.Bora;D.Schut;M.A.Baldo,Combinatorial detection of volatile organic compounds using metal-phthalocyanine field effect transistors.Anal.Chem.,(2007),79(9),3298-3303.
    [62]H.Shirakawa;E.J.Louis;A.G.MacDiarmid,Synthesis of electrically conducting organic polymers:halogen derivatives of poly(acetylene).J.Chem.Soc.,Chem.Commun.,(1977),(16),578-580.
    [63]S.Sathiyanarayanan;S.S.Azim;G.Venkatachari,A new corrosion protection coating with polyaniline-TiO_2 composite for steel.Electrochimica Acta,(2007),52(5),2068-2074.
    [64]Y.Y.Wang;X.L.Jing,Intrinsically conducting polymers for electromagnetic interference shielding.Polym.Adv.Technol.,(2005),16(4),344-351.
    [65]申亮;徐景坤;洪啸吟,导电高分子在抗静电剂领域中的应用.中国皮革,(2004),33(13),40-43.
    [66]K.C.Persaud,Polymers for chemical sensing.Mater Today,(2005),8(4),38-44.
    [67]W.Lu;E.Smela;P.Adams;G.Zuccarello;B.R.Mattes,Development of solid-in-hollow electrochemical linear actuators using highly conductive polyaniline.Chem.Mater.,(2004),16(9),1615-1621.
    [68]M.Y.Li;Y.Guo;Y.Wei;A.G.MacDiarmid;P.I.Lelkes,Electrospinning polyaniline-contained gelatin nanofibers for tissue engineering applications.Biomaterials,(2006),27(13),2705-2715.
    [69]G.J.Cruz;J.Morales;M.M.Castillo-Ortega;R.Olayo,Synthesis of polyaniline films by plasma polymerization.Synth.Met.,(1997),88(3),213-218.
    [70]C.Liao;M.Gu,Electroless deposition ofpolyaniline film via autocatalytic polymerization of aniline.Thin Solid Films,(2002),408(1),37-42.
    [71]J.X.Huang;J.A.Moore;J.H.Acquaye;R.B.Kaner,Mechanochemical route to the conducting polymer polyaniline.Macromolecules,(2005),38(2),317-321.
    [72]A.Malinauskas,Chemical deposition of conducting polymers.Polymer,(2001),42(9),3957-3972.
    [73]D.Nicolas-Debarnot;F.Poncin-Epaillard,Polyaniline as a new sensitive layer for gas sensors.Anal.Chim.Acta,(2003),475(1-2),1-15.
    [74]J.Stejskal;I.Sapurina;J.Prokes,In-situ polymerized polyaniline films.Synth.Met.,(1999),105(3),195-202.
    [75]S.Virji;J.Huang;R.B.Kaner;B.H.Weiller,Polyaniline nanofiber gas sensors:examination of response mechanisms.Nano Lett.,(2004),4(3),491:496.
    [76]A.L.Kukla;Y.M.Shirshov;S.A.Piletsky,Ammonia sensors based on sensitive polyaniline films.Sens.Actuators B,Chem.,(1996),37(3),135-140.
    [77]S.Virji;J.Huang;R.B.Kaner;B.H.Weiller,2004.Nano Lett.,(Polyaniline nanofiber gas sensors:examination of response mechanisms),4(3),491-496.
    [78]X.R.Zeng;T.M.Ko,Structures and properties of chemically reduced polyanilines,.Polymer,(1998),39(5),1187-1195.
    [79]S.Sharma;C.Nirkhe;S.Pethkar;A.A.Athawale,Chloroform vapour sensor based on copper/polyaniline nanocomposite.Sens.Actuators B,Chem.,(2002),85(1-2),131-136.
    [80]C.K.Tan;D.J.Blackwood,Interactions between polyaniline and methanol vapour.Sens.Actuators B,Chem.,(2000),71(3),184-191.
    [81]V.Svetlicic;A.J.Schmidt;L.L.Miller,Conductometric sensors based on the hypersensitive response of plasticized polyaniline films to organic vapors.Chem.Mater.,(1998),10(11),3305-3307.
    [82]S.A.Krutovertsev;O.M.Ivanova;S.I.Sorokin,Sensing properties ofpolyaniline films doped with dawson heteropoly compounds.J.Anal.Chem.,(2001),56(11),1057-1060.
    [83]M.Matsuguchi;A.Okamoto;Y.Sakai,Effect of humidity on NH_3 gas sensitivity of polyaniline blend films.Sens.Actuators B,Chem.,(2003),94(1),46-52.
    [84]Q.L.Hao;V.Kulikov;V.A.Mirsky,Investigation of contact and bulk resistance of conducting polymers by simultaneous two- and four-point technique.Sens.Actuators B,Chem.,(2003),94(3),352-357.
    [85]G.K.Prasad;T.P.Radhakrishnan;D.S.Kumar;M.G.Krishna,Ammonia sensing characteristics of thin film based on polyelectrolyte templated polyaniline.Sens.Actuators B,Chem.,(2005),106(2),626-631.
    [86]D.Xie;Y.D.Jiang;W.Pan;D.Li;Z.M.Wu;Y.R.Li,Fabrication and characterization of polyaniline-based gas sensor by ultra-thin film technology.Sens.Actuators B,Chem.,(2002),81(2-3),158-164.
    [87]O.Y.Posudievskii;N.V.Konoshchuk;A.L.Kukla;A.S.Pavlyuchenko;G.V.Linyuchev;Y.M.Shirshov;V.D.Pokhodenko,Effect of the nature of the dopant on the response of a sensor arry based on polyaniline.Theoret.Experim.Chem.,(2003),39(4),219-224.
    [88]G.Anitha;E.Subramanian,Dopant induced specificity in sensor behaviour of conducting polyaniline materials with organic solvents.Sens.Actuators B,Chem.,(2003),92(1-2),49-59.
    [89]L.G.Paterno;L.H.C.Mattoso,Influence of different dopants on the adsorption,morphology,and properties of self-assembled films of poly(o-ethoxyaniline).J.Appl.Polym.Sci.,(2002),83(6),1309-1316.
    [90]V.Dixit;S.C.K.Misra;B.S.Sharma,Carbon monoxide sensitivity of vacuum deposited polyaniline semiconducting thin films.Sens.Actuators B,Chem.,(2005),104(1),90-93.
    [91]V.V.Chabukswar;S.Pethkar;A.A.Athawale,Acrylic acid doped polyaniline as an ammonia sensor.Sens.Actuators B,Chem.,(2001),77(3),657-663.
    [92]A.G.MacDiarmid;J.C.Chiang;A.F.Richter;A.J.Epstein,Polyaniline:a new concept in conducting polymer.Synth.Met.,(1987),18(1-3),285-290.
    [93]S.Watcharaphalakorn;L.Ruangchuay;D.Chotpattahanont;A.Sirivat;J.Schwank,Polyaniline/polyimide blends as gas sensors and electrical conductivity response to CO-N_2 mixtures.Polym.Int.,(2005),54(8),1126-1133.
    [94]K.Ogura;H.Shiigi,A CO_2 sensing composite film consisting of base-type polyaniline and poly(vinyl alcohol).Electrochem.Solid State Lett.,(1999),2(9),478-480.
    [95]M.Zilberman;G.I.Titelman;A.Siegmann;Y.Haba;M.Narkis;D.Alperstein,Conductive blends of thermally dodecylbenzene sulfonic acid-doped polyaniline with thermoplastic polymers.J.Appl.Polym.Sci.,(1997),66(2),243-253.
    [96]E.Segal;Y.Haba;M.Narkis;A.Siegmann,Polyaniline/PVAc blends:variation with time of structure and conductivity of films cast from aqueous dispersions.J.Appl.Polym.Sci.,(2001),79(4),760-766.
    [97]S.H.Hosseini;A.A.Entezami,Preparation and characterization of polyaniline blends with polyvinyl acetate,polystyrene and polyvinyl chloride for toxic gas sensor.Polym.Adv.Technol.,(2001),12(8),182-193.
    [98]K.H.Hong;K.W.Oh;T.J.Kang,Polyaniline-Nylon 6 composite fabric for ammonia gas sensor.J.Appl.Polym.Sci.,(2004),92(1),37-42.
    [99]J.S.Kim;S.O.Sohn;J.S.Huh,Fabrication and sensing behavior of PVF_2 coated-polyaniline sensor for volatile organic compounds.Sens.Actuators B,Chem.,(2005),108(1-2),409-413.
    [100]J.S.Do;W.B.Chang,Amperometric nitrogen dioxide gas sensor based on PAn/Au/Nafion((R))prepared by constant current and cyclic voltammetry methods.Sens.Actuators B,Chem.,(2004),101(1-2),97-106.
    [101]J.Reemts;J.Parisi;D.Schlettwein,Electrochemical growth of gas-sensitive polyaniline thin films across an insulating gap.Thin Solid Films,(2004),466(1-2),320-325.
    [102]D.Li;Y.D.Jiang;Z.M.Wu;X.D.Chen;Y.R.Li,Self-assembly of polyaniline ultrathin films based on doping-induced deposition effect and applications for chemical sensors.Sens.Actuators B,Chem.,(2000),66(1),125-127.
    [103]A.A.Athawale;M.V.Kulkami,Polyaniline and its substituted derivatives as sensor for aliphatic alcohols.Sens.Actuators B,Chem.,(2000),67(1-2),173-177.
    [104]E.Scorsone;S.Christie;K.C.Persaud;F.Kvasnik,Evanescent sensing of alkaline and acidic vapours using a plastic clad silica fibre doped with poly(o-methoxyaniline).Sens.Actuators B,Chem.,(2004),97(2-3),174-181.
    [105]S.H.Hosseini,Investigation of sensing effects of polystyrene-graft-polyaniline for cyanide compounds.J.Appl.Polym.Sci.,(2006),101(6),3920-3926.
    [106]Q.L.Hao;X.Wang;L.D.Lu;X.J.Yang;V.M.Mirsky,Electropolymerized multilayer conducting polymers with response to gaseous hydrogen chloride.Macromol.Rapid Commun.,(2005),26(13),1099-1103.
    [107]A.A.Athawale;S.V.Bhagwat;P.P.Katre,Nanocomposite of Pd-polyaniline as a selective methanol sensor.Sens.Actuators B,Chem.,(2006),114(1),263-267.
    [108]C.Conn;S.Sestak;A.T.Baker;J.Unsworth,A polyaniline-based selective hydrogen sensor.Electroanalysis,(1998),10(16),1137-1141:
    [109]J.Z.Wang;I.Matsubara;N.Murayama;S.Woosuck;N.Izu,The preparation of polyaniline intercalated MoO_3 thin film and its sensitivity to volatile organic compounds.Thin Solid Films,(2006),514(1-2),329-333.
    [110]M.K.Ram;O.Yavuz;V.Lahsangah;M.Aldissi,CO gas sensing from ultrathin nano-composite conducting polymer film.Sens.Actuators B,Chem.,(2005),106(2),750-757.
    [111]N.Densakulprasert;L.Wannatong;D.Chotpattananont;P.Hiamtup;A.Sirivat;J.Schwank,Electrical conductivity of polyaniline/zeolite composites and synergetic interaction with CO.Mater.Sci.Eng.,B(2005),117(3),276-282.
    [112]X.F.Ma;M.Wang;G.Li;H.Z.Chen;R.Bai,Preparation of polyaniline-TiO_2 composite film with in situ polymerization approach and its gas-sensitivity at room temperature.Mater.Chem.Phys.,(2006),98(2-3),241-247.
    [113]A.Z.Sadek;W.Wlodarski;K.Shin;R.B.Kaner;K.Kalantar-zadeh,A layered surface acoustic wave gas sensor based on a polyaniline/In_2O_3 nanofibre composite.Nanotechnology,(2006),17(17),4488-4492.
    [114]V.Bavastrello;E.Stura;S.Carrara;V.Erokhin;C.Nicolini,Poly(2,5-dimethylaniline)-MWNTs nanocomposite:a new material for conductometric acid vapours sensor.Sens.Actuators B,Chem.,(2004),98(2-3),247-253.
    [115]L.Valentini;V.Bavastrello;E.Stura;I.Armentano;C.Nicolini;J.M.Kenny,Sensors for inorganic vapor detection based on carbon nanotubes and poly(o-anisidine)nanocomposite material.Chem.Phys.Lett.,(2004),383(5-6),617-622.
    [116]E.Bekyarova;M.Davis;T.Butch;M.E.Itkis;B.Zhao;S.Sunshine;R.C.Haddon,Chemically functionalized single-walled carbon nanotubes as ammonia sensors.J.Phys.Chem.,B,(2004),108(51),19717-19720.
    [117]Y.Wanna;N.Srisukhumbowornchai;A.Tuantranont;A.Wisitsoraat;N.Thavanmgkul;P.Singjai,The effect of carbon nanotube dispersion on CO gas sensing characteristics of polyaniline gas sensor.J.Nanosci.Nanotech.,(2006),6(12),3893-3896.
    [118]T.Zhang;M.B.Nix;B.Y.Yoo,;M.A.Deshusses;N.V.Myung,Electrochemically functionalized single-walled carbon nanotube gas sensor.Electroanalysis,(2006),18(12),1153-1158.
    [119]X.F.Ma;X.B.Zhang;Y.Li;G.A.Li;M.Wang;H.Z.Chen;Y.H.Mi,Preparation of nano-structured polyaniline composite film via "carbon nanotubes seeding" approach and its gas-response studies.Macromol.Mater Eng.,(2006),291(1),75-82.
    [120]X.Y.Zhang;R.Chan-Yu-King;A.Jose;S.K.Manohar,Nanofibers of polyaniline synthesized by interfacial polymerization.Synth.Met.,(2004),145(1),23-29.
    [121]J.X.Huang;S.Virji;B.H.Weiller;R.B.Kaner,Polyaniline nanofibers:facile synthesis and chemical sensors.J.Am.Chem.Soc.,(2003),125(2),314-315.
    [122]S.K.Pillalamarri;F.D.Blum;A.T.Tokuhiro;J.G.Story;M.F.Bertino,Radiolytic synthesis of polyaniline nanofibers:A new templateless pathway.Chem.Mater.,(2005),17(2),227-229.
    [123]J.X.Huang;R.B.Kaner,Nanofiber formation in the chemical polymerization of aniline:A mechanistic Study.Angew.Chem.,(2004),116(43),5941-5945.
    [124]X.L.Jing;Y.Y.Wang;D.Wu;J.P.Qiang,Sonochemical synthesis of polyaniline nanofibers.Ultrason.Sonochem.,(2007),14(1),75-80.
    [125]X.Y.Zhang;W.J.Goux;S.K.Manohar,Synthesis of polyaniline nanofibers by "Nanofiber Seeding".J.Am.Chem.Soc.,(2004),126(14),4502-4503.
    [126]H.J.Qiu;J.Zhai;S.H.Li;L.Jiang;M.X.Wan,Oriented growth of self-assembled polyaniline nanowire arrays using a novel method.Adv.Funct.Mater.,(2003),13(12),925-928.
    [127]A.G.MacDiarmid;W.E.J.Jr;I.D.Norris;J.Gao;A.T.J.Jr;N.J.Pinto;J.Hone;B.Han;F.K.Ko;H.Okuzaki;M.Llaguno,Electrostatically-generated nanofibers of electronic polymers.Synth.Met.,(2001),119(1),27-30.
    [128]P.K.Kahol;N.J.Pinto,An EPR investigation of electrospun polyaniline-polyethylene oxide blends.Synth.Met.,(2004),140(2-3),269-272.
    [129]H.X.He;C.Z.Li;N.J.Tao,Conductance of polymer nanowires fabricated by a combined electrodeposition and mechanical break junction method.Appl.Phys.Lett.,(2001),78(6),811-813.
    [130]C.He;Y.W.Tan;Y.F.Li,Conducting polyaniline nanofiber networks prepared by the doping induction of camphor sulfonic acid.J.Appl.Polym.Sci.,(2003),87(9),1537-1540.
    [131]J.X.Huang;S.Virji;B.H.Weiller;R.B.Kaner,Nanostructured polyaniline sensors.Chem.Eur.J.,(2004),10(6),1314-1319.
    [132]S.Virji;R.B.Kaner;B.H.Weiller,Hydrogen sensors based on conductivity changes in polyaniline nanofibers.J.Phys.Chem.,B,(2006),110(44),22266-22270.
    [133]X.F.Ma;G.Li;M.Wang;Y.N.Cheng;R.Bai;H.Z.Chen,Preparation of a nanowire-structured polyaniline composite and gas sensitivity studies.Chem.Eur.J.,(2006),12(12),3254-3260.
    [134]X.B.Yan;Z.J.Han;Y.Yang;B.K.Tay,NO_2 gas sensing with polyaniline nanofibers synthesized by a facile aqueous/organic interracial polymerization.Sens.Actuator.s B,Chem.,(2006),123(1),107-113.
    [135]J.Liu;Y.H.Lin;L.Liang;J.A.Voigt;D.L.Huber;Z.R.Tian;E.Coker;B.Mckenzie;M.J.Mcdermott,Templateless assembly of molecularly aligned conductive polymer nanowires:A new approach for oriented nanostructures.Chem.Eur.J.,(2003),9(3),604-611.
    [136]D.Hong;M.Umashankar;J.J.Wayne,Conductive polyaniline/PMMA coaxial nanofibers:Fabrication and chemical sensing.Polym.Preprints,(2003),44,124-125.
    [137]H.Q.Liu;J.Kameoka;D.A.Czaplewski;H.G.Craighead,Polymeric nanowire chemical sensor.Nano Lett.,(2004),4(4),671-675.
    [138]A.Ramanavicius;A.Ramanaviciene;A.Malinauskas,Electrochemical sensors based on conducting polymer polypyrrole.Electrochimica Acta,(2006),51(27),6025-6037.
    [139]J.Tamm;A.Alumaa;A.Hallik;V.Sammelselg,Redox properties of polypyrrole bilayers.Electrochimica Acta,(2001),46(26),4105-4112.
    [140]W.Schuhmann;R.Lammert;B.Uhe;H.L.Schmidt,Polypyrrole,a new possibility for covalent binding of oxidoreductases to electrode surfaces as a base for stable biosensors.Sens.Actuators B,Chem.,1(1-6),537-541.
    [141]Q.Fang;D.G.Chetwynd;J.W.Gardner,Conducting polymer films by UV-photo processing.Sens.Actuators A,Phys.,(2002),99(1-2),74-77.
    [142]K.Hosono;I.Matsubara;N.Murayama;N.I.W.Shin,The sensitivity of 4-ethylbenzenesulfonic acid-doped plasma polymerized,polypyrrole films to volatile organic compounds.Thin Solid Films,(2005),484(1-2),396-399.
    [143]G.Gustafsson;I.Lundstormi;B.Liedberg;C.R.Wu;O.Inganas;O.Wennerstrom,The interaction between ammonia and poly(pyrrole).Synth.Met.,(1989),31(2),163-179.
    [144]G.Gustafsson;I.Lundstorm,The effect of ammonia on the physical properties of polypyrrole.Synth.Met.,(1987),21(1-3),203-208.
    [145]I.Laihdesmaki;A.Lewenstam;A.Ivaska,A polypyrrole-based amperometric ammonia sensor.Talanta,(1996),43,125-134.
    [146]L.Ruangchuay;A.Sirivat;J.Schwank,Electrical conductivity response of polypyrrole to acetone vapor:effect of dopant anions and interaction mechanisms.Synth.Met.,(2004),140(1),15-21.
    [147]C.W.Lin;Y.L.Liu;R.Thangamuthu,Investigation of the relationship between surface thermodynamics of the chemically synthesized polypyrrole films and their gas-sensing responses to BTEX compounds.Sens.Actuators B,Chem.,(2003),94(1),36-45.
    [148]C.W.Lin;B.J.Hwang;C.R.Lee,Characteristics and sensing behavior of electrochemically codeposited polypyrrole-poly(vinyl alcohol)thin film exposed to ethanol vapors.J.Appl.Polym.Sci.,(1999),73(11),2079-2087.
    [149]P.N.Bartlett;S.K.Ling-Chung,Conducting polymer gas sensors part Ⅱ:response of polypyrrole to methanol vapor.Sens.Actuators,(1989),19,141-150.
    [150]R.P.Tandon;M.R.Tripathy;A.K.Arora;S.Hotchandani,Gas and humidity,response of iron oxide - Polypyrrole nanocomposites.Sens.Actuators B,Chem.,(2006),114(2),768-773.
    [151]J.E.G.d.Souza;F.L.d.Santos;B.B.Neto;C.G.d.Santos;C.P.d.Melo,Polypyrrole thin films gas sensors.Synth.Met.,(2001),119(1),383-384.
    [152]J.E.G.de Souza;F.L.dos Santos;B.B.Neto;C.G dos Santos;M.V.B.dos Santos;C.P.de Melo,Free-gown polypyrrole thin films as aroma sensors.Sens.Actuators B,Chem.,(2003),88(3),246-259.
    [153]C.W.Lin;B.J.Hwang;C.R.Lee,Sensing behaviors of the electrochemically co-deposited polypyrrole-poly(vinyl alcohol)thin film exposed to ammonia gas.Mater.Chem.Phys.,(1999),58(2),114-120.
    [154]L.H.Dall'Antonia;M.E.Vidotti;S.I.C.de Torresi;R.M.Torresi,A new sensor for ammonia determination based on polypyrrole films doped with dodecylbenzenesulfonate(DBSA)ions.Electroanalysis,(2002),14(22),1577-1586.
    [155]B.J.V.Tongol;C.A.Binag;F.B.Sevilla,Surface and electrochemical studies of a carbon dioxide probe based on conducting polypyrrole.Sens.Actuators B,Chem.,(2003),93(1-3),187-196.
    [156]S.Hamilton;M.Hepher;J.Sommerville,Polypyrrole materials for detection and discrimination of volatile organic compounds.Sens.Actuators B,Chem.,(2005),107(1),424-432.
    [157]L.S.Jiang;H.K.Jun;Y.S.Hoh;J.O.Lim;D.D.Lee;J.S.Huh,Sensing characteristics of polypyrrole-poly(vinyl alcohol)methanol sensors prepared by in situ vapor state polymerization.Sens.Actuators B,Chem.,(2005),105(2),132-137.
    [158]M.Penza;E.Milella;F.Musio;M.B.Alba;G.Cassano;A.Quirini,AC and DC measurements on Langmuir-Blodgett polypyrrole films for selective NH_3 gas detection.Mater.Sci.Eng.C,(1998),5(3-4),255-258.
    [159]M.F.Mabrook;C.Pearson;M.C.Petty,Inkjet-printed polypyrrole thin films for vapour sensing.Sens.Actuators B,Chem.,(2006),115(1),547-551.
    [160]Y.Li,Doping competition of anions during the electropolymerisation of pyrrole in aqueous solutions.Synth.Met.,(1996),79(3),225-227.
    [161]A.Kaynak,Effect of synthesis parameters on the surface morphology of conducting polypyrrole films.Mat.Res.Bull.,(1997),32(3),271-285.
    [162]M.Brie;R.Turco;C.Neamtu;S.Pruneanu,The effect of initial conductivity and doping anions on gas sensitivity of conducting polypyrrole films to NH_3.Sens.Actuators B,Chem.,(1996),37(3),119-122.
    [163]Q.Fang;D.G.Chetwynd;J.A.Covington;C.S.Toh;J.W.Gardner,Micro-gas sensor with conducting polymers.Sens.Actuators B,Chem.,(2002),84(1),66-71.
    [164]B.P.J.D.Costello;P.Evans;N.Guernion;N.M.Ratcliffe;P.S.Sivanand;G.C.Teare,The synthesis of a number of 3-alkyl and 3-carboxy substituted pyrroles;their chemical polymerisation onto poly(vinylidene fluoride)membranes,and their use as gas sensitive resistors.Synth.Met.,(2000),114(2),181-188.
    [165]L.Ruangchuay;A.Sirivat;J.Schwank,Polypyrrole/poly(methylmethacrylate)blend as selective sensor for acetone in lacquer.Talanta,(2003),60(1),25-30.
    [166]J.H.Cho;J.B.Yu;J.S.Kim;S.O.Sohn;D.D.Lee;J.S.Huh,Sensing behaviors of polypyrrole sensor under humidity condition.Sens.Actuators B,Chem.,(2005),108(1-2),389-392.
    [167]N.T.Kemp;A.B.Kaiser;H.J.Trodahl;B.Chapman;R.G.Bucldey;A.C.Partridge;P.J.S.Foot,Effect of ammonia on the temperature-dependent conductivity and thermopower ofpolypyrrole.J.Polym.Sci.,Part B,Polym.phys.,(2006),44(9),1331-1338.
    [168]D.M.Liu;J.AguilarHernandez;K.PotjeKamloth;H.D.Liess,A new carbon monoxide sensor using a polypyrrole film grown on an interdigital-capacitor substrate.Sens.Actuators B,Chem.,(1997),41(1-3),203-206.
    [169]N.Guernion;R.J.Ewen;K.Pihlainen;N.M.Ratcliffe;G.C.Teare,The fabrication and characterisation of a highly sensitive polypyrrole sensor and its electrical responses to amines of differing basicity at high humidities.Synth.Met.,(2002),126(2-3),301-310.
    [170]C.W.Lin;J.Y.Yang;B,J.Hwang,Methanol sensors based on conductive polymer composites from polypyrrole and poly(ethylene oxide)-sensing properties(I).J.Chin.Inst.Chem.Eng.,(1999),30(6),449-456.
    [171]B.J.Hwang;J.Y.Yang;C.W.Lin,Recognition of alcohol vapor molecules by simultaneous measurements of resistance changes on polypyrrole-based composite thin films and mass changes on a piezoelectric crystal.Sens.Actuators B,Chem.,(2001),75(1-2),67-75.
    [172]R.Gangopadhyay;A.De,Conducting polymemr composites:novle materials for gas sensing.Sens.Actuators B,Chem.,(2001),77(1-2),326-329.
    [173]N.V.Bhat;A.P.Gadre;V.A.Bambole,Investigation of electropolymerized polypyrrole composite film:characterization and application to gas sensors.J.Appl.Polym.Sci.,(2003),88(1),22-29.
    [174]C.P.d.Melo;B.B.Neto;E.G.d.Lima;L.F.B.d.Lira;J.E.G.d.Souza,Use of conducting polypyrrole blends as gas sensors.Sens.Actuators B,Chem.,(2005),109(2),348-354.
    [175]N.Guernion;B.P.J.D.Costello;N.M.Ratcliffe,The synthesis of 3-octadecyl- and 3-docosylpyrrole,their polymerisation and incorporation into novel composite gas sensitive resistors.Synth.Met.,(2002),128(2),139-147.
    [176]K.Suri;S.Annapoorni;A.K.Sarkar;R.P.Tandon,Gas and humidity sensors based on iron oxide-polypyrrole nanocomposites.Sens.Actuators B,Chem.,(2006),114(2),768-773.
    [177]V.Saxena;S.Choudhury;S.C.Gadkari;S.K.Gupta;J.V.Yakhmi,Room temperature operated ammonia gas sensor using polycarbazole Langmuir-Blodgett film.Sens.Actuators B,Chem.,(2005),107(1),277-282.
    [178]K.Hosono;I.Matsubara;N.Murayama;S.Woosuck;N.Izu,Synthesis of polypyrrole/MoO_3hybrid thin films and their volatile organic compound gas-sensing properties.Chem.Mater.,(2005),17(2),349-354.
    [179]I.Matsubara;K.Hosono;N.Murayama;S.Woosuck;N.Izu,Synthesis and gas sensing properties of polypyrrole/MoO_3-layered nanohybrids.Bull.Chem.Soc.Jpn.,(2004),77(6),1231-1237.
    [180]L.N.Geng;X.L.Huang;Y.Q.Zhao;P.Li;S.R.Wang;S.M.Zhang;S.H.Wu,H_2S sensitivity study of polypyrrole/WO_3 materials.Solid-State Electronics,(2006),50(5),723-726.
    [181]K.H.An;S.Y.Jeong;H.R.Hwang;Y.H.Lee,Enhanced sensitivity of a gas sensor incorporating single-walled carbon nanotube-polypyrrole nanocomposites.Adv.Mater.,(2004),16(12),1005-1009.
    [182]J.Jang;J.Bae,Carbon nanofiber/polypyrrole nanocable as toxic gas sensor.Sens.Actuators B,Chem.,(2007),112(1),7-13.
    [183]D.Kincal;A.Kumar;A.D.Child;J.R.Reynolds,Conductivity switching in polypyrrole-coated textile fabrics as gas sensors.Synth.Met.,(1998),92(1),53-56.
    [184]G.Jin;J.Norrish;C.Too;G.Wallace,Polypyrrole filament sensors for gases and vapours.Current Appl.Phys.,(2004),4(2-4),366-369.
    [185]Y.B.Wang;G.A.Sotzing;R.A.Weiss,Conductive polymer foams as sensors for volatile amines.Chem.Mater.,(2003),15(2),375-377.
    [186]S.Brady;K.T.Lau;W.Megill;G.G.Wallace;D.Diamond,The development and characterisation of conducting polymeric-based sensing devices.Synth.Met.,(2005),154(1-3),25-28.
    [187]W.Ladawan;S.Anuvat,Electrospun fibers of polypyrrole/polystyrene blend for gas sensing applications.PMSE Preprints,(2004),91,692-693.
    [188]C.D.Dimitrakopoulos;P.R.L.Malenfant,Organic thin film transistors for large area electronics.Adv.Mater,(2002),14(2),99-117.
    [189]A.Kraft;A.C.Grimsdale;A.B.Holmes,Electroluminescent conjugated polymers-Seeing polymers in a new light.Angew.Chem.,Int.Ed.,(1998),37(4),402-428.
    [190]C.J.Brabec;N.S.Sariciftci;J.C.Hummelen,Plastic solar cells.Adv.Funct.Mater.,(2001),11(1),15-26.
    [191]L.Groenendaal;F.Jonas;D.Freitag;H.Pielartzik;J.R.Reynolds,Poly(3,4-ethylenedioxythiophene)and its derivatives:past,present,and future.Adv.Mater.,(2000),12(7),481-494.
    [192]C.Wochnowski;S.Metev,UV-laser-assisted synthesis of iodine-doped electrical conductive polythiophene.Appl.Surf.Sci.,(2002),186(1-4),34-39.
    [193]S.Tierney;M.Heeney;I.McCulloch,Microwave-assisted synthesis of polythiophenes via the Stille coupling.Synth.Met.,(2005),148(2),195-198.
    [194]F.Naso;F.Babudri;D.C01angiuli;G.M.Farinola;F.Quaranta;R.Rella;R.Tafuro;L.Valli,Thin film construction and characterization and gas-Sensing performances of a tailored phenylene-thienylene copolymer.J.Am.Chem.Sot.,(2003),125(30),9055-9061.
    [195]B.Li;G.Sauve;M.C.Iovu;M.Jeffries-EL;R.Zhang;J.Cooper;S.Santhanam;L.Schultz;J.C.Revelli;A.G.Kusne;T.Kowalewski;J.L.Snyder;L.E.Weiss;G.K.Fedder;R.D.McCullough;D.N.Lambeth,Volatile organic compound detection using nanostructured copolymers.Nano Lett.,(2006),6(8),1598-1602.
    [196]B.Li;S.Santhanam;L.Schultz;M.Jeffries-EL;M.C.Iovu;G.Sauvé;J.Cooper;R.Zhang;J.C.Revelli;A.G.Kusne;J.L.Snyder;T.Kowalewski;L.E.Weiss;R.D.McCullough;G.K.Fedder;D.N.Lambeth,Inkjet printed chemical sensor array based on polythiophene conductive polymers.Sens.Actuators B,Chem.,(2006),123(2),651-660.
    [197]H.S.Jung;T.Shimanouchi;S.Morita;R.Kuboi,Novel fabrication of conductive polymers contained micro-array gas sensitive films using a micromanipulation method.Elecroanalysis,(2003),15(18),1453-1459.
    [198]R.Rella;P.Siciliano;F.Quaranta;L.V.T.Primo;L.Schenetti,Poly[3-(butylthio)thiophene]Langmuir-Blodgett films as selective solid state chemiresistors for nitrogen dioxide.Colloids Surf.,A,Physicochem.Eng.Asp.,(2002),198-200,829-833.
    [199]M.C.Gallazzi;L.Castellani;R.A.Marin;G.Zerbi,Regiodefined substituted poly (2,5-thienylene)s.J.Polym.Sci.,Part A,Polym.Chem.,(1993),31(13),3339-3349.
    [200]S.V.Meille;A.Farina;E Bezziccheri;M.C.Gallazzi,The influence of alkoxy side chains on the conformational flexibility of oligo- and polythiophenes.Adv.Mater.,(1994),6(11),848-851.
    [201]M.C.Gallazzi;L.Tassoni;C.Bertarelli;G Pioggia;F.Di Francesco;E.Montoneri,Poly(alkoxy-bithiophenes)sensors for organic vapours.Sens.Actuators B,Chem.,(2003),88(2),178-189.
    [202]Y.Sakurai;H.S.Jung;T.Shimanouchi;T.Inoguchi;S.Morita;R.Kuboi;K.Natsukawa,Novel array-type gas sensors using conducting polymers,and their performance for gas identification.Sens.Actuators B,Chem.,(2002),83(1-3),270-275.
    [203]S.H.Hosseini;A.A.Entezami,Chemical and electrochemical synthesis of homopolymer and copolymers of 3-methoxyethoxythiophene with aniline,thiophene and pyrrole for studies of their gas and vapour sensing.Polym.Adv.Technol.,(2001),12(9),524-534.
    [204]K.S.V.Santhanam;R.Sangoi;L.Fuller,A chemical sensor for chloromethanes using a nanocomposite of multiwalled carbon nanotubes with poly(3-methylthiophene).Sens.Actuators B,Chem.,(2005),106(2),766-771.
    [205]D.M.Bubb;R.A.Mcgill;J.S.Horwitz;M.Fitz-Gerald;E.J.Houser;R.M.Stroud,Laser-based processing of polymer nanocomposites for chemical sensing applications.J.Appl.Phys.,(2001),89(10),5739-5746.
    [206]J.A.Covington;J.W.Gardner;D.Briand;N.F.de Rooij,A polymer gate FET sensor array for detecting organic vapours.Sens.Actuators B,Chem.,(2001),77(1-2),155-162.
    [207]J.H.chen;N.Tsubokawa,Electric properties of conducting composite from poly(ethylene oxide)and poly(ethylene oxide)-grafted carbon black in solvent vapor.Polym.J.,(2000),32(9),729-736.
    [208]J.H.Chen;N.Tsubokawa,Novel gas sensor from polymer-grafted carbon black:Vapor response of electric resistance of conducting composites prepared from poly(ethylene-block-ethylene oxide)-grafted carbon black.J.Appl.Polym.Sci.,(2000),77(11),2437-2447.
    [209]J.H.Chen;H.Iwata;N.Tsubokawa;Y.Maekawa;M.Yoshida,Novel vapor sensor from polymer-grafted carbon black:effects of heat-treatment and gamma-ray radiation-treatment on the response of sensor material in cyclohexane vapor.Polymer,(2002),43(8),2201-2206.
    [210]J.H.Chen;N.Tsubokawa,A novel gas sensor from polymer-grarfted carbon black:Effects of polymer,crystalline organic compound,and carbon black on electric response to tetrahydrofuran vapor.J.Macromol.Sci.,Pure Appl.Chem.,(2001),38(4),383-398.
    [211]J.H.Chen;N.Tsubokawa;Y.Maekawa;M.Yoshida,Vapor response properties of conducting composites prepared from crystalline oligomer-grafted carbon black.Carbon,(2002),40(9),1602-1605.
    [212]E.S.Tillman;M.E.Koscho;R.H.Grubbs;N.S.Lewis,Enhanced sensitivity to and classification of volatile carboxylic acids using arrays of linear poly(ethylenimine)-carbon black composite vapor detectors Anal,Chem.,(2003),75(7),1748-1753.
    [213]E.S.Tillman;N.S.Lewis,Mechanism of enhanced sensitivity of linear poly(ethylenimine)-carbon black composite detectors to carboxylic acid vapors.Sens.Actuators B,Chem.,(2003),96(1-2),329-342.
    [214]T.Gao;E.S.Tillman;N.S.Lewis,Detection and classification of volatile organic amines and carboxylic acids using arrays of carbon black-dendrimer composite vapor detectors.Chem.Mater.,(2005),17(11),2904-2911.
    [215]L.Sartore;M.Penco;S.D.Sciucca;G.Borsarini;V.Ferrari,New carbon black composite vapor detectors based on multifunctional polymers.Sens.Actuators B,Chem.,(2005),111-112,160-165.
    [216]X.Jing;W.Zhao,The effect of particle size on electric conducting percolation threshold in polymer/conducting particle composites.J.Mater.Sci.Lett.,(2000),19(5),377-379.
    [217]J.W.Hu;G.S.Cheng;M.Q.Zhang;M.W.Li;D.S.Xiao;S.G Chen;M.Z.Rong;Q.Zheng,Electrical resistance response of poly(ethylene oxide)-based conductive composites to organic vapors:Effect of filler content,vapor species,and temperature,J.Appl.Polym.Sci.,(2005),98(4),1517-1523.
    [218]B.C.Sisk;N.S.Lewis,Vapor sensing using polymer/carbon black composites in the percolative conduction regime.Langmuir,(2006),22(18),7928-7935.
    [219]L.Quercia;F.Loffredo;B.Alfano;V.L.Ferrara;G.D.Francia,Fabrication and characterization of carbon nanoparticles for polymer based vapor sensors.Sens.Actuators B,Chem.,(2004),100(1-2),22-28.
    [220]K.Arshak;E.Moore;L.Cavanagh;J.Harris;B.McConigly;C.Cunniffe;G.Lyons;S.Clifford,Determination of the electrical behaviour of surfactant treated polymer/carbon black composite gas sensors.Composites Part A,Appl.Sci.Manuf.,(2005),36(4),487-491.
    [221]J.R.Li;J.R.Xu;M.Q.Zhang;M.Z.Rong,Carbon black/polystyrene composites as candidates for gas sensing materials.Carbon,(2003),41(12),2353-2360.
    [222]H.Iwata;T.Nakanoya;H.Morohashi;J.Chen;T.Yamauchi;N.Tsubokawa,Novel gas and contamination sensor materials from polyamide-block-poly(ethylene oxide)-grafted carbon black.Sens.Actuators B,Chem.,(2006),113(2),875-882.
    [223]S.G.Chen;J.W.Hu;M.Q.Zhang;M.W.Li;M.Z.Rong,Gas sensitivity of carbon black/waterborne polyurethane composites.Carbon,(2004),42(3),645-651.
    [224]M.E.Koscho;R.H.Grubbs;N.S.Lewis,Properties of vapor detector arrays formed through plasticization of carbon black-organic polymer composites.Anal.Chem.,(2002),74(6),1307-1315.
    [225]K.Arshak;E.Moore;L.Cavanagh;C.Cunniffe;S.Clifford,Examining the use of oxide particles to enhance the sensitivity of polymer/carbon black nanocomposite gas sensors.Prog.Solid State Chem.,(2005),33(2-4),199-205.
    [226]X.M.Dong;R.W.Fu;M.Q.Zhang;B.Zhang;J.R.Li;M.Z.Rong,Vapor-induced variation in electrical performance of carbon black/poly(methyl methacrylate)composites prepared by polymerization filling.Carbon,(2003),41(2),371-374.
    [227]S.G.Chen;J.W.Hu;M.Q.Zhang;M.Z.Rong,Effects of temperature and vapor pressure on the gas sensing behavior of carbon black filled polyurethane composites.Sens.Actuators B,Chem.,(2005),105(2),187-193.
    [228]X.D.Chen;Y.D.Jiang;Z.M.Wu;D.Li;J.D.Yang,Morphology and gas-sensitive properties of polymer based composite films.Sens.Actuators B,Chem.,(2000),66(1),37-39.
    [229]J.F.Feller;Y.Grohens,Electrical response of poly(styrene)/carbon black conductive polymer composites(CPC)to methanol,toluene,chloroform and styrene vapors as a function of filler nature and matrix tacticity.Synth.Met.,(2005),154(1-3),193-196.
    [230]S.M.Briglin;N.S.Lewis,Characterization of the temporal response profile of carbon black-polymer composite detectors to volatile organic vapors.J.Phys.Chem.,B,107(40),11031-11042.
    [231] S. G.Chen; J. W. Hu; M. Q. Zhang; M. Z. Rong; Q. Zheng, Improvement of gas sensing performance of carbon black/waterborne polyurethane composites: Effect of crosslinking treatment. Sens. Actuators B, Chem., (2006), 113 (1), 361-369.
    
    [232] Y. L. Luo; Y. X. Liu; Q. L. Yu, Influence of glow discharge plasma treatment on vapor-induced response of poly(vinylidene fluoride)-carbon black composite thin films. Thin Solid Films, (2007), 515 (7-8), 4016-4023.
    
    [233] R. Kessick; G.Tepper, Electrospun polymer composite fiber arrays for the detection and identification of volatile organic compounds. Sens. Actuators B, Chem., (2006), 117(1), 205-210.
    
    [234] N. Tsubokawa; J. H. Chen; G.Wei; M. Mikuni; K. Fujiki, Grafting of polymers onto cabon nanofiber surface and application to sensor materials. Polym. Prepronts, (2003), 44,429-430.
    
    [235] B. Zhang; R. W. Fu; M. Q. Zhang; X. M. Dong; L. C. Wang; C. U. Pittman, Gas sensitive vapor grown carbon nanofiber/polystyrene sensors. Mater. Res. Bull, (2006), 41 (3), 553-562.
    
    [236] M. Narkis; S. Srivastava; R. Tchoudakov; O. Breuer, Sensors for liquids based on conductive immiscible polymer blends. Synth. Met, (2000), 113 (1), 29-34.
    
    [237] E. Segal; R. Tchoudakov; M. Narkis; A. Siegmann, Sensors for chemicals based on electrically conductive immiscible HIPS/TPU blends containing carbon black. J. Mater. Sci., (2004), 39 (18), 5673-5682.
    
    [238] E. Segal; R. Tchoudakov; I. Mironi-Harpaz; M. Narkis; A. Siegmann, Chemical sensing materials based on electrically-conductive immiscible polymer blends. Polym. Int., (2005), 54 (7), 1065-1075.
    
    [239] N. Tsubokawa; J. Inaba; K. Arai; K. Fujiki, Responsiveness of electric resistance of polymer-grafted carbon black/alumina gel composite against solvent vapor and solute in solution. Polym. Bull., (2000), 44 (3), 317-324.
    
    [240] J. H. Chen; Y. Maekawa; M. Yoshida; N. Tsubokawa, Radiation grafting of polyethylene onto conductive carbon black and application as a novel gas sensor. Polym. J., (2002), 34 (1), 30-35.
    
    [241] J. Chen; H. Iwata; Y. Maekawa; M. Yoshida; N. Tsubokawa, Grafting of polyethylene by gamma-radiation grafting onto conductive carbon black and application as novel gas and solute sensors. Radial Phys. Chem., (2003), 67 (3-4), 397-401.
    
    [242] G.Wei; K. Fujiki; H. Saitoh; K. Shirai; N. Tsubokawa, Surface grafting of polyesters onto carbon nanofibers and electric properties of conductive composites prepared from polyester-grafted carbon nanofibers. Polym. J., (2004), 36 (4), 316-322.
    
    [243] N. Tsubokawa, Preparation and properties of polymer-grafted carbon nanotubes and nanofibers. Polym. J., (2005), 37 (9), 637-655.
    
    [244] H. Morohashi; T. Nakanoya; H. Iwata; T. Yamauchi; N. Tsubokawa, Novel contamination and gas sensor materials from amphiphilic polymer-grafted carbon black. Polym. J., (2006), 38 (6), 548-553.
    
    [245] X. M. Dong; Z. P. Qin; R. W. Fu; M. Q. Zhang; B. Zhang; M. Z. Rong, Percolation and gas sensing behaviours of ternary conductive composites: Vapour-gTOwn carbon fibres carbon black/poly(methyl methacrylate). Adv. Compos. Lett., (2003), 12 (6), 247-253.
    
    [246] M. Q. Zhang; M. Z. Rong; Z. W. Zhang, Organic vapor sensibility of carbon black/polyethylene wax composites. J. Mater. Sci., (2004), 39 (16-17), 5617-5620.
    [247]J.W.Hu;S.G.Chen;M.Q.Zhang;M.W.Li;M.Z.Rong,Low carbon black filled polyurethane composite as candidate for wide spectrum gas-sensing element.Mater.Lett.,(2004),58(27-28),3606-3609.
    [248]M.M.Dong;R.W.Fu;M.Q.Zhang;B.Zhang;N.Z.Rong,Organic vapour sensor from carbon black filled amorphous polymer composite:Effects of processing,carbon fibres and irradiation.Polym.Polym.Compos.,(2005),13(3),213-221.
    [249]S.G.Chen;X.L.Hu;J.Hu;M.Q.Zhang;M.Z.Rong;Q.Zheng,Relationships between organic vapor adsorption behaviors and gas sensitivity of carbon black filled waterborne polyurethane composites.Sens.Actuators B,Chem.,(2006),119(1),110-117.
    [250]B.Zhao;R.W.Fu;M.Q.Zhang;H.Yang;M.Z.Rong;Q.Zheng,Effect of soft segments of waterborne polyurethane on organic vapor sensitivity of carbon black filled waterborne polyurethane composites.Polym.J.,(2006),38(8),799-806.
    [251]J.F.Feller;D.Langevin;S.Marais,Influence of processing conditions on sensitivity of conductive polymer composites to organic solvent vapours.Synth.Met.,(2004),144(1),81-88.
    [252]J.F.Feller;H.Guezenoc;H.Bellegou;Y.Grohens,Smart poly(styrene)/carbon black conductive polymer composites films for styrene vapour sensing.Makromol.Chem.,Macromol.Symp.,(2005),222,273-280.
    [253]K.Zribi;J.F.Feller;K.Elleuch;A.Bourmaud;B.Elleuch,Conductive polymer Composites obtained from recycled poly(carbonate)and rubber blends for heating and sensing applications.Polym.Adv.Technol.,(2006),17(9-10),727.-731.
    [254]H.F.Xie;Q.D.Yang;X.X.Sun;J.J.Yang;Y.P.Huang,Gas sensor arrays based on polymer-carbon black to detect organic vapors at low concentration.Sens.Actuators B,Chem.,(2006),113(2),887-891.
    [255]S.lijima,Hellical microtubules of graphitic carbon.Nature,(1991),354(7),56-58.
    [256]E.W.Wong;P.E.Sheehan;C.M.Lieber,Nanobeam mechanics:Elasticity,strength,and toughness of nanorods and nanotubes.Science,(1997),277,1971-1975.
    [257]M.Bienfait;B.Asmussen;M.Johnson;P.Zeppenfeld,Methane mobility in carbon nanotubes.Surf.Sci.,(2000),460(1-3),243-248.
    [258]J.Kong;N.R.Franklin;C.W.Zhou;M.G.Chapline;S.Peng;K.J.Cho;H.J.Dai,Nanotube molecular wires as chemical sensors.Science,(2000),287(5453),622-625.
    [259]P.G.Collins;K.Bradley;M.Ishigami;A.Zettl,Extreme oxygen sensitivity of electronic properties of carbon nanotubes.Science,(2000),287(5459),1801-1804.
    [260]S.Chopra;A.Pham;J.Gaillard;A.Parker;A.M.Rao,Carbon-nanotube-based resonant-circuit sensor for ammonia.Appl.Phys.Lett.,(2002),80(24),4632-4634.
    [261]E.S.Snow;F.K.Perkins;E.J.Houser;S.C.Badescu;T.L.Reinecke,Chemical detection with a single-walled carbon nanotube capacitor.Science,(2005),307(5717),1942-1945.
    [262]S.Chopra;K.McGuire;N.Gothard;A.M.Rao;A.Pham,Selective gas detection using a carbon nanotube sensor.Appl.Phys.Lett.,(2003),83(11),2280-2282.
    [263]M.Grujicic;G.Cao;W.N.Roy,A computational analysis of the carbon-nanotube-based resonant-circuit sensors.Appl.Surf.Sci.,(2004),229(1-4),316-323.
    [264] J. Chung; K. H. Lee; J. H. Lee; D. Troya; G.C. Schatz, Multi-walled carbon nanotubes experiencing electrical breakdown as gas sensors. Nanotechnology, (2004), 15 (11), 1596-1602.
    
    [265] A. Modi; N. Koratkar; E. Lass; B. Q. Wei; P. M. Ajayan, Miniaturized gas ionization sensors using carbon nanotubes. Nature, (2003), 424 (6945), 171-174.
    
    [266] J. Kong; M. G.Chapline; H. J. Dai, Functionalized carbon nanotubes for molecular hydrogen sensors. Adv. Mater, (2001), 13 (18), 1384-1386.
    
    [267] Q. F. Pengfei; O. Vermesh; M. Grecu; A. Javey; O. Wang; H. J. Dai; S. Peng; K. J. Cho, Toward large arrays of multiplex functionalized carbon nanotube sensors for highly sensitive and selective molecular detection. Nano Lett, (2003), 3 (3), 347-351.
    
    [268] L. Valentini; I. Armentano; J. M. Kenny; C. Cantalini; L. Lozzi; S. Santucci, Sensors for sub-ppm NO_2 gas detection based on carbon nanotube thin films. Appl. Phys. Lett, (2003), 82 (6), 961-963.
    
    [269] L. Valentini; L. Lozzi; C. Cantalini; I. Armentano; J. M. Kenny; L. Ottaviano; S. Santucci, Effects of oxygen annealing on gas sensing properties of carbon nanotube thin films. Thin Solid Films, (2003), 436 (1), 95-100.
    
    [270] L. Valentini; C. Cantalini; L. Lozzi; I. Armentano; J. M. Kenny; S. Santucci, Reversible oxidation effects on carbon nanotubes thin films for gas sensing applications. Mater.Sci. Eng., C, Biomimetic and Supramolecular Systems, (2003), 23 (4), 523-529.
    
    [271] C. Cantalini; L. Valentini; L. Lozzi; I. Armentano; J. M. Kenny; S. Santucci, NO_2 gas sensitivity of carbon nanotubes obtained by plasma enhanced chemical vapor deposition. Sens. Actuators B, Chem., (2003), 93 (1), 333-337.
    
    [272] C. Cantalini; L. Valentini; I. Armentano; L. Lozzi; J. M. Kenny; S. Santucci, Sensitivity to NO_2 and cross-sensitivity analysis to NH_3, ethanol and humidity of carbon nanotubes thin film prepared by PECVD. Sens. Actuators B, Chem., (2003), 95 (1), 195-202.
    
    [273] S. Santucci; S. Picozzi; F. D. Gregorio; L. Lozzi; C. Cantalini; L. Valentini; J. M. Kenny; B. Delley, NO_2 and CO gas adsorption on carbon nanotubes: Experiment and theory. J. Chem. Phys., (2003), 119 (20), 10904-10910.
    
    [274] T. Someya; J. Small; P. Kim; C. Nuckolls; J. T. Yardley, Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett, (2003), 3 (7), 877-881.
    
    [275] A. Star; T. R. Han; J. C. P. Gabriel; K. Bradley; G.Groner, Interaction of aromatic compounds with carbon nanotubes: correlation to the Hammett parameter of the substituent and measured carbon nanotube FET response. Nano Lett, (2003), 3 (10), 1421-1423.
    
    [276] C. Cantalini; L. Valentini; I. Armentano; J. M. Kenny; L. Lozzi; S. Santucci, Carbon nanotubes as new materials for gas sensing applications. J. Eur. Ceram. Soc, (2004), 24 (6), 1405-1408.
    
    [277] Y. T. Jang; S. I. Moon; J. H. Ahn; Y. H. Lee; B. K. Ju, A simple approach in fabricating chemical sensor using laterally grown multi-walled carbon nanotubes. Sens. Actuators B, Chem., (2004), 99 (1), 118-122.
    
    [278] L. Valentini; C. Cantalini; I. Armentano; J. M. Kenny; L. Lozzi; S. Santucci, Highly sensitive and selective sensors based on carbon nanotubes thin films for molecular detection. Diamond Relat Mater, (2004), 13 (4-8), 1301-1305.
    [279] C. Staii; A. T. Johnson, DNA-decorated carbon nanotubes for chemical sensing. Nano Lett, (2005), 5 (9), 1774-1778.
    
    [280] W. S. Cho; S. I. Moon; K. K. Paek; Y. H. Lee; J. H. Park; B. K. Ju, Patterned multiwall carbon nanotube films as materials of NO_2 gas sensors. Sens. Actuators B, Chem., (2006), 119 (1), 180-185.
    
    [281] R. Ionescu; E. H. Espinosa; E. Sorter; E. Llobet; X. Vilanova; X. Correig; A. Felten; C. Bittencourt; G.Van Lier; J. C. Charlier; J. J. Pireaux, Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sens. Actuators B, Chem., (2006), 113 (1), 36-46.
    
    [282] A. T. C. Johnson; C. Staii; M. Chen; S. Khamis; R. Johnson; M. L. Klein; A. Gelperin, DNA-decorated carbon nanotubes for chemical sensing. Phys. Stat. Sol, B, Basic Solid State Phys., (2006), 243 (13), 3252-3256.
    
    [283] M. Arab; F. Berger; F. Picaud; C. Ramseyer; J. Glory; M. Mayne-L'Hermite, Direct growth of the multi-walled carbon nanotubes as a tool to detect ammonia at room temperature. Chem. Phys. Lett., (2006), 433 (1-3), 175-181.
    
    [284] W. Wongwiriyapan; S. Honda; H. Konishi; T. Mizuta; T. Ohmori; Y. Kishimoto; T. Ito; T. Maekawa; K. Suzuki; H. Ishikawa; T. Murakami; K. Kisoda; H. Harima; K. Oura; M. Katayama, Influence of the growth morphology of single-walled carbon nanotubes on gas sensing performance. Nanotechnology, (2006), 17(17), 4424-4430.
    
    [285] O. K. Varghese; P. D. Kichambre; D. Gong; K. G. Ong; E. C. Dickey; C. A. Grimes, Gas sensing characteristics of multi-wall carbon nanotubes Sens. Actuators B, Chem., (2001), 81 (1), 32-41.
    
    [286] B. Philip; J. K. Abraham; A. Chandarsaker; V. K. Varadan, Carbon nanotube/PMMA composite thin films for gas sensing applications. Smart Mater. Struc, (2003), 12 (6), 935-939.
    
    [287] J. K. Abraham; B. Philip; A. Witchurch; V. K. Varadan; C. C. Reddy, A compact wireless gas sensor using a carbon nanotube/PMMA thin film chemiresistor. Smart Mater. Struct., (2004), 13 (5), 1045-1049.
    
    [288] B. Zhang; R. W. Fu; M. Q. Zhang; X. M. Dong; P. L. Lan; J. S. Qiu, Preparation and characterization of gas-sensitive composites from multi-walled carbon nanotubes/polystyrene. Sens. Actuators B, Chem., (2005), 109 (2), 323-328.
    
    [289] K. Parikh; K. Cattanach; R. Rao; D. S. Suh; A. M. Wu; S. K. Manohar, Flexible vapour sensors using single walled carbon nanotubes. Sens. Actuators B, Chem., (2006), 113 (1), 55-63.
    
    [290] Y. J. Lu; C. Partridge; M. Meyyappan; J. Li, A carbon nanotube sensor array for sensitive gas discrimination using principal component analysis. J. Electroanal Chem., (2006), 593 (1-2), 105-110.
    
    [291] J. Suehiro; G.B. Zhou; M. Hara, Fabrication of a carbon nanotube-based gas sensor using dielectrophoresis and its application for ammonia detection by impedance spectroscopy. J. Phys. D, (2003), 36 (21), L109-L114.
    
    [292] J. Suehiro; G.B. Zhou; H. Imakiire; W. D. Ding; M. Hara, Controlled fabrication of carbon nanotube NO_2 gas sensor using dielectrophoretic impedance measurement. Sens. Actuators B, Chem., (2005), 108 (1-2), 398-403.
    
    [293] J. Suehiro; G.B. Zhou; M. Hara, Detection of partial discharge in SF6 gas using a carbon nanotube-based gas sensor. Sens. Actuators B, Chem., (2005), 105 (2), 164-169.
    [294]M.Lucci;P.Regoliosi;A.Reale;A.D.Carlo;S.Orlanducci;E.Tamburri;M.L.Terranova;P.Lugli;C.D.Natale;A.D'Amico;R.Paolesse,Gas sensing using single wall carbon nanotubes ordered with dielectrophoresis.Sens.Actuators B,Chem.,(2005),111-112,181-186.
    [295]J.Suehiro;N.Sano;G.B.Zhou;H.Imakiire;K.Imasaka;M.Hara,Application of dielectrophoresis to fabrication of carbon nanohorn gas sensor.J.Electrostatics,(2006),64(6),408-415.
    [296]J.Suehiro;H.Imakiire;S.Hidaka;W.D.Ding;G.B.Zhou;K.Imasaka;M.Hara,Schottky-type response of carbon nanotube NO_2 gas sensor fabricated onto aluminum electrodes by dielectrophoresis.Sens.Actuators B,Chem.,(2006),114(2),943-949.
    [297]M.Lucci;A.Reale;A.D.Carlo;S.Orlanducci;E.Tamburri;M.L.Terranova;I.Davoli;C.D.Natale;A.D'Amico;R.Paolesse,Optimization of a NO_x gas sensor based on single walled carbon nanotubes.Sens.Actuators B,Chem.,(2006),118(1-2),226-231.
    [298]H.Q.Nguyen;J.S.Huh,Behavior of single-walled carbon nanotube-based gas sensors at various temperatures of treatment and operation.Sens.Actuators B,Chem.,(2006),117(2),426-430.
    [299]Y.D.Lee;W.S.Cho;S.I.Moon;Y.H.Lee;J.K.Kim;S.Nahm;B.K.Ju,Gas sensing properties of printed multiwalled carbon nanotubes using the field emission effect.Chem.Phys.Lett.,(2006),433(1-3),105-109.
    [300]N.H.Quang;M.Van Trinh;B.H.Lee;J.S.Huh,Effect of NH_3 gas on the electrical properties of single-walled carbon nanotube bundles.Sens.Actuators B,Chem.,(2006),113(1),341-346.
    [301]E.S.Snow;F.K.Perkins;J.A.Robinson,Chemical vapor detection using single-walled carbon nanotubes.Chem.Soc.Rev.,(2006),35(9),790-798.
    [302]C.Y.Lee;S.Baik;J.Q.Zhang;R.I.Masel;M.S.Strano,Charge transfer from metallic single-walled carbon nanotube sensor arrays.J.Phys.Chem.,B,(2006),110(23),11055-11061.
    [303]S.Peng;K.Cho,Ab initio study of doped carbon nanotube sensors.Nano Lett.,(2003),3(4),513-517.
    [304]F.V.Páez;A.H.Romero;E.Munoz-Sandowal;L.M.Martinez;H.Terrones;M.Terrones,Fabrication of vapor and gas sensors using films of aligned CN_x nanotubes.Chem.Phys.Lett.,(2004),386(1-3),137-143.
    [305]L.Valentini;F.Mercuri;I.Armentano;C.Cantalini;S.Picozzi;L.Lozzi;S.Santucci;A.Sgamellotti;J.M.Kenny,Role of defects on the gas sensing properties of carbon nanotubes thin films:experiment and theory.Chem.Phys.Lett.,(2004),387(4-6),356-361.
    [306]F.Mercuri;A.Sgamellotti;L.Valentini;I.Armentano;J.M.Kenny,Vacancy-induced chemisorption of NO_2 on carbon nanotubes:A combined theoretical and experimental Study.J.Phys.Chem.,B,(2005),109(27),13175-13179.
    [307]J.Andzelm;A.M.N.Govind,Nanotube-based gas sensors - Role of structural defects.Chem.Phys.Lett.,(2006),421(1-3),58-62.
    [308]I.Sayagoa;E.Terradob;E.Lafuenteb;M.C.Horrilloa;W.K.Maserb;A.M.Benitob;R.Navarroc;E.P.Urriolabeitiac;M.T.Martinezb;J.Gutierreza,Hydrogen sensors based on carbon nanotubes thin films.Synth.Met.,(2005),148(1),15-19.
    [309]I.Sayago;E.Terrado;M.Aleixandre;M.C.Horrillo;M.J.Femandez;J.Lozano;E.Lafuente;W.K.Maser;A.M.Benito;M.T.Martinez;J.Gutierrez;E.Munoz,Novel selective sensors based on carbon nanotube films for hydrogen detection.Sens.Actuators B,Chem.,(2007),122(1),75-80.
    [310]Y.J.Lu;J.Li;J.Han;H.T.Ng;C.Binder;C.Partridge;M.Meyyappan,Room temperature methane detection using palladium loaded single-walled carbon nanotube sensors.Chem.Phys.Lett.,(2004),391(4-6),344-348.
    [311]M.L.Campell,Kinetics of the termolecular reaction of gas phase Pd(a~1S~0)atoms with methane Chem.Phys.Lett.,(2002),365(3),361-365.
    [312]M.K.Kumar;S.Ramaprabhu,,Nanostructured Pt functionlized multiwalled carbon nanotube based hydrogen sensor.J.Phys.Chem.,B,(2006),110(23),11291-11298.
    [313]P.Young;Y.J.Lu;R.Terrill;J.Li,High-sensitivity NO_2 detection with carbon nanotube-gold nanoparticle composite films.J.Nanosci.Nanotechnol.,(2005),5(9),1509-1513.
    [314]A.Star;V.Joshi;S.I.Skarupo;D.Thomas;J.C.P.Gabriel,Gas sensor array based on metal-decorated carbon nanotubes.J.Phys.Chem.,B,(2006),110(42),21014-21020.
    [315]A.Star;T.R.Han;V.Joshi;J.C.P.Gabriel;G.Gruner,Nanoelectronic carbon dioxide sensors.Adv.Mater.,(2004),16(22),2049-2052.
    [316]H.Wohltjen;A.W.Snow,C.olloidal Metal-insulator-metal ensemble chemiresistor sensor.Anal.Chem.,(1998),70(14),2856-2859.
    [317]S.D.Evans;S.R.Johnson;Y.L.Cheng;T.Shen,Vapour sensing using hybrid organic-inorganic nanostructured materials.J.Mater Chem.,(2000),10(1),183-188.
    [318]L.Han;D.R.Daniel;M.M.Mayer;C.J.Zhong,Core-shell nanostructured nanoparticle films as chemically aensitive interfaces Anal.Chem.,(2001),73(18),4441-4449.
    [319]N.Krasteva;I.Besnard;B.Guse;R.E.Bauer;K.Muellen;A.Yasuda;T.Vossmeyer,Self-assembled gold nanoparticle/dendrimer composite films for vapor sensing applications.Nano Lett.,(2002),2(5),551-555.
    [320]H.L.Zhang;S.D.Evans;J.R.Henderson;R.E.Miles;T.H.Shen,Vapour sensing using surface functionalized gold nanoparticles.Nanotechnology,(2002),13(3),439-444.
    [321]A.W.Snow;H.Wohltjen,Size-induced metal to semiconductor transition in a stabilized gold cluster ensemble.Chem.Mater,(1998),10(4),947-949.
    [322]Q.Y.Cai;E.T.Zellers,Dual-chemiresistor GC detector employing monolayer-protected metal nanocluster interfaces.Anal Chem.,(2002),74(14),3533-3539.
    [323]M.J.Hostetler;J.F.Wingate;C.J.Zhong;J.F.Harris;R.W.Vachet;M.R.Clark;J.D.Londono;S.J.Green;J..J.Stokes;G.D.Wignall;G.L.Glish;M.D.Porter;N.D.Evans;R.W.Murray,Alkanethiolate gold cluster molecules with core diameters from 1.5 to 5.2 nm:core and monolayer properties as a function of core size.Langmuir,(1998),14(1),17-30.
    [324]M.M.Maye;W.Zheng;F.L.Leibowitz;N.K.Ly;C.J.Zhong,Heating-induced evolution of thiolate-encapsulated gold nanoparticles:A strategy for size and shape manipulations.Langmuir,(2000),16(2),490-497.
    [325]J.F.Kang;A.Ulman;S.Liao;R.Jordan;G.H.Yang;G.Y.Liu,Self-assembled rigid monolayers of 4'-substituted-4-mercaptobiphenyls on gold and silver surfaces.Langmuir,(2001),17(1),95-106.
    [326]N.K.Chaki;J.Sharma;A.B.Mandle;I.S.Mulla;R.Pasrichab;K.Vijayamohanan,Size dependent redox behavior of monolayer protected silver nanoparticles(2-7 nm)in aqueous mediumy.Phys.Chem.Chem.Phys.,(2004),6,1304-1309.
    [327]T.Vossmeyer;B.Guse;I.Besnard;R.E.Bauer;K.Muellen;A.Yasuda,Gold nanoparticle/Polyphenylene dendrimer composite films:preparation and vapor-sensing properties.Adv.Mater.,(2002),14(3),238-242.
    [328]N.Krasteva;B.Guse;I.Besnard;A.Yasuda;T.Vossmeyer,Gold nanoparticle/PPI-dendrimer based chemiresistors vapor-sensing properties as a function of the dendrimer size.Sens.Actuators B,Chem.,(2003),92(1-2),137-143.
    [329]Y.Joseph;B.Guse;A.Yasuda;T.Vossmeyer,Chemiresistor coatings from Pt- and Au-nanoparticle/nonanedithiol films:sensitivity to gases and solvent vapors.Sens.Actuators B,Chem.,(2004),98(2-3),188-195.
    [330]Y.J.Kim;Y.S.Yang;S.C.Ha;S.M.Cho;Y.S.Kim;H.Y.Kim;H.Yang;Y.T.Kim,Mixed-ligand nanoparticles of chlorobenzenemethanethiol and n-octanethiol as chemical sensors.Sens.Actuators B,Chem.,(2005),106(1),189-198.
    [331]M.P.Rowe;W.H.Steinecker;E.T.Zellers,Exploiting charge-transfer complexation for selective measurement of gas-phase olefins with nanoparticle-coated chemiresistors.Anal.Chem.,(2007),79(3),1164-1172.
    [332]F.J.Ibanez;F.P.Zamborini,Ozone- and thermally activated films of palladium monolayer-protected clusters for chemiresistive hydrogen sensing.Langmuir,(2006),22(23),9789-9796.
    [333]C.Y.Yang;C.L.Li;C.J.Lu,A vapor selectivity study of microsensor arrays employing various functionalized ligand protected gold nanoclusters.Anal.Chim.Acta,(2006),565(1),17-26.
    [334]Z.L.Yang;H.Z.Chen;L.Cao;H.Y.Li;M.Wang,Synthesis and photoconductivity study of carbon nanotube bonded by tetrasubstituted amino manganese phthalocyanine.Mater.Sci.Eng.B,(2004),106(1),73-78.
    [335]Y.Sabba;E.L.Thomas,High-concentration dispersion of single-wall carbon nanotubes.Macromolecules,(2004),37(13),4815-4820.
    [336]T.Teranishi;M.Miyake,Size control of palladium nanoparticles and their crystal structures.Chem.Mater.,(1998),10(2),594-600.
    [337]L.I.Gabaston;R.A.Jackson;S.P.Armes,Living free-radical dispersion polymerization of styrene.Macromolecules,(1998),31(9),2883-2888.
    [338]S.Yoshikawa;S.Machida;N.Tsubokawa,Polymer grafting onto carbon black by use of TEMPO-terminated polystyrene with controlled molecular weight.J.Polym.Sci.,Part A,Polym.Chem.,(1998),36(17),3165-3172.
    [339]C.F.Lee;C.C.Yang;L.Y.Wang;W.Y.Chiu,Novel amphiphilic carbon black composite nanoparticles from TEMPO-terminated block copolymer grafted carbon black.Polymer,(2005),46(15),5514-5523.
    [340]A.Fischer;A.Brembilla;P.Lochon,Nitroxide-mediated radical polymerization of 4-vinylpyridine:study of the pseudo-living character of the reaction and influence of temperature and nitroxide concentration.Macromolecules,32(19),6069-6072.
    [341]X.D.Luo;C.Determbleur;C.Pagnulle;R.Jérome;V.Bocharova;A.kiriy;M.Stamm,Surface modification of multiwalled carbon nanotubes by poly(2-vinylpyridine):dispersion,selective deposition,and decoration of the namotubes.Adv.Mater.,(2004),16(23-24),2123-2127.
    [342]X.D.Lou;C.Detrmbleur;V.Sciarmamea;C.Pagnoulle;R.Jérome,Grafting of alkoxyamine end-capped(co)polymers onto multi-walled carbon nanotubes.Polymer,(2004),45(18),6097-6102.
    [343]M.Dehonor;K.Masenelli-Varlot;A.González-Montiel;C.Gauthier;J.Y.Cavaillé;H.Terrones;M.Terrones,Nanotube brushes:polystyrene grafted covalently on CNx nanotubes by nitroxide-mediated radical polymerization.Chem.Commun.,(2005),(42),5349-5351.
    [344]Y.Q.Liu;Z.L.Yao;A.Adronov,Functionalization of single-walled carbon nanotubes with well-defined polymers by radical coupling.Macromolecules,(2005),38(4),1172-1179.
    [345]王秀霞.超支化聚酯的合成与应用研究.博士学位论文,浙江大学,杭州,2006.
    [346]C.Gao;Y.M.Xu;H.M.Zhang;D.Y.Yan,"AB+C_n" approach to aliphatic hyperbranched polyamides.Polym.Preprint(2003),44(1),845-846.
    [347]M.Bouix;J.Gouzi;B.Charleux;J.P.Vairon;P.Guinot,Synthesis of amphiphilic polyelectrolyte block copolymers using "living" radical polymerization.Application as stabilizers in emulsion polymerization.Macromol.Rapid Commun.,(1998),19(4),209-213.
    [348]L.I.Gabaston;S.A.Furlong;R.A.Jackson;S.P.Armes,Direct synthesis of novel acidic and zwitterionic block copolymers via TEMPO-mediated living free-radical polymerization.Polymer,(1999),40(16),4505-4514.
    [349]Y.Wei;G.W.Jang;K.F.Hsueh;E.M.Scherr;A.G.MacDiarmid;A.J.Epstein,Thermal transitions and mechanical properties of films of chemically prepared polyaniline.Polymer,(1992),33(2),314-322.
    [350]M.V.Kulkarni;A.K.Viswanath;R.C.Aiyer;P.K.Khanna,Synthesis,characterization,and morphology of p-toluene sulfonic acid-doped polyaniline:A material for humidity sensing application.J.Polym.Sci.,Part B,Polym.phys.,(2005),43(16),2161-2169.
    [351]D.Norris;M.M.Shaker;F.K.Ko;A.G.MacDiarmid,Electrostatic fabrication of ultrafine conducting fibers:polyaniline/polyethylene oxide blends.Synth.Met.,(2000),114(2),109-114.
    [352]A.C.Dillon;K.M.Jones;T.A.Bekkedahl;C.H.Kiang;D.S.Bethune;M.J.Heben,Storge of hydrogen in single-walled carbon nanotubes.Nature,(1997),386,377-379.
    [353]A.Flujiwara;K.Ishii;H.Suematsu;H.Kataura;Y.Maniwa;S.Suzuki;Y.Achiba,Gas adsorption in the inside and outside of single-walled carbon nanotubes.Chem.Phys.Lett.,(2001),336(3-4),205-211.
    [354]J.F.Colomer;P.Piedigrosso;I.Willems;C.Journet;P.Bernier;G.V.Tendeloo;A.Fonseca;J.B.Nagy,Purification of catalytically produced multi-wall nanotubes.J.Chem.Soc.,Faraday Trans.,(1998),94(24),3753-3758.
    [355]J.Liu;A.G.Rinzler;H.J.Dai;J.H.Hafner;R.K.Bradley;P.J.Boul;A.Lu;T.Iverson;K.Shelimov;C.B.Huffman;F.Rodriguez-Macias;Y.-S.Shon;T.R.Lee;D.T.Colbert;R.E.Smalley,Fullerene Pipes.Science,(1998),280(5367),1253-1256.
    [356]D.B.Mawhinney;V.Naumenko;A.Kuznetsova;J.T.Y.Jr.;J.Liu;R.E.Smalley,Surface defect site density on single walled carbon nanotubes by titration.Chem.Phys.Lett.,(2000),324(1),213-216.
    [357]M.Monthioux;B.W.Smith;B.Burteaux;A.Claye;J.E.Fischer;D.E.Luzzi,Sensitivity of single-wall carbon nanotubes to chemical processing:an electron microscopy investigation.Carbon,(2001),39(8),1251-1272.
    [358]J.Zhang;H.L.Zou;Q.Qing;Y.L.Yang;Q.W.Li;Z.F.Liu;X.Y.Guo;Z.L.Du,Effect of chemical oxidation on the structure of single-walled carbon nanotubes.J.Phys.Chem.B,(2003),107(16),3712-3718.
    [359]E.N.Konyushenko;J.Stejskal;M.Trchová;J.Hradil;J.Kovǎrovǎ;J.Prokes;M.Cieslar;J.Y.Hwang;K.H.Chen;I.Sapurinae,Multi-wall carbon nanotubes coated with polyaniline.Polymer,(2006),47(16),5715-5723.
    [360]M.Bendahan;P.Lauque;C.Lambert-Mauriat;H.Carchano;J.L.Seguin,Sputtered thin films of CuBr for ammonia microsensors:morphology,composition and ageing.Sensors and Actuators B-Chemical,(2002),84(1),6-11.
    [361]S.Christie;E.Scorsone;K.Persaud;F.Kvasnik,Remote detection of gaseous ammonia using the near infrared transmission properties of polyaniline.Sens.Actuators B,Chem.,(2003),90(1-3),163-169.
    [362]P.Boeker;G.Horner;S.Rosler,Monolithic sensor array based on a quartz microbalance transducer with enhanced sensitivity for monitoring agricultural emissions.Sens.Actuators B,Chem.,(2000),70(1-3),37-42.
    [363]T.Hernández-Jover;M.Izquierdo-Pulido;M.T.Veciana-Nogués;M.C.Vidal-Carou,Ion-pair high-performance liquid chromatographic determination of biogenic amines in meat and meat products.J.Agric.Food Chem.,(1996),44(9),2710-2715.
    [364]T.Hernández-Jover;M.Izquierdo-Pulido;M.T.Veciana-Nogués;M.C.V.-.CarouBiogenic,Biogenic amine sources in cooked cured shoulder pork.J.Agric.Food Chem.,(1996),44(10),3097-3101.
    [365]T.Hernández-Jover;M.Izquierdo-Pulido;M.T.Veciana-Nogués;A.Mariné-Font;M.C.Vidal-Carou,Biogenic amine and polyamine contents in meat and meat products.J.Agric.Food Chem.,(1997),45(6),2098-2102.
    [366]M.Izquierdo-Pulido;T.Hernández-Jover;A.Mariné-Font;M.C.Vidal-Carou,Biogenic amines in european beers.J.Agric.Food Chem.,(1996),44(10),3159-3163.
    [367]V.Derycke;R.Martel;J.Appenzeller;P.Avouris,Controlling doping and carrier injection in carbon nanotube transistors.Appl.Phys.Lett.,(2002),80(15),2773-2775.
    [368]M.R.Babaa;N.Dupont-Pavlovsky;E.McRae;K.Masenelli-Varlot,Physical adsorption of carbon tetrachloride on as-produced and on mechanically opened single walled carbon nanotubes.Carbon,(2004),42(8-9),1549-1554.
    [369]K.J.W.Shi,Gas adsorption on heterogeneous single-walled carbon nanotubes bundles.Phys.Rev.Lett.,(2003),91(1),015504.
    [370]C.K.W.Adu;G.U.Sumanasekera;B.K.Pradhan;H.E.Romero;P.C.Eklund,Carbon nanotubes:a thermoelectric nano-nose.Chem.Phys.Lett.,(2000),337(1),31-35.
    [371] M. Shim; A. Javey; N. W. S. Kam; H. J. Dai, Polymer functionalization for air-stable n-type carbon nanotube field-effect transistors. J. Am. Chem. Soc, (2001), 123 (46), 11512-11513.
    
    [372] D. Kaminishi; H. Ozaki; Y. Ohno; K. Maehashi; K. Inoue; K. Matsumoto; Y. Serf; A. Masuda; H. Matsnura, Air-stable n-type carbon nanotube field-effect transistors with Si_3N_4 passivation films fabricated by catalytic chemical vapor deposition. Appl. Phys. Lett., (2005), 86(11), 113115.
    
    [373] E. Bekyarova; A. Hashimoto; M. Yudasaka; Y. Hattori; K. Murata; H. Kanoh; D. Kasuya; S. Iijima; K. Kaneko, Palladium nanoclusters deposited on single-walled carbon nanohorns. J. Phys. Chem., B, (2005), 109 (9), 3711-3714.
    
    [374] H. Hirai; Y. Nakao; N. Toshima, Preparation of colloidal rhodium in poly(vinyl alcohol) by reduction with methanol. J. Macromol. Sci, Part A Pure Appl. Chem., (1978), A12 (8), 1117-1141.
    
    [375] Y. W. Tan; X. H. Dai; Y. F. Li; D. B. Zhu, Preparation of gold, platinum, palladium and silver nanoparticles by the reduction of their salts with a weak reductant-potassium bitartrate. J. Mater. Chem., (2003), 13 (5), 1069-1075.
    
    [376] N. Tsubokawa; M. Tsuchida; J. Chen; Y. Nakazawa, A novel contamination sensor in solution: the response of the electric resistance of a composite based on crystalline polymer-grafted carbon black. Sens. Actuators B, Chem., (2001), 79 (2-3), 92-97.
    
    [377] M. Okazaki; K. Maruyama; M. Tsuchida; N. Tsubokawa, A novel gas sensor from poly(ethylene glycol)-grafted carbon black. Responsibility of electric resistance of poly(ethylene glycol)-grafted carbon black against humidity and solvent vapor. Polym. J., (1999), 31 (8), 672-676.
    
    [378] S. Hayashi; A. Naitoh; S. Machida; M. Okazaki; K. Maruyama; N. Tsubokawa, Grafting of polymers onto a carbon black surface by the trapping of polymer radicals. Appl. Organomet. Chem., (1998), 12 (10-11), 743-748.
    
    [379] J. H. Chen; N. Tsubokawa, A novel gas sensor from polymer-grafted carbon black: Responsiveness of electric resistance of conducting composite from LDPE and PE-b-PEO-grafted carbon black in various vapors. Polym. Adv. Technol., (2000), 11 (3), 101-107.
    
    [380] G. Wei; K. Shirai; K. Fujiki; H. Saitoh; T. Yamauchi; N. Tsubokawa, Grafting of vinyl polymers onto VGCF surface and the electric properties of the polymer-grafted VGCF. Carbon, (2004), 42 (10), 1923-1929.
    
    [381] X. M. Dong; R. W. Fu; M. Q. Zhang; B. Zhang; J. R. Li; M. Z. Rong, A novel sensor for organic solvent vapors based on conductive amorphous polymer composites: carbon black/poly(butyl methacrylate). Polym. Bull., (2003), 50 (1-2), 99-106.
    
    [382] X. M. Dong; R. W. Fu; M. Q. Zhang; B. Zhang; J. R. Li; M. Z. Rong, Gas sensing materials from carbon black/poly(methyl methacrylate) composites. Polym. Polym. Compos., (2003), 11 (4), 291-299.
    
    [383] X. M. Dong; R. W. Fu; M. Q. Zhang; Z. P. Qin; B. Zhang; M. Z. Rong, Effects of processing on electric response of carbon black filled poly(methyl methacrylate) composites against organic solvent vapors. Polym. J., (2003), 35 (12), 1003-1008.
    
    [384] X. M. Dong; R. W. Fu; M. Q. Zhang; B. Zhang; M. Z. Rong, Carbon black filled poly(2-ethylhexyl methacrylate) as a candidate for gas sensing material. J. Mater. Sci. Lett, (2003), 22 (15), 1057-1059.
    [385]X.M.Dong;R.W.Fu;M.Q.Zhang;B.Zhang;M.Z.Rong,Electrical resistance response of carbon black filled amorphous polymer composite sensors to organic vapors at low vapor concentrations.Carbon,(2004),42(12-13),2551-2559.
    [386]S.G.Chen;J.W.Hu;M.Q.Zhang;M.Z.Rong;Q.Zheng,Time dependent percolation of carbon black filled polymer composites in response to solvent vapor,J.Mater Sci.,(2005),40(8),2065-2068.
    [387]J.R.Li;J.R.Xu;M.Q.Zhang;M.Z.Rong;Q.Zheng,The role of crystalline phase in triblock copolymer PS-PEG-PS based gas sensing materials.Polymer,(2005),46(24),11051-11059.
    [388]M.K.Georges;R.P.N.Veregin;P.M.Kazmaier;G.K.Hamer,Narrow molecular weight resins by a free-radical polymerization process.Macromolecules,(1993),26(11),2987-2988.
    [389]袁建军.两亲嵌段共聚物:分子设计及溶液中自组装形态控制.博士学位论文,浙江大学,杭州,2002.
    [390]赵择卿;陈小立,高分子材料导电和抗静电技术及应用.北京,中国纺织出版社:(2006);p 339-349.
    [391]谭惠民;罗运军,超支化聚合物.化工出版社:(2005).
    [392]M.Matsuguchi;J.Io;G.Sugiyama;Y.Sakai,Effect of NH_3 gas on the electrical conductivity of polyaniline blend films.Synth.Met.,(2002),128(1),15-19.
    [393]Y.C.Luo;J.S.Do,Amperometric ammonium ion sensor based on polyaniline-poly(styrene sulfonate-co-maleic acid)composite conducting polymeric electrode.Sens.Actuators B,Chem.,(2006),115(1),102-108.
    [394]S.Jain;A.B.Samui;M.Patri;V.R.Hande;S.V.Bhoraskar,FEP/polyaniline based multilayered chlorine sensor.Sens.Actuators B,Chem.,(2005),106(2),609-613.
    [395]W.S.Yin;E.Ruckenstein,Soluble polyaniline co-doped with dodecyl benzene sulfonic acid and hydrochloric acid.Synth.Met.,(2000),108(1),39-46.
    [396]H.Kong;P.Luo;C.Gao;D.Y.Yan,Polyelectrolyte-functionalized multiwalled carbon nanotubes:preparation,characterization and layer-by-layer self-assembly.Polymer,(2005),46(8),2472-2485.
    [397]K.F.Schoch;W.A.Byers;L.J.Buckley,Deposition and characterization of conducting polymer thin films on insulating substrates.Synth.Met.,(1995),72(1),13-23.
    [398]F.L.Liu;F.Wudl;M.Nowak;A.J.Heeger,Phenyl-capped octaaniline(COA):an excellent model for polyaniline.J.Am.Chem.Soc.,(1986),108(26),8311-8313.
    [399]Y.Cao;P.Smith;A.J.Heeger,Spectroscopic studies of polyaniline in solution and in spin-cast films.Synth.Met.,(1989),32(3),263-281.
    [400]K.G.Neoh;H.W.Teo;E.T.Kang,Enhancement of growth and adhesion of electroactive polymer coatings on polyolefin substrates Langmuir,(1998),14(10),2820-2826.
    [401]T.M.Wu;Y.W.Lin;C.S.Liao,Preparation and characterization of polyaniline/multi-walled carbon nanotube composites.Carbon,(2005),43(4),734-740.
    [402]T.Kamimura;K.Matsumoto,Eletrical heating process for p-type to n-type conversion of carbon naotube field transistors.Jpn.J.Appl.Phys.Part 1,(2005),44,1603-1606.
    [403]I.Kulszewicz-Bajer;J.Sobczak;M.Hasik;J.Pretula,Spectroscopic studies of polyaniline protonation with poly(alkylene phosphates).Polymer,(1996),37(1),25-30.
    [404]H.Lim;J.H.Choia,Acomparative study of the polyaniline thin films produced by the cluster beam deposition and laser ablation methods.J.Chem.Phys.,(2006),124(1),14710.
    [405]M.Jayakannan;P.Anilkumar;A.Sanju,Synthesis and characterization of new azobenzenesulfonic acids doped conducting polyaniline.Eur Polym.J.,(2006),42(10),2623-2631.
    [406]D.Aussawasathien;J.H.Dong;L.Dai,Electrospun polymer nanofiber sensors.Synth.Met.,(2005),154(1-3),37-40.
    [407]L.Quercia;F.Loffredo;G.Di Francia,Influence of filler dispersion on thin film composites sensing properties.Sens.Actuators B,Chem.,(2005),109(1),153-158.
    [408]B.Ding;J.H.Kim;Y.Miyazaki;S.Shiratori,Electrospun nanofibrous membranes coated quartz crystal microbalance as gas sensor for NH_3 detection.Sens.Actuators B,Chem.,(2004),101(3),373-380.
    [409]B.Ding;M.Yamazaki;S.Shiratori,Electrospun fibrous polyacrylic acid membrane-based gas sensors.Sens.Actuators B,Chem.,(2005),106(1),477-483.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700