PIII&D表面复合强化层的耐磨损性能和膜层设计研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着现代工业、高新技术的发展,传统的单一表面改性技术已不能适应恶劣条件、复杂物理环境下的工程应用,所以需要对已有的表面改性技术进行优化设计和组合,从特殊的应用背景出发,将两种或多种材料表面改性技术组合成复合处理技术,使材料表面获得单种表面改性技术无法得到的新的表面特性,从而满足新的工程应用的需要。特别是在航空航天领域,零部件减重带来的轻质钛铝合金的广泛应用以及磨损现象的普遍存在,迫切要求提高钛铝合金的表面性能,特别是轻质承载部件的耐磨损性能。本课题希望通过对PIII&D表面复合强化处理技术的研究,推动表面复合强化处理技术的发展,并为航空航天领域轻质承载部件耐磨损性能的提高提供可行的技术措施。本课题采用PIII&D方法对不同硬度的GCr15、Ti6Al4V、LY12基体进行了表面强化处理,并对不同表面强化处理后样品的耐磨损性能进行了研究。进一步采用有限元模拟压痕试验的方法,通过分析承载条件下膜基体系的应力应变分布研究了不同膜基体系的静态承载能力。
     研究发现对于硬基体材料如GCr15基体的PIII&D表面复合强化处理,由于C离子注入膜层薄且与表面DLC膜层的性能相近,复合强化处理对于体系的静态承载能力没有很大的影响。但PIII&D表面复合强化处理可以显著的提高硬基体材料的耐磨损性能,对于GCr15基体,经过复合强化处理后体系的磨损寿命比表面沉积DLC单层膜的体系提高了5倍以上。耐磨损性能的提高主要是由于C离子注入提高了膜基界面处的结合能力,并降低了界面残余应力的结果。
     对于软基体材料,如Ti6Al4V钛合金和LY12铝合金基体,采用PIII&D表面复合强化处理技术可以显著提高体系的静态承载能力,主要是因为中间过渡层的加入可以降低承载条件下界面处的应力,降低了发生塑性变形的可能。TiN/Ti(CN)x/TiC结构的中间过渡层形成的弹塑性性能梯度结构具有最好的承载效果,提高中间过渡层的厚度可以进一步提高膜基体系的承载能力。由于铝合金基体材料的硬度更低,中间过渡层对承载能力的作用更为明显。对于软基体材料,体系的承载能力是影响耐磨损性能的关键,采用PIII&D方法制备的TiN/Ti(CN)x/TiC/DLC多层膜结构,不但可以提高体系的承载能力,而且形成的梯度过渡还可以降低界面处的残余应力,显著提高了体系的耐磨损性能。对于Ti6Al4V基体,经过复合强化处理后体系的磨损寿命比表面沉积DLC单层膜的体系提高了10倍以上,而且中间过渡层厚度的增加可以进一步提高体系在重载条件下的耐磨损性能,具有2.25μm厚度中间过渡层的体系在1GPa载荷作用下,寿命达到了60000转以上。对于铝合金LY12基体,采用PIII&D复合强化处理技术在表面形成了Ti/TiN/Ti(CN)x/TiC/DLC的多层梯度膜结构,显著提高了膜基体系的承载能力和耐磨损性能。
     通过对不同基体表面PIII&D复合强化处理改性层性能的研究,本课题总结了PIII&D表面复合强化处理耐磨损层的膜层设计的原则。根据基体性能和服役条件,将基体材料分为软基体材料和硬基体材料两类,并分别给出了相应的PIII&D复合强化处理工艺过程。
With the development of modern industry and new technology, the traditional surface modification techniques haven’t met the requests of application under serious conditions. Therefore, two or more surface modification techniques need to be involved to produce a duplex treatment technique to meet the new requests of application, which are unobtainable through any individual surface modification technique. Especially in the field of avigation and aeronautics, it is exigent to improve the surface properties of components under wear, because the titanium and aluminium alloys are widely used to reduce the weight of industrial components. By this study, the author hope that the investigation can promote the development of duplex technology and offer effective technical methods to improve the wear resistance of soft alloy components. In this paper, PIII&D duplex treatments were conducted on the GCr15, Ti6Al4V and LY12 substrates, and the wear resistance of samples was investigated. Moreover, the load bearing capacity of coating-substrate systems was investigated by FE analysis of the indentation test to analyze the distribution of stress and strain in the coating-substrate system.
     The results show that the duplex treatment of GCr15 have a less effect on the load bearing capacity of system because of the thin film and structure like DLC coating by C ion implantation. The wear resistance of system can be drastically improved by PIII&D duplex treatment, and the wear life of sample by duplex treatment was increased by 5 times compared with the single DLC layer. The improvement of wear resistance is attributed to the increase of interface adhesion and decrease of residual stress.
     The load bearing capacity can be enormously improved by PIII&D duplex treatment for Ti6Al4V and LY12 substrates, mainly because that the transfer layer can decrease the stress and strain at the interface. The transfer layer of TiN/Ti(CN)x/TiC has the best effect for the gradient structure of elastic and plastic properties. The increase of thickness of transfer layer can also improve the load bearing capacity. For LY12, the increase of load bearing capacity is more obvious due to the softer substrate. The load bearing capacity has an important influence on the wear resistance of system. The transfer layer of TiN/Ti(CN)x/TiC by PIII&D can enormously improve the wear resistance of system not only due to the increase of load bearing capacity but also the decrease of residual stress at the interface. For Ti6Al4V substrate, the wear life of sample by duplex treatment was increased by 5 times compared with single DLC layer. The increase of thickness of transfer layer can also improve the wear resistance of system under high load, and the wear life of the sample with the 2.25μm transfer layer can be more than 60000 cycles under the load of 1 GPa. For LY12 substrate, the Ti/TiN/Ti(CN)x/TiC/DLC multi-layer gradient structure can enormously improve the load bearing capacity and wear resistance.
     In this paper, the coating design rules of PIII&D duplex treatment were concluded by the investigation of property. On the basis of substrate property and service condition, the substrate can be divided into soft substrate and hard substrate, and the corresponding PIII&D duplex treatments were offered.
引文
1 A.A. Voevodin, J. M. Schneider, C. Rebholz, A. Matthews. Multilayer Composite Ceramic-metal-DLC coatings for Sliding Wear Application. Tribol. Int. 1996, 29(7): 559~570
    2 吴大维. 硬质薄膜材料的最新发展及应用. 真空. 2003, (6):1~5
    3 J. Robertson, Diamond-like Carbon. Materials Science and Engineering R. 2002, 37:129~281
    4 程宇航,吴一平,陈建国等. 类金刚石膜的结构与性能. 硅酸盐学报. 1997, 25(4):452~457
    5 C. Donnet, A. Grill. Friction Control of Diamond-like Carbon Coatings. Surface and Coatings Technology. 1997, 94-95:456~462
    6 S.K. Field, M. Jarratt, D.G. Teer. Tribological Properties of Graphite-like and Diamond-like Carbon Coatings. Tribology International. 2004, 37:949~956
    7 Y. X. Leng, J.Y. Chen, P. Yang, et al. Mechanical Properties and Platelet Adhesion Behavior of Diamond-like Carbon Films Synthesized by Pulsed Vacuum Arc Plasma Deposition. Surface Science. 2003, 531: 177~184
    8 A. Erdemir, G.R. Fenske, J. Terry, et al. Effect of Source Gas and Deposition Method on Friction and Wear Performance of Diamondlike Carbon Films. Surface and Coatings Technology. 1997, 94-95: 525~530
    9 A. Erdemir, I.B. Nilufer, O.L. Eryilmaz, et al. Friction and Wear Performance of Diamond-like Carbon Films Grown in Various Source Gas Plasmas. Surface and Coatings Technology. 1999, 120-121: 589~593
    10 A. Erdemir, O.L. Eryilmaz, I.B. Nilufer, et al. Effect of Source Gas Chemistry on Tribological Performance of Diamond-like Carbon Films. Diamond and Related Materials. 2000, 9: 632~637
    11 Y. Liu, A. Erdemir, E.I. Meletis. An Investigation of the Relationship between Graphitization and Friction Behavior of DLC Coatings. Surface and Coatings Technology. 1996, 86-87: 564~568
    12 M.N. Gardos. Reconstruction-induced Friction Signatures of Polished Polycrystalling Diamond Films in Vacuum and Hydrogen. Tribology Letters. 1998, 4: 175~188
    13 Y. Liu, A. Erdemir, E.I. Meletis. Influence of Environmental Parameters on the Frictional Behavior of DLC Coatings. Surface and Coatings Technology. 1997, 94-95: 463~468
    14 J. Andersson, R.A. Erck, A. Erdemir. Friction of Diamond-like Carbon Films in Different Atmospheres. Wear. 2003, 254: 1070~1075
    15 J. Andersson, R.A. Erck, A. Erdemir. Frictional Behavior of Diamond-like Carbon Films in Vacuum and under Varying Water Vapor Pressure. Surface and Coatings Technology. 2003, 163-164: 535~540
    16 李振军,徐珧,李红轩等. 类金刚石薄膜的摩擦学特性及磨损机制研究进展. 材料科学与工程学报. 2004, 22(5): 774~777
    17 J. Jiang, R.D. Arnell. Effect of Sliding on Wear of Diamond-like Carbon Coatings. Wear. 1998, 218: 223~231
    18 A. Erdemir. The Role of Hydrogen in Tribological Properties of Diamond-like Carbon Films. Surface and Coatings Technology. 2001, 146-147: 292~297
    19 A. Erdemir. Genesis of Superlow Friction and Wear in Diamondlike Carbon Films. Tribology International. 2004, 37: 1005~1012
    20 M. Jarratt, J. Stallard, N.M. Renevier, D.G. Teer. An Improved Diamond-like Carbon Coating with Exceptional Wear Properties. Diamond and Related Materials. 2003, 12: 1003~1007
    21 A. Erdemir, O.L. Eryilmaz, I.B. Nilufer, G.R. Fenske. Synthesis of Superlow friction Carbon films from Highly Hydrogenated Methane Plasmas. Surface and Coatings Technology. 2000, 133-134: 448~454
    22 K.J. Clay, S.P. Speakman, N. Tomozeiu, et al. Material Properties and Tribological Performance of RF-PECVD Deposited DLC Coatings. Diamond and Related Materials. 1998, 7: 1100~1107
    23 A.B. Vladimirov, I.S. Trakhtenberg, A.P. Rubshtein, et al. The Effect of Substrate and DLC Morphology on the Tribological Properties Coating. Diamond and Related Materials. 2000, 9: 838~842
    24 T. Staedler, K. Schiffmann. Correlation of Nanomechanical and Nanotribological Behavior of Thin DLC Coatings on Different Substrates. Surface Science. 2001, 482-485: 1125~1129
    25 M. A. Djouadi, P. Beer, R. Marchal, et al. Antiabrasive Coatings: Applicationfor Wood Processing. Surface and Coatings Technology. 1999, 116-119: 508~516
    26 J. Richter, J. Cwajna, J. Szala. Quantitative Assessment of New High-speed Steel Substrate and PVD Wear-resistant Coatings. Materials Characterization. 2001, 46(2-3): 137~142
    27 Sonia A. G. Oliveira, Allan F. Bower. An analysis of fracture and delamination in thin coatings subjected to contact loading. Wear. 1996, 198(1-2): 15~32
    28 A. Matthews, A. Leyland, K. Holmberg, et al. Design Aspects for Advanced Tribological Surface Coatings. Surface and Coatings Technology. 1998, 100-101: 1~6
    29 C. Donnet, A. Erdemir. Historical Developments and New Trends in Tribological and Solid Lubricant Coatings. Surface and Coatings Technology. 2004, 180-181(5-6): 76~84
    30 M. Kathrein, C. Michotte, M. Penoy, et al. Multifunctional Multi-component PVD Coatings for Cutting Tools. Surface and Coatings Technology. 2005, 200(5-6): 1867~1871
    31 S.Y. Lee, S.D. Kim, Y.S. Hong. Application of the Duplex TiN Coatings to Improve the Tribological Properties of Electro Hydrostatic Actuator Pump Parts. Surface and Coatings Technology. 2005, 193: 266~271
    32 Jaffee H. W. Siu, Lawrence K. Y. Li. An Investigation of the Effect of Surface Roughness and Coating Thickness on the Friction and Wear Behaviour of a Commercial MoS2–metal Coating on AISI 400C Steel. Wear. 2000, 237(2): 283~287
    33 J. C. A. Batista, A. Matthews, C. Godoy. Micro-abrasive Wear of PVD Duplex and Single-layered Coatings. Surface and Coatings Technology. 2001, 142-144: 1137~1143
    34 T. Bell, H. Dong, Y. Sun. Realising the Potential of Duplex Surface Engineering. Tribology International. 1998, 31(3): 127~137
    35 Kessler, F.T. Hofmann, P. Mayr. Combinations of Coating and Heat Treatment Process: Establishing a System for Combined Processes and Examples. Surface and Coatings Technology. 1998, 108-109: 211-216
    36 E.I. Meletis, A. Erdemir, G.R. Fenske. Tribological Characteristics of DLCFilms and Duplex Plasma Nitriding/DLC coating Treatments. Surface and Coatings Technology. 1995, 73: 39~45
    37 D. Kakas, B. Skoric, M. Rakita. Tribological Behavior of Duplex Coating Improved by Ion Implantation. Thin Solid Films. 2004, 459: 152-155
    38 J.C.A. Batista, A. Matthews, C. Godoy. Micro-abrasive Wear of PVD Duplex and Single-layered Coatings. Surface and Coatings Technology. 2001, 142-144: 1137~1143
    39 C. Pfohl, K.T. Rie. Plasma Duplex Treatment of Stellite. Surface and Coatings Technology. 2001, 142-144: 1116~1120
    40 B. Skoric, D. Kakas, M. Rakita, N. Bibic, D. Peruskob. Structure, Hardness and Adhesion of Thin Coatings Deposited by PVD, IBAD on Nitrided Steels. Vacuum. 2004, 76: 169~172
    41 X. Nie, A. Wilson, A. Leyland, A. Matthews. Deposition of Duplex Al2O3 DLC Coatings on Al alloys for Tribological Applications Using a Combined Micro-arc Oxidation and Plasma-immersion Ion Implantation Technique. Surface and Coatings Technology. 2000, 121: 506~513
    42 H. Dong, T. Bell. Enhanced Wear Resistance of Titanium Surface by a New Thermal Oxidation Treatment. Wear. 2000, 238: 131~137
    43 B. Podgornik, J. Vizintin, H. Ronkainen, K. Holmberg. Friction and Wear Properties of DLC-coated Plasma Nitrided Steel in Unidiretional and Reciprocating Sliding. Thin Solid Films. 2000, 377-378: 254~260
    44 X. Nie, A. Leyland, A. Matthews. Low Temperature Deposition of Cr(N)/TiO2 Coatings Using a Duplex Process of Unbalanced Magnetron Sputtering and Micro-arc Oxidation. Surface and Coatings Technology. 2000, 133-134: 331~337
    45 J.C.A. Batista, M.C. Joseph, C. Godoy, A. Matthews. Micro-abrasion Wear Testing of PVD TiN Coatings on Untreated and Plasma Nitrided AISI H13 Steel. Wear. 2002, 249: 971~979
    46 B. Podgornik, J. Vizintin. Tribology of Thin Films and Their Use in the Field of Machine Elements. Vacuum. 2003, 68: 39~47
    47 S.Y. Lee, G.S. Kim, B. Kim. Mechanical Properties of Duplex Layer Formed on AISI 403 Stainless Steel by Chromizing and Boronizing Treatment. Surface and Coatings Technology. 2004, 177-178: 178~184
    48 A.A. Voevodin, S.D. Walck, J.S. Zabinski. Architecture of Multilayer Nanocomposite Coatings with Super-hard Diamond-like Carbon Layers for Wear Protection at High Contact Loads. Wear. 1997, 203-204: 516~517
    49 A.A. Voevodin, M.A. Capano, S.J.P. Laube, et al.. Design of a Ti/TiC/DLC Functionally Gradient Coating Based on Studies of Structural Transitions in Ti-C Thin Films. Thin Solid Films. 1997, 298: 107~115
    50 S.W. Jiang, B. Jiang, Y. Li, et al. Friction and Wear Study of Diamond-like Carbon Gradient Coatings on Ti6Al4V Substrate Prepared by Plasma Source Ion Implant-ion Beam Enhanced Deposition. Applied Surface Science. 2004, 236:285~291
    51 K.L. Choy, E. Felix. Functionally Graded Diamond-like Carbon Coatings on Metallic Substrates. Materials Science and Engineering A. 2000, 278: 162~169
    52 A. Erdemir, O.L. Eryilmaz, I.B. Nilufer, et al.. Effect of Source Gas Chemistry on Tribological Performance of Diamond-like Carbon Films. Diamond and Related Materials. 2000, 9: 632~637
    53 Y. Liu, A. Erdemir, E.I. Meletis. An Investigation of the Relationship between Graphitization and Friction Behavior of DLC Coatings. Surface and Coatings Technology. 1996, 86-87: 564~568
    54 M.N. Gardos. Reconstruction-induced Friction Signatures of Polished Polycrystalling Diamond Films in Vacuum and Hydrogen. Tribology Letters. 1998, 4: 175~188
    55 Y. Liu, A. Erdemir, E.I. Meletis. Influence of Environmental Parameters on the Frictional Behavior of DLC Coatings. Surface and Coatings Technology. 1997, 94-95: 463~468
    56 J. Andersson, R.A. Erck, A. Erdemir. Friction of Diamond-like Carbon Films in Different Atmospheres. Wear. 2003, 254: 1070~1075
    57 J. Andersson, R.A. Erck, A. Erdemir. Frictional Behavior of Diamond-like Carbon Films in Vacuum and under Varying Water Vapor Pressure. Surface and Coatings Technology. 2003, 163-164: 535~540
    58 L.S. Stephens, Y. Liu, E.I. Meletis. Finite Element Analysis of the Initial Yielding Behavior of a Hard Coating/Substrate System with Functionally Graded Interface under Indentation and Friction. Journal of Tribology. 2000,122: 381~387
    59 J.R. Conrad, J.L. Radtke, R.A. Dodd, F.J. Worzala, N.E. Tran. Plasma Source Ion Implantation Tehnique for Surface Modification of Materials. J. Appl. Phys. 1987, 62: 4591~4594
    60 G.A. Collins, R. Hutchings, J. Tendys and M.Samandi. Advanced Surface Treatments by Plasma Ion Implantation. Surface and Coating Technology. 1994, 68: 285~289
    61 汤宝寅. 等离子体源离子注入技术(1)—原理与技术. 物理,1994,23: 41~45
    62 S. Y. Wang, P. K. Chu, B. Y. Tang, et al. Improvement of the Corrosion Properties of Cr4Mo4V Bearing Steel Using Plasma Immersion Ion Implantation. Nuclear Instruments and Methods in Physics Research B. 1997, 127-128: 1000~1003
    63 S. Y. Wang, P. K. Chu, B. Y. Tang, et al. Enhancement of Surface Properties of 45# Steel Using Plasma Immersion Ion Implantation. Thin Solid Films. 1997, 311(1-2): 190~195
    64 B. Y. Tang, P. K. Chu, S. Y. Wang, et al. Methane and Nitrogen Plasma Immersion Ion Implantation of Titanium. Surface & Coatings Technology. 1998,103-104(1-3): 248~251
    65 J.R. Conrad, R.A. Dodd, S. Han, et al. Ion Beam Assisted Coating and Surface Modification with Plasma Source Ion Implantation. J. Vac. Sci. Technol. A, 1990, 8(4): 3146~3151
    66 Yoshinori Funada, Kaoru Awazu,Haruyuki Yasui and Tadaaki Sugita. Adhesion Strength of DLC Films on Glass with Mixing Layer Prepared by IBAD. Surf. Coat. Technol. 2000, 128-129: 308~312
    67 Y. X. Leng, P. Yang, J. Y. Chen, et al. Fabrication of Ti-O / Ti-N Duplex Coatings on Biomedical Titanium Alloys by Metal Plasma Immersion Ion Implantation and Reactive Plasma Nitriding/Oxidation. Surf. Coat. Technol. 2001,138(2-3): 296~300
    68 T.A. Edison. Process of Duplicating Phonograms. U.S. Patent 485 582. 1892, October 18
    69 L.P. Sablev, N.P. Atamansky, V.N. Gorbonov, et al. Apparatus for Metal Evaporation Coating. U.S. Patent 3793231. 1974
    70 R.L. Boxman, S. Goldsmith, A. Greeenwood. Twenty-five Years of Progress in Vacuum Arc Research and Utilization. IEEE Trans. Plasma Sci. 1997, 25(6): 1174~1186
    71 R.L. Boxman, V. Zhitomirsky, B. Alterkop. Recent Process in Filtered Vacuum Arc Deposition. Surface and Coating Technology. 1996, 86-87: 243~253
    72 I.G. Brown, X. Godechot, K.M. Yu. Novel Metal Ion Surface Modification Technique. Appl. phys.Lett. 1991, 58: 1392~1394
    73 Andre Anders. Metal Plasma Immersion Ion Implantation and Deposition. Surface and Coating Technology. 1997, 93: 158~167
    74 D.M. Sanders. A. Anders. Review of Cathodic Arc Deposition Technology at the Start of the New Millennium. Surface and Coatings Technology. 2000, 133-134: 78~90
    75 Andre Anders. Metal Plasma Immersion Ion Implantation and Deposition. Surface and Coating Technology. 1997, 93: 158~167
    76 T. Witke, T. Schuelke, B. Schultrich, et al. Comparison of Filtered High-current Pulsed Arc Deposition with Conventional Vacuum Arc Methods. Surface and Coatings Technology. 2000, 126: 81~88
    77 Sung-Yong Chun, Akiyoshi Chayahara. Pulsed Vacuum Arc Deposition of Multilayers in the Nanometer Range. Surface and Coatings Technology. 2000, 132: 217~221
    78 杨杰. 离子束辅助淀积技术及薄膜结构与性能的研究. 清华大学博士学位论文. 1993:58~59
    79 Yongqing Fu, Xiaodong Zhu, Bin Tang, et al. Development and Characterization of CrN Films by Ion Beam Enhanced Deposition for Improved Wear Resistance. Wear. 1998, 217: 159~166
    80 W. Ensinger. Ion Bombardment Effects during Deposition of Nitride and Metal Film. Suface and Coating Technology. 1998, 99: 1~13
    81 Yongqing Fu, Xiaodong Zhu, Kewei Xu, et al. Mechanical and Tribological Properties of Ion-beam-enhanced-deposition TiN Thin Films. Journal of Materials Processing Technology. 1998, 83: 209~216
    82 K. C. Walter. Nitrogen Plasma Source Ion Implantation of Aluminum. J. Vac. Sci. Tech. 1994,b12(2): 945-950
    83 A. Anders, S. Anders, I.G.Brown, et al. Metal Plasma Immersion Ion Implantation and Deposition Using Vacuum Arc Plasma Sources. J. Vac. Sci. Technol. 1994, 12(2): 815~819
    84 I.G. Brown, A. Anders, M.R. Dickinson, et al. Recent Advances in Surface Processing with Metal Plasma and Ion Beams. Surface and Coatings Technology. 1999, 112: 271~277
    85 S. Prawer, K.W. Nugent, Y. Lifshitz, et al. Systematic Variation of the Raman Spectra of DLC Films as a Function of sp2:sp3 Composition. Diamond and Related Materials. 1996, 5(3-5): 433~438
    86 A.C. Ferrari. Determination of Bonding in Diamond-like Carbon by Raman Spectroscopy. Diamond and Related Materials. 2002, 11(3-6): 1053~1061
    87 S. J. Bull, E. G. Berasetegui, T. F. Page. Modelling of the Indentation Response of Coatings and Surface Treatments. Wear. 2004, 256(9-10): 857~866
    88 Zhi-Hui Xu, David Rowcliffe. Finite Element Analysis of Substrate Effects on Indentation Behaviour of Thin Films. Thin Solid Films. 2004, 447-448: 397~405
    89 S.K. Vanimisetti R. Narasimhan. A Numerical Analysis of Spherical Indentation Response of Thin Hard Films on Soft Substrates. International Journal of Solids and Structures. 2006, 43(20): 6180~6193
    90 M. Lichinchi, C. Lenardi, J. Haupt, et al.. Simulation of Berkovich Nanoindentation Experiments on Thin Films Using Finite Element Method. Thin Solid Films. 1998, 310(1-2): 240~248
    91 K.D. Bouzakis, N. Michailidis, G. Skordaris. Hardness Determination by Means of a FEM-supported Simulation of Nanoindentation and Applications in Thin Hard Coatings. Surface and Coatings Technology. 2005, 200(1-2): 864~871
    92 A.W. Warren, Y.B. Guo. Machined Surface Properties Determined by Nanoindentation: Experimental and FEA Studies on the Effects of Surface Integrity and Tip Geometry. Surface and Coatings Technology. 2006, 201(1-2): 423~433
    93 M. Yoshino, T. Aoki, N. Chandrasekaran, et al. Finite Element Simulation of Plane Strain Plastic–elastic Indentation on Single-crystal Silicon.International Journal of Mechanical Sciences. 2001, 43(1): 313~333
    94 Zhenghao Gan, Yuebin Zhang, Guoqing Yu, et al. Instrinsic Mechanical Properties of Diamond-like Carbon Thin Films Deposited y Filtered Cathodic Vacuum Arc. Journal of Applied Physics. 2004, 95(7): 3509~3515
    95 姚寿山,李戈扬,胡文彬. 表面科学与技术.机械工业出版社.2005:54~66
    96 F. Casadei, R. Pileggi, R. Valle, et al. Studies on a Combined Reactive Plasma Sprayed/arc Deposited Duplex Coating for Titanium Alloys. Surface and Coatings Technology. 2006, 201(3-4): 1200~1206
    97 Wei-Yu Ho, Dung-Hau Huang, Li-Tian Huang, et al. Study of Characteristics of Cr2O3/CrN duplex coatings for aluminum die casting applications. Surface and Coatings Technology. 2004, 177-178: 172~177
    98 P. Kaestner, J. Olfe, J.-W. He, et al. Improvement in the Load-bearing Capacity and Adhesion of TiC Coatings on TiAl6V4 by Duplex Treatment. Surface and Coatings Technology. 2001, 142-144: 928~933
    99 Binshi Xu, Zixin Zhu, Shining Ma, et al. Sliding Wear Behavior of Fe–Al and Fe–Al/WC Coatings Prepared by High Velocity Arc Spraying. Wear. 2004, 257(11): 1089~1095
    100 G. Schmidt and S. Steinh?user. Characterization of Wear Protective Coatings. Tribology International. 1996, 29(3): 207~214
    101 F.J. Franklin, G.-J. Weeda, A. Kapoor, et al. Rolling Contact Fatigue and Wear Behaviour of the Infrastar Two-material Rail. Wear. 2005,258(7-8): 1048~1054
    102 K. -D. Bouzakis, A. Siganos, T. Leyendecker, et al. Thin Hard Coatings Fracture Propagation During the Impact Test. Thin Solid Films. 2004, 460(1-2): 181~189
    103 Annett Dorner, Bernhard Wielage, Christian Schürer. Improvement of the Corrosion Resistance of C/Al-composites by Diamond-like Carbon Coatings. Thin Solid Films. 1999, 355-356: 214~218
    104 王若楠,刘继峰,冯嘉鰌. C+离子注入与 CoSi2 薄膜应力的研究. 自然科学进展. 2002,12(12):1296~1300
    105 Cheng K.J., Cheng S.Y.. Analysis and Computation of the Interal Stress in Thin Films. Progress in Natural Science.1998, 8(6): 679~689
    106 Cheng K.J., Cheng S.Y.. Theoretical Foundation of Condensed Materials. Progress in Natural Science. 1996, 6(1): 12~25
    107 Cheng S.Y. Cheng K.J.. Computation on Heat of Formation and EOS of Alloy by a Refined TFD Model. Acta Physica Sinica. 1993, 2(6): 439~446

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700