碳纳米管增强铝基复合材料的制备及组织性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以多壁碳纳米管为增强体,利用粉末冶金方法制备了体积分数为0~4.2%的碳纳米管增强2024铝基复合材料。对制备过程中所涉及的碳纳米管的纯化、碳纳米管与合金粉末的均匀混合、碳纳米管在铝基体中的热稳定性、复合材料的致密化进行了系统地研究与分析,运用扫描电镜、透射电镜、X射线衍射、X射线光电子能谱和高分辩电镜以及万能电子拉伸机、热分析仪、维氏硬度等分析测试手段,评价了复合材料的制备工艺,观察分析复合材料的显微组织结构,测试了复合材料的室温力学性能,并对微观组织结构影响材料宏观力学性能的机制进行了初步探讨。
     对碳纳米管不同时间下硝酸回流的研究表明,随着回流时间的增加,碳纳米管的长径比减少;碳纳米管中sp2与sp3杂化态碳的原子比下降,表面缺陷减少,且表面引入的含氧官能团的含量增加。硝酸回流后的碳纳米管的分散效果要比未回流的好,且回流时间越长,分散效果越好。当碳纳米管的含量小于2.1vol.%时,通过超声加机械搅拌能将碳纳米管均匀的分散在合金粉末的表面,而当碳纳米管的含量达到4.2vol.%时,碳纳米管在合金粉末表面形成团聚。结合合金粉末和碳纳米管的表面结构,分析了碳纳米管的纯化与分散以及碳纳米管与合金粉末均匀混合的机理。
     对碳纳米管在合金粉末中热稳定性进行研究,结果表明当温度超过合金粉末的熔点时,碳纳米管在铝中是不稳定的,部分碳纳米管容易与铝发生反应生成具有针状的纳米Al4C3相;碳纳米管与铝反应的活化能为194.01 kJ/mol,比石墨与铝的高;反应生成的Al4C3相与铝基体之间界面为直接结合,界面结合紧密,且Al4C3相和铝基体发现有(200) Al //(00012)Al C的位向关系。利用高HRTEM和XPS分析,讨论碳纳米管与铝反应的机理。
     挤压后的复合材料中铝晶粒的尺寸显著小于基体材料中铝晶粒的,碳纳米管能够有效地抑制铝晶粒的粗化,细化铝晶粒尺寸。此外,碳纳米管在复合材料中是稳定的,主要分布在复合材料中铝晶粒的内部和晶界处,部分碳纳米管周围存在位错缠结现象。碳纳米管和铝基体之间的界面为直接原子结合,界面光滑、平直,不存在中间相,两者为完全共格界面。碳纳米管与铝基体之间发现有的位向关系。
     碳纳米管的含量显著影响复合材料的力学性能,随着碳纳米管含量的增加,复合材料的硬度、抗拉强度、弹性模量和屈服强度先升高然后下降,当碳纳米管的含量为2.1vol.%时,复合材料的硬度、抗拉强度、弹性模量和屈服强度达到最大值,分别为136.2kg/mm2、521.7MPa、92.2GPa和497.7MPa。与相同条件下制备的2024Al基体材料相比,分别提高了33.0%、34.6%、20.8%和39.7%。当碳纳米管含量较少时,复合材料的断裂主要是碳纳米管的拔出或拔断,且拔出长度很短,同时伴有碳纳米管的桥联发生,随着碳纳米管含量的增加,拔出或拔断的数量也增加。而当碳纳米含量较多时,复合材料的断裂主要以碳纳米管的脱粘和拔出为主,拔出长度很长。结合复合材料的微观组织结构和力学性能,讨论碳纳米管增强铝基复合材料的强化基理。(200) Al //(101?1)CNTs
2024Al matrix composites reinforced with 0~4.2vol.% carbon nanotubes (CNTs) were fabricated by powder metallurgy technique. The purification of CNTs, uniformly dispersion of CNTs among alloy powders, the thermal stability of CNTs and Al and the densification of the composites were systemically investigated and analyzed. By using SEM, TEM, XRD, XPS, HRTEM, DSC, tensile test and hardness test techniques, the microstructure, the mechanical properties and the processing parameters of the composites were examined and optimized. In addition, the effects of the microstructure on the overall mechanical properties were related.
     The investigation of the effect of refluence time on CNTs in nitric acid showed that the aspect ratio, the ratio of hybridizable C atom of sp2 and sp3 and surfacial defects of CNTs reduce, meanwhile, the functional groups containing oxygen element increase when refluence time increases. The dispersion of CNTs after refluence is better than that of CNTs before refluence, and dispersing ability increases with refluence time increasing. CNTs can homogenously distributed on the surface of alloy powders when the content of CNTs is less than 2.1vol.% with mechanical stirring assisting ultrasonic shaker. However, CNTs form conglobations when content is 4.2vol.%. The mechanisms of the purification and dispersion of CNTs, the dispersion of CNTs among alloy powders were discussed based on surfacial structure of CNTs and alloy powders.
     The study of thermal stability of CNTs in Al matrix indicated that CNTs and Al react and form nano-Al4C3 phases with needle shape when the temperature is above the melting of alloy aluminum. The activation energy of the reacton between CNTs and Al is 194.01 kJ/mol, which is higher than that of graphite and Al. Moreover, the interface of Al4C3 phases and Al matrix keep directly atom bonding, and bond tightly. It also were found that an orientation relationship of (200) Al //(00012)Al C exists between Al4C3 phases and Al matrix. The reaction mechanisms of CNTs and Al matrix were taken over by HRTEM and XPs analysis.
     The grain size of composites is finer than that of the matrix materials after hot extrusion, so CNTs can restrain the growth of Al grains in compoises, and fine the Al grains. Moreover, CNTs were very stabile in the present fabrication method, and mainly distributes on the grains boundary and inner-grains of the composite matrix. The interfaces of CNTs and Al matrix are very clean and straight. CNTs and Al matrix keep directly atom bonding, and exist (200) Al //(101? 1)CNTs orientation relationship.
     CNTs content affected significantly the mechanical properties of the composites. The hardness, tensile strength, Young’s modulus and yield strength of the composites firstly increase and then reduce with CNTs content increasing. The hardness, tensile strength, Young’s modulus and yield strength reache the maximum value, 136.2 kg/mm2、521.7 MPa、92.2 GPa and 497.7 MPa respectively, when CNTs content is 2.1vol.%. They are increased 33.0%、34.6%、20.8% and 39.7% in relation to the matrix during the same fabrication. The fracture manners involves the bridging, the pull-out and pulling to rupture, and the length of CNTs pulled out is very short, when small amount of CNTs were added to Al matrix, however, the pull out and debonding took placed in the composite with larger amount of CNTs, and the length of CNTs pulled out is very longer in relation to that of 2.1vol.% CNT composite. The strengthening mechanisms of CNTs reinforced metal matrix composites were discussed according to the microstructure and mechanical properties of the composites
引文
1 E.A. Feest. Exploitation of the Metal Matrix Composite Concept. Composite Matrials. 1998, 60:11971~11983
    2 P.K. Rohatgi, S. Ray, Y. Liu. Tribological Properties of Metal Matrix Graphite Particle Composites. International Materials Reviews. 1992, 37(3):129~149
    3 S. Katsuaki, M. Hiroyoshi, K. Katsuhiko, K. Tetsushi, O. Haruo, F. Hiroyuki. Properties and Microstructure of Continuous Oxynitride Glass Fiber and Its Application to Aluminum Matrix Composite. Journal of Materials Research. 1993, 8(1):178~86
    4 J.W. Kaczmar, K. Pietrzak, W. Wlosinski. Production and Application of Metal Matrix Composite Materials. Journal of Materials Processing Technology. 2000, 106(1~3):58~67
    5 王 镐. 金属基复合材料应用前景广阔. 稀有金属快报. 2001(4):13~14
    6 P. Sebo, P. Stefanik. Copper Matrix Carbon Fibre Composites. International Journal of Materials and Product Technology. 2003, 18(1~3):141~159
    7 D.B. Miracle. Metal Matrix Composites Form Science to Technological Significance. Composites Science and Technology. 2005, 65 (15~16):2526~2540
    8 J.L. Sauvajol, E. Anglaret, S. Rols, C. Journet, C. Goze, P. Bernier, W.K. Master, E. Munoz, A.M. Benito, M.T. Martinez. Sturcture and Vibrational Properties of Single Wall Carbon Nanotubes. Synthetic Metals. 1999, 103(1~3):2537~2539
    9 O. Zhou, B. Gao, C. Bower, L. Fleming, H. Shimoda. Structure and Electrochemical Properties of Carbon Nanotube Intercalation Compounds. Molecular Crystals and Liquid Crystals Science and Technology, Section A: Molecular Crystals and Liquid Crystals. 2000, 340:541~546
    10 M.S. Dresselhaus, G. Dresselhaus, A. Jorio. Unusal Properties and Structure of Carbon Nanotubes. Annual Review of Materials Research. 2004, 34:247~278
    11 G. Gao, T. Cagin, W.A. Goddard. Energetics, Structure, Mechanical andVibrationl Properties of Single Walled Carbon Nanotubes. Nanotechnolgoy. 1998, 9(3):184~191
    12 解思深,李王宝. 神奇的纳米碳管. 新材料工业. 2000, (11):71~72
    13 N. Ghasemi, N. Mehrdad, D. Askari. Mechanical Properties Modeling of Carbon Single Walled Nanotubes: A Finite Element Method. Journal of Computational and Theoretical Nanoscience. 2005, 2(2):298~318
    14 Y. Fu, X. Xu. Analysis of Material Mechanical Properties for Single Walled Carbon Nanotubes. Acta Mechanica Solida Sinica. 2005, 18(1):46~51
    15 孙 静. 碳纳米管及其研究进展. 世界科学. 2006, (5):28~29
    16 M. Endo, T. Hayashi, Y.A. Kim, H. Muramatsu. Development and Application of Carbon Nanotubes. Japanese Journal of Applied Physics, PartⅠ: Regular Papers and Short Notes and Review Papers. 2006, 45(6):4883~4892
    17 何春年,赵乃勤. 纳米相增强铝基复合材料制备技术的研究进展. 兵器材料科学与工程. 2005, 28(3):53~57
    18 J.H. Jang, K.H. Oh, S.I. Heo, K.S. Han. Processing and Characterization of Graphite Nanofibers Reinforced Aluminum Matrix Composites. Key Engineering Materials. 2006, 274(5293):1067~1072
    19 T.L. Kin, G. Chong, H. David. A Critical Review on Nanotube and Nanotube/Nanoclay Related Polymer Composite Materials. Composies Part B: Engineering. 2006, 37(6):425~436
    20 J.P. Salvtat, S. Bhattacharyya, R.B. Pipes. Progress on Mechanics of Carbon Nanotubes and Derived Materials. Journal of Nanoscience and Nanotechnology. 2006, 6(7):1857~1882
    21 J.S. Lee, Y.S. Kang, S.K. Kwon, B.H.A. Cha, X. Qing. A New Processing Route for Net Shaped Nanoparticulate Materials. Advanced Powder Technology. 2004, 15(6):639~655
    22 B. Tian, P. Liu, K. Song, Y. Li, Y. Liu, F. Ren, J. Su. Microstructure and Properties at Elevated Temperature of a Nano-Al2O3 Particles Dispersion Strengthened Copper Base Composite. Materials Science and Engineering A. 2006, 435~436:705~710
    23 陶 泳,高 滋. 碳纳米管的研究进展. 化学世界. 2006, (4):238~241
    24 L. Qin, X. Zhao, K. Hirahara. The Smallest Carbon Nanotubes. Nature.2000, 408:50
    25 J.F. Colomer, C. Stephan, S. Lefrant. Large Scale Synthesis of Single Wall Carbon Nanotubes by Catalytic Chemical Vapor Deposition (CCVD) Method. Chemistry Physics Letters. 2000, 3(17):83~89
    26 S. Iijima, T. Ichihashi, Y. Pentagons. Heptagons and Negative Curvature in Graphite Microtubule Growth. Nature. 1992, 356:776~778
    27 S.Iijima. Helical microrubules of graphitic carbon. Nature. 1991, 354:56~58.
    28 G.S. Duesberg, J. Muster, H.J. Byrne, S. Roth, M. Burghard. Towards Processing of Carbon Nanotubes for Technical Application. Applied Physics A: Materials Science and Processing. 1999, 69(3):269~274
    29 N.M. Rodriguez, M.S. Kim, R.T.K. Baker. Carbon Nanofibers: a Unique Catalyst Support Medium. Journal of Physical Chemistry. 1994, 98(50):13108~13111
    30 朱宏伟, 慈立杰, 梁 吉, 魏秉庆, 徐才录, 吴德海. 浮游催化法半连续制取碳纳米管的研究. 新型炭材料.2000, 15(1):48~51
    31 H.M. Cheng, F. Li, G. Su, H.Y. Pan, L.L. He, X. Sun, M.S. Dresselhaus. Large-Scale and Low Cost Synthesis of Single Walled Carbon Nanotubes by the Catalytic Pyrolysis of Hydrocarbons. Applied Physics Letters. 1998, 72(25): 3282
    32 W. K. Hsu, M. Terrones, J. P. Hare, H. Terrones. Electrolytic Formation of Carbon Nanostructures. Chemical Physics Letters. 1996, 262(1~2): 161
    33 Y.L. Li, Y.D. Yu, Y. Liang. Novel Method for Synthesis of Carbon Nanotubes: Low Temperature Solid Pyrolysis. Journal of Materials Research. 1997, 12(7): 1678~1680
    34 W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang. Large Scale Synthesis of Aligned Carbon Nanotubes. Science. 1996, 274(5293):1701
    35 W.R.L. Vander, T.M. Ticich, V.E. Curtis. Flame Synthesis of Metal Catalyzed Single Wall Carbon Nanotubes. Journal of Physical Chemistry A. 2000, 104(31): 7209~7217
    36 H.J. Huang, H. Kajiura, H. Yamada. Purification and Alignment of Arc-Synthesis Single Walled Carbon Nanotube Bundles. Chemistry Physics Letter. 2002, 356:567~572
    37 L. Vaccarini, C. Goze, R. Aznar. Purification Procedure of Carbon Nanotubes. Synthetic Metals. 1999, 103:2492~2493
    38 T. Jeong, W.Y. Kim, Y.B. Hahn. A New Purification Method of Single Walled Carbon Nanotubes Using H2S and O2 Mixture Gas. Chemistry Physics Letter. 2001, 344:18~22
    39 K. Hernadi, A. Siska, N. Thien. Reactivity of Different Kinds of Carbon during Oxidative Purification of Catalytically Prepared Carbon Nanotubes. Solid State Ionics. 2001, 141~142:203~209
    40 杨占红,吴浩清,李 晶. 碳纳米管的纯化-电化学氧化. 高等学校化学学报. 2001, 22(3):446~449
    41 M. Yumura, S. Ohshima, K. Uchida. Synthesis and Purificatio of Multi-Walled Carbon Nanoutbes for Field Emitter Application. Diamond and Relate Materials. 1999, 8:785~791
    42 宋维君, 张宁. 碳纳米管的纯化进展. 广东化工. 2006, 33(153):50~52.
    43 商红岩, 徐永强, 赵会吉, 刘晨光. HNO3处理和焙烧温度对Mo活性组分在 碳 纳 米 管 载 体 表 面 分 散 的 影 响 . 石 油 学 报 ( 石 油 加 工 ). 2004, 20(2):81~89
    44 李权龙, 袁东星, 林庆梅. 多壁碳纳米管的纯化. 化学学报. 2003, 61(6):931~936
    45 赵廷凯, 柳永宁. 温控电弧放电法大量制备单壁碳纳米管. 物理学报. 2004, 53(11):3961~3965
    46 张登松, 代 凯, 方建慧, 施利毅, 李轩科, 雷中兴. 多壁碳纳米管的制备及改性处理. 化学研究. 2004, 15(3):12~15
    47 江 奇, 卢晓英,赵 勇, 任贤明, 宋利君. 活化剂用量对活性碳纳米管电化学容量的影响. 无机材料学报. 2006, 21(5):20~24.
    48 E. Dujardin, T.W. Ebbesen. Purification of Single Shell Nanotubes. Advanced Materials. 1998, 10(8):611~614
    49 林敬东, 杨乐夫, 蔡 云. 多壁碳纳米管的纯化. 厦门大学学报(自然科学版). 2001, 40(4):888~892
    50 姚振华,朱长纯,程 敏,刘君华. 碳纳米管高温热稳定性与结构的关系. 液晶与显示. 2002, 17(1): 49~54
    51 P.M. Ajayan, T.W. Ebbesen. Opening Carbon Nanotubes with Oxygen and Implications for Filling. Nature. 1993, 362:522~525
    52 M. Zhang, D.H. Wu, C.L. Xu, Y.F. Xu and W.K. Wang. Ribbon Like Nanostructures Transformed from Carbon Nanotubes at High Temperatures and Pressure. Nanostructured Materials. 1998, 10(8): 1145~1152
    53 S.C. Tsing, P.J.F. Harris, M.L.H. Green. Thinning and Opening Carbon Nanotubes by Oxidation Using Carbon Dioxide. Nature. 1993, 362:520~522
    54 吕德义,徐铸德,徐丽萍,葛忠华. 碳纳米管的氧化稳定性及反应动力学. 应用化学. 2002, 19(10):1005~1007
    55 Z. Tao, H. Geng, K. Yu, Z. Yang, Y. Wang. Effects of High Energy Ball Milling on the Morphology and the Field Emission Property of Multi Walled Carbon Nanotubes. Materials Letters. 2004, 58:3410~3413
    56 N. Pierard, A. Fonseca, J.F. Colomer, C. Bossuot, J.M. Benoit, G.V. Tendeloo, J.P. Pirard, J.B. Nagy. Ball Milling Effect on the Structure of Single Wall Carbon Nanotubes. Carbon. 2004, 42:1691~1697
    57 B.I. Yakobson, C.J. Bernholc, J. Bernholc. Nanomechanics of Carbon Tubes: Instabilities beyond Linear Response. Physical Review Letters. 1996, 76(14):2511
    58 S.B. Sinnott, O.A. Shenderova, C.T. White, D.W. Brenner. Mechanical Properties of Nanotubule Fibers and Composites Determined from Theoretical Calculations and Simulations. Carbon. 1998, 36(1~2):1~9
    59 J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Revathi, A.J. Kulik, J. Andrzej, T. Stockli, A.N. Burnham. Elastic and Shear Moduli of Single Walled Carbon Nanotube Ropes. Physical Review Letters. 1999, 82(5):944~947
    60 S. Iijma, C. Brabec, A. Maiti, J. Bernholc. Structural Flexibility of Carbon Nanotubes. Journal of Chemical Physics.1996, 104(5):2089
    61 E.W. Wong, P.E. Sheehan, C.M. Liebert. Nanobeam Mechanics: Elasticity, Strength, and Toughness of Nanorods and Nanotubes. Science. 1997, 277(5334):1971~1974
    62 Z.W. Pan, S.S. Xie, L. Lu, B.H. Chang, L.F. Sun, W.Y. Zhou, G. Wang, D.L. Zhang. Tensile Tests of Ropes of Very Long Aligned Multiwall Carbon Nanotubes. Applied Physics Letters. 1999, 74(21):3152~3154
    63 M.F. Yu, B.S. Files, S. Arepalli, S.R. Ruoff. Tensile Loading of Ropes of Single Wall Carbon Nanotubes and Their Mechanical Properties. PhysicalReview Letters. 2000, 84(24):5552~5555
    64 E. Anglaret, S. Rols, J.L. Sauvajo. Comment on “Effect of the Growth Temperature on the Diameter Distribution and Chirality of Single Wall Carbon Nanotubes”. Physical Review Letters. 1998, 81(21):4780.
    65 F.T. Fisher. Nanomechanics and the Viscoelastic Behavior of Carbon Nanotubes Reinforced Polymers. PhD Thesis. Northwestern University, USA. 2002:85~87
    66 R.Z. Ma, J. Wu, B.Q. Wei, J. Liang, D. H. Wu. Processing and Properties of Carbon Nanotubes Nano-SiC Ceramic. Journal of Materials Science. 1998, 33:5243~5246
    67 A. Peigney, E. Flahaut, C. Laurent, F. Chastel, A. Rousset. Alligned Carbon Nanotubes in Ceramic Matrix Nanocomposites Prepared by High-Temperature Extrusion. Chemical Physics Letters. 2002, 352:20~25.
    68 G.D. Zhan, J.D. Kuntz, J.Wan, A.K. Mukherjee. Single Wall Carbon Nanotubes as Attractive Toughing Agents in Alumina Based Nanocomosites. Nature Materials. 2003, 2:38~42
    69 J. Fan, D. Zhao, M. Wu, Z. Wu, and J. Song. Preparation and Microstructrue of Multi Wall Carbon Nanotubes Toughened A12O3 Composite. Journal of Americal Ceramics Society. 2006, 89(2):750~753
    70 F. Zhang, J. Shen, J. Sun. Processing and Properties of Carbon Nanotubes Nano-WC-Co Composites. Materials Scicence and Engineering A. 2004, 381:86~91
    71 J. Sun, L. Gao, M. Iwasa, T. Nakayama, K. Niihara. Failure Investigation of Carbon Nanotube/3Y-TZP Nanocomposites. Ceramics International. 2005, 31:1131~1134
    72 M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson. Exceptionally High Young’s Modulus Observed for Individual Carbon Nanotubes. Nature. 1996, 381:678~682
    73 X.Y. Gong, J. Liu, S. Baskaran. Load Transfer and Deformation Mechanisms in Canrbon Nanotubes Polystyrene Composites. Chemistry Materials. 2000, 12:1049~1054
    74 M.K. Yeh, N.H. Tai, J.H. Liu. Mechanical Behavior of Phenolic Base Composites Reinforced with Multi Walled Carbon Nanotubes. Carbon. 2006,44:1~9
    75 X. Gao, L. Liu, Q. Guo, J. Shi, G. Zhai. Fabrication and Mechanical and Conductive Properties of Multi Walled Carbon Nanotube (MWNT) Reinfroced Carbon Matrix Matrix Composties. Materials Letters. 2005, 59:3062~3065
    76 P.M. Ajayan, L.S. Schadler, C. Giannaris and A. Rubio. Single Walled Carbon Nanotube Polymer Composites: Strength and Weakness. Advanced Materials. 2000, 12(10):750~754
    77 L.T. Lau, S. Shi. Failure Mechanisms of Carbon Nanotube/Epoxy Composites Pretreated in Different Temperature Environments. Carbon. 2002, 40:2965~2968
    78 马仁志,朱艳秋,魏秉庆. 铁-巴基管复合材料的研究. 复合材料学报. 1997,14(2):92~96
    79 Y.B. Li, Q. Ya, B.Q. Wei, J. Liang, D.H. Wu. Processing of a Carbon Nanotubes-Fe82P18 Metallic Glass Composite. Jorunal of Materials Science Letters. 1998, 17:607~609
    80 P. Quang, Y.G. Jeong, S.H. Hong and H. S. Kim. Equal Channel Angular Pressing of Carbon Nanotube Reinforced Metal Matrix Nanocomposies. Key Enginering Materials. 2006, 326~328:325~328.
    81 沈金龙,李四年,余天庆,郑 重,吴瑜锟.粉末冶金法制备镁基复合材料的力学性能和增强机理研究. 铸造技术. 2005,26(4):309~312
    82 T. Kuzumaki, O. Ujie, H. Lchinose. Mechanical Characteristics and Preparation of Carbon Nanotube Fiber Reinfoced Ti Composite. Advanced Engineering Materials. 2002, 2(7):416~418
    83 S.R. Dong, J.P. Tu, X.B. Zhang. An Investigation of the Sliding Wear Behavior of Cu Martix Composite Reinforced by Carbon Nanotubes. Materials Science and Engineering A. 2001, 313:83~87
    84 凤 仪,袁海龙,张 敏. 碳纳米管-银复合材料的制备工艺和电导率. 中国有色金属学报. 2004, 14(9):1451~1455
    85 Z. Bian, M. Pan, Y. Zhang and W. Wang. Carbon Nanotube Reinforced Zr52.5Cu17.9Ni14.6Al10Ti5 Bulk Metallic Glass Composites. Applied Physics Letters. 2002, 18(25):4739~4741
    86 林文松,周细应,王思珺,李轶. 碳纳米管/镍复合镀层硬度研究. 机械工程材料. 2005,29(4):51~57
    87 S.W. Zhu,Z.J. Jia. Research Actualities of Carbon Nanotube and Its Application. Journal of Functional Materials. 2000, 31(2):119~124
    88 S. Li, T. Yu, H. Cheng, Y. Zhang, J. Shen. Propeties and Structure of Maganesium Matrix Composite Reinforced with CNTs. Jorunal of Wuhan University of Technology. 2004, 19(1):65~68
    89 李圣海,李四年,张友寿,陈慧敏. 镁/碳纳米管(CNTs)复合材料的力学性能初探. 铸造设备研究. 2003, 1:9~11
    90 J. Yang, R. Schaller. Mechanical Spectroscopy of Mg Reinforced with Al2O3 Short Fibers and C Nanotubes. Materials Science and Engineering A. 2004, 370:512~515
    91 T. Noguchi, A. Magario, S. Fukazawa, S. Shimizu, J. Beppu and M. Seki. Carbon Nanotube/Aluminium Composites with Uniform Dispersion. Materials Transactions. 2004, 45(2):602~604
    92 T. Kuzumaki, K. Miyazawa, H. Ichinose and K. Ito. Processing of Carbon Nanotubes Reinforced Aluminum Composite. Jorunal of Materials Research. 1998, 13(9):2445~2449
    93 董树荣,涂江平,张孝彬. 粉末冶金制备纳米碳管增强铜基复合材料的研究. 浙江大学学报. 2001, 35(1):29~32
    94 R. Zhong, H. Cong, P. Hou. Fabrication of Nano-Al Based Composites Reinforced by Single Walled Carbon Nanotubes. Carbon. 2003, 41:848~851
    95 许龙山,陈小华,吴玉蓉,潘伟英,徐海洋,张 华. 碳纳米管铜基复合材料的制备. 中国有色金属学报. 2006, 16(3):406~411
    96 C. Moreui. Carbon Nanotube/Magnesium Composites. Physica Status Solid (A): Applied Research. 2004, 21(8):53~55
    97 C.L. Xu, B.Q. Wei, R.Z. Ma, J. Liang, X.K. Ma, D.H. Wu. Fabrication of Aluminum Carbon Nanotube Composites and Their Electrical Properites. Carbon. 1999, 37:855~858
    98 R. George, K.T. Kashyap, R. Rahul, S. Yamdagni. Strengthening in Carbon Nanotube/Aluminum (CNT/Al) Compoistes. Scripta Materialia. 2005. 53:1159~1163
    99 S.I. Cha, K.T. Kim, S.N. Arshad, C.B. Mo, and S.H. Hong. Extraordinary Strengthening Effect of Carbon Nanotubes in Metal Matrix NanocompositesProcessed by Molecular Level Mixing. Advanced Materials. 2005, 17:1377~1381
    100 K.T. Kim, S.I. Cha, S.H.Hong, S.H. Hong. Microstructures and Tensile Behavior of Carbon Nanotube Reinforced Cu Matrix Nanocomposites. Materials Science and Engineering A. 2006, 430:27~33
    101 于振兴,孙宏飞,王尔德,梁吉,房文斌. 添加碳纳米管的储氢性能. 中国有色金属学报. 2005, 15(6):876~881
    102 F.X. Wang, X.P. Gao, Z.W. Lu, S.H. Ye, J.Q. Qu, F. Wu, H.T. Yuan, D.Y. Song. Electrochemical Properties of Mg Based Alloys Containing Carbon Nanotubes. Journal of Alloys and Compounds. 2004, 370:326~330
    103 D. Chen, L. Chen, S. Liu, C.X. Ma, D.M. Chen, L.B. Wang. Microstructure and Hydrogen Storage Property of Mg/MWNTs Composites. Journal of Alloys and Compounds. 2004, 372:231~237
    104 X. Hu, T. Wang, X. Qu, and S. Dong. In Situ Synthesis and Characterization of Multiwalled Carbon Nanotube/Au Nanoparticle Composite Materials. Journal of Physics Chemistry B. 2006, 110:853~857.
    105 喻 强,李玉宝,魏秉庆.快速凝固碳纳米管/In600复合材料组织与性能. 清华大学学报(自然科学版). 1999, 39(4):25~27
    106 Z. Bian, R. Wang, W. Wang, T. Zhang and A. Inoue. Carbon Nanotube Reinforced Zr Based Bulk Metallic Glass Composites and Their Properties. Advanced Functional Materials. 2004, 14(1)55~63
    107 X. Chen, J. Xia, J. Peng, W. Li, S. Xie. Carbon Nanotube Metal Matrix Composites Prepared by Electrolees Plating. Composites Science and Technology. 2000, 60:301~306
    108 T. Laha, A. Agarwal, M. Tim, S. Seal. Synthesis and Characterization of Plasma Spary Formed Carbon Nanotube Reinforced Aluminum Composite. Materials Science and Engineering A. 2004, 381:249~258
    109 M. Fujii, X. Zhang, H. Xie, H. Ago, K. Takahashi, T. Lkuta, H. Abe, T. Shimizu. Measuring the Thermal Conductivity of a Single Carbon Nanotube. Physical Review Letters. 2005, 95(6):1~4
    110 E. Pop, D. Mann, Q. Wang, K. Goodson, H. Dai. Thermal Conductance of an Individual Single Wall Carbon Nanotube above Room Temperature. Nano Letters. 2006, 6(1):96~100
    111 T. Shimizu, H. Abe, A. Ando, Y. Nakayama, H. Tokumoto. Electrical Conductivity Measurements of a Multi Walled Carbon Nanotube. Surface and Interface Analysis. 2005, 37(2):204~207
    112 A.J. Austin, C.V. Nguyen, Q. Ngo. Electrical Conduction of Carbon Nanotube Atomic Force Microscopy Tips: Applictions in Nanofabrication. Journal of Applied Physics. 2006, 99(11):114304~114305
    113 Y. Shunsuke, G. Ryohei, K. Akira, S. Hiroki, M. Yutaka. Fabrication and Thermal Properties of Carbon Nanotube/Nickel Comopsite by Spark Plasma Sintering Method. Jouranl of the Japan Institute of Metals. 2006, 7(9):721~728
    114 Y. Shunsuke, G. Ryohei, K. Akira, S. Hiroki, M. Yutaka. Fabrication and Thermal Evaluation of Carbon Nanotube/Aluminum Composite by Spark Plasma Sintering Method. Journal of the Japan Society of Powder and Powder Metallurgy. 2006, 53(12):965~970
    115 Y. Tang, H. Cong, R. Zhong, H. Cheng. Thermal Expansion of a Composite of Single Walled Carbon Nanotubes and Nanocrystalline Aluminum. Carbon. 2002, 42(15):3260~3262
    116 Y. Feng, H. Yuan. Electroless Plating of Carbon Nanotubes with Silver. Journal of Mateirals Science. 2004, 39(9):3241~3243
    117 H.P. Wu, X.J. Wu, M.Y. Ge, G.Q. Zhang, Y.W. Wang, J. Jiang. Properties Investigation on Isotropical Conductive Adhesives Filled with Silver Coated Carbon Nanotubes. Composites Science and Technology. 2007, 67(6):1182~1186
    118 李恒德,肖纪美主编. 材料表面与界面. 清华大学出版社, 1990:304
    119 杨海宁,顾明元,蒋为吉. 石墨纤维增强铝基复合材料界面反应机制研究. 金属学报. 1994, 30(8)379~383
    120 陈 荣,张国定,吴人杰. 碳/铝复合材料界面结合强度对拉伸性能的影响. 复合材料学报. 1993, 10(2):121~126
    121 杨庆生,唐立民,陈浩然. 界面对短纤维增强金属基复合材料力学行为的影响. 复合材料学报. 1995, 3(12):76~81
    122 M.H.V. Setif, M. Lancin, C. Marhic. On the Role of Brittle Interfacial Phases on the Mechanical Properties of Carbon Fiber Reinforced Al Based Matrix Composites. Materials Science and Engineering A. 1999,272:321~333
    123 A.F. Whitehouse, H.M.A. Winand, T.W. Clyne. Effect of Processing Route and Reinfocement Geometry on Isothermal Creep Behaviour of Particulate and Short Fibre MMCs. Materials Science and Engineering A. 1998, 260(1):57~69
    124 J.H. Ahn, Y. Wang, Y.J. Kim, S.J. Kim, H. Chung. Sythesis of Carbon Nanotube Reinforced Al Matrix Composites. Materials Science Form. 2007, 539~543:860~865
    125 L. Ci, Z. Ryu, N. Yun, J. Phillipp, M. Rühle. Investigation of the Interfacial Reaction between Multi Walled Carbon Nanotubes and Aluminum. Acta Materialia. 2006, 54:5367~5375
    126 T. Laha, S. Kuchibhatla, S. Seal, W. Li, A. Agarwal. Interfacial Phenomena in Thermally Sprayed Multiwalled Carbon Nanotube Reinforced Aluminum Nanocompoiste. Acta Materialia. 2007, 55:1059~1066
    127 Y. Zhang, S. Iijima. Formation of Single Wall Carbon Nanotubes by Laser Ablation of Fullerenes at Low Temperature. Applied Physics Letters. 1999, 75(20):3087~3089
    128 S. Amelinckx, X.B. Zhang, D. Bernaerts. A Formation Mechanism for Catalytically Grown Helix Shape Graphite Nanotubes. Science. 1994, 265:635~639
    129 T.W. Ebbesen, H. Hirua, J. Fujita. Patterns in the Bulk Growth of Carbon Nanotubes. Chemistry Physics Letter. 1993(1~2):83~90
    130 J.F. Colomer, P. Piedigrosso, A. Fonseca. Different Purification Method of Carbon Nanotubes Produced by Catalytic Synthesis. Synthetic Metals. 1999, 103:2482~2484
    131 张法明. 纳米WC/Co基碳纳米管复合材料的SPS合成及强韧化机理. 哈尔滨工业大学博士论文. 2005:90
    132 C.M. Yang, H. Kanoh, K. Kaneko, M. Yudasaka, S. Iijima. Adsorption Behaviors of Hipco Single Walled Carbon Nanotube Aggregates for Alcohol Vapors. Journal of Physics and Chemistry B. 2002, 106:8994~8999
    133 L. Liu, Y. Qin, Z. Guo, D. Zhu. Reduction of Solubilized Multi Walled Carbon Nanotubes. Carbon. 2003, 41:331~335
    134 A.J. Stone, D.J. Wales. Theoretical Studies of Icosahedra C60 and SomeRelated Species. Chemical Physics Letters. 1986, 128:501~503
    135 S. Banerjee, T.H. Benny, S.S. Wong. Covalent Surface Chemistry of Single Walled Carbon Nanotubes. Advanced Materials. 2005, 17:17~29
    136 S.C. Tsang, Y.K. Chen, M.L.H. Green. A Simple Chemical Method of Opening and Filling Carbon Nanotubes. Nature. 1994, 372:159~162
    137 S.J. Park, M.S. Cho, S.T. Lim. Synthesis and Dispersion Characteristics of Multi Walled Carbon Nanotube Composites with Poly(Methyl Methacrylate) Prepared by In-situ Bulk Polymerization. Macromol. Rapid Commun. 2003, 24:1070~1073
    138 C.A. Dyke, J.M. Tour. Covalent Functionalization of Single Walled Carbon Nanotubes for Materials Applications. Journal of Physics and Chemistiry A. 2004, 108:11151~11159.
    139 O. Lourie, H.D. Wagner. Transmission Electron Microscopy Observations of Fracture of Single Walled Carbon Nanotubes under Axial Tension. Apply Physics Letter. 1998, 73:3527.
    140 H. Hu, P. Bhowmik, B. Zhao. Detemination of the Acidic Sites of Purified Single Walled Carbon Nanotubes by Acid Based Titration. Chemistry Physics Letter. 2001, 345:25~28
    141 高 濂, 孙静, 刘阳桥. 纳米粉体的分散及表面改性. 化学工业出版社, 2003:145~195
    142 L. Kowalski, B.M. Korevaar, J. Duszczyk. Some New Aspects of the Theory of Oxidation and Degassing of Aluminum Based Alloy Powder. Journal Materaisl Science. 1992, 27:2770~2780
    143 P.C. Hiemenz. Principles of Colloid and Surface Chemistry. Marcel Dekker Inc, 1997:109
    144 B.E. Love. Preparation and Enantiomeric Excess Determination of Optically Active Bnol and Bnol Derivatives. Current Organic Sythesis. 2006, 3:169~185
    145 I.H. Khan. Effect of Thermal Exposure on the Mechanical Properties of Aluminum Graphite Composite. Metallurgical Transaction. 1976, 7A(9):1281~1289
    146 S.H. Hong, Y.F. Zhu, M. Kouji, I. Minoru. Role of Al2O3 Layer in Oxidation Resistance of Cu-Al Dilute Alloys Pre-Annealled in H2 Atmospheres.Corrosion Science. 2006, 11:3692~3702
    147 崔国文. 缺陷、扩散与烧结. 清华大学出版社,1990:182~196
    148 G. Ran, J.E. Zhou, S.Q. Xi, P.L. Li. Microstrucure and Morphology of Al-Pb Bearing Alloy Synthesized by Mechanical Alloying and Hot Extrusion. Journal of Alloys and Compounds. 2006, 419(1~2):66~70
    149 M.J.F. Zamora, I.E. Guel, J.G. Hernandez, M.M. Yoshida, R.M. Sanchez. Aluminum Graphite Composite Produced by Mechanical Milling and Hot Extrusion. Journal of Alloys and Compounds. 2007, 434~435:518~521
    150 Y.W. Kim, W.M. Griffith, F.H. Froes. Surface Oxides in P/M Aluminum Alloys. Journal of Metals. 1985, 8:27~32
    151 任学平,康永林 . 粉末塑性加工原理及应用 . 冶金工业出版社,1998:53~59
    152 G.D. Zhan, J.D. Kuntz, J. Wan and A.K. Mukherjee. Single Walled Carbon Nanotubes as Attractive Toughing Agents in Alumina Based Nanocomposites. Nature Materials. 2003, 2:38~42
    153 赵 恂,杨盛良,杨德明,姜冀湘. SiC晶须增强铝合金复合材料的强化效果研究. 复合材料学报. 1997, 14(3):15~19
    154 F.H. Gojny, M.H.G. Wichmann, U. Kopke, B. Fielder, K. Schulte. Carbon Nanotube Reinforced Epoxy Composites: Enhanced Stiffness and Fracture Toughness at Low Nanotube Content. Compoists Science and Technology. 2004, 64(15):2363~2371
    155 P. Cortes, W.J. Cantwell. Interfacial Fracure Properties of Carbon Fiber Reinforced PEEK/ Titanium Fiber Metal Laminates. Journal of Meterials Science Letters. 2002, 21:1819~1823
    156 T. Gladman. Precipitation Hardening in Metals. Materials Science and Technology. 1999, 15(1):30~36
    157 L. Francois, W. Jerome, R. Thiebaud. Hall Petch Law Revisited in Terms of Collective Dislocation Dynamics. Physical Review Letters. 2006, 97(7):075504~075505
    158 H.K. Jung, Y.M. Cheong, H.J. Ryu, S.H. Hong. Aanlysis of Anisotropy in Elastic Constants of SiCp/2124 Al Metal Matrix Composites. Scripta Materialia. 1999, 41(12):1261~1267
    159 Y. Maniwa, R. Fujiwara, H. Kira, H. Tou, H. Kataura, S. Suzuki. ThermalExpansion of Single Walled Carbon Nnaotube Bundles: X Ray Diffraction Studies. Physical Review B. 2001, 64:241402~241403
    160 S. Lefebvre, B. Devincre, T. Hoc. Yield Stress Strengthening in Ultrafine Grained Metals: A Two Dimesional Simlualtion of Dislocation Dynamics. Journal of the Mechanics and Physics of Solids. 2007, 55(4):788~802
    161 R.J. Arsenault. Strengthening of Aluminum Alloy 6061 by Fibre and Platelet Silicon Carbide. Materials Science and Engineeing. 1984, 64(2):171~181
    162 W.S. Miller, F.J. Humphreys. Strengthening Mechanisms in Particulate Metal-Matrix Composites. Scripta Metallurgica et Materialia. 1991, 25(11):2623~2626

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700