Al_2O_3·SiO_(2sf)/Al复合材料基体成份优化及耐磨性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文采用挤压铸造的方法制备了Al_2O_3·SiO_(2sf)/Al复合材料,选用纯Al、Al-Cu、Al-Cu-Mg合金做为基体,并通过调整合金成份得到性能良好、成本低廉的复合材料,为寻求一种可供民用的短纤维增强铝基复合材料提供理论依据。
     采用SEM、TEM、DEX和XRD对Al_2O_3·SiO_(2sf)/Al合金复合材料中的微观组织及界面结构进行分析,研究表明Al_2O_3·SiO_(2sf)/Al复合材料制备过程中金属铝液与原始纤维表面涂覆的SiO2非晶层发生反应,形成固溶在基体中硅相或在基体中以单质Si的形式析出。Cu元素加入后在纤维界面产生偏聚,有效的抑制和阻止这个界面反应的进行。当Cu含量增加到5%后,界面反应基本不再发生,基体中的溶质原子也由Si相转变为Cu相,并在局部区域析出少量CuAl2相。利用X射线标定萃取后的Al_2O_3·SiO_(2sf)/Al-Cu和Al_2O_3·SiO_(2sf)/(2024Al+Mg)复合材料的物相,发现复合材料中含有CuAl2O4尖晶石和MgAl2O4尖晶石结构,并利用反应物吉布斯自由能的变化量推断其反应历程和可能性,确定出CuAl2O4不是界面反应的产物,而是由CuAl2氧化生成;MgAl2O4是在挤压铸造时产生的纤维和基体之间的界面反应物。深入研究Al_2O_3·SiO_(2sf)/Al-Cu和Al_2O_3·SiO_(2sf)/(2024Al+Mg)复合材料及其基体合金的时效硬化析出行为。研究结果表明,随着Cu含量增加,峰时效时间提前,硬度提高,190oC时效时作用最明显。随着Mg含量的增加,峰时效时间延后,峰时效温度范围变宽,185oC时效时作用最明显。硬度测试结果和组织观察表明:Al_2O_3·SiO_(2sf)/(2024Al+1%Mg)的析出相细小、呈针状,对基体的强化效果最好,塑性也最好;Al_2O_3·SiO_(2sf)/(2024Al+2%Mg)析出相呈块状,尺寸略有长大,强度比前者略有下降;Al_2O_3·SiO_(2sf)/(2024Al+3%Mg)时析出相粗化严重,导致强度进一步降低。
     研究表明,纯Al基体中添加Cu元素和Mg元素有利于复合材料热膨胀系数的降低,而且随着Cu或Mg含量增加,热膨胀系数呈现逐渐降低的趋势;在2024基体合金的基础上添加Mg元素,得到的复合材料热膨胀曲线更加平缓。加热温度在100~300oC之间时,Al_2O_3·SiO_(2sf)/Al,Al_2O_3·SiO_(2sf)/Al-Cu,Al_2O_3·SiO_(2sf)/(2024Al+Mg)三个系列复合材料的热膨胀系数都随着温度的提高缓慢增大,并呈线性变化规律,温度高于300oC之后,Al_2O_3·SiO_(2sf)/ (2024Al+Mg)复合材料的热膨胀系数随着温度的提高表现为急剧增大,而Al_2O_3·SiO_(2sf)/ (2024Al+3%Mg)复合材料的热膨胀系数相对平稳增大。
     摩擦磨损实验表明,在磨损过程中Al_2O_3·SiO_2纤维增强相牢固地镶嵌在基体里并形成支架,从而在磨损过程中不易脱落;当材料表层中较软的基体被磨掉后,裸露出来的增强体纤维和对磨件接触摩擦,磨损接触面积减少,纤维既承担了部分载荷又减少了局部应力,从而保护基体而提高了复合材料耐磨性。Al_2O_3·SiO_(2sf)/Al合金复合材料的磨损机制主要为粘着磨损,Al_2O_3·SiO_(2sf)/Al-Cu合金复合材料的磨损机制为粘着磨损为主并伴有磨粒磨损;Al_2O_3·SiO_(2sf)/(2024Al+Mg)合金复合材料为轻微粘着磨损与磨粒磨损机制为主。复合材料的表面损失表现为破碎磨屑、剥层撕裂和流变滑移三种形式。
     实验结果表明,滑动距离相同时,低转速下, Al_2O_3·SiO_(2sf)/Al合金复合材料的摩擦系数随着载荷的加大呈下降的趋势;在相对较高的转速下Al_2O_3·SiO_(2sf)/Al复合材料的摩擦系数随着载荷的加大却呈上升的趋势。多元合金元素的加入使得复合材料材料无论在高载荷还是在高转速条件下都能得到较小的摩擦系数,并能很好地保持摩擦系数的稳定性,体现了设计后复合材料的优良的耐磨性能。
The Al_2O_3·SiO_(2sf)/Al composites were fabricated by squeeze casting method. The Al, Al-Cu, and Al-Cu-Mg alloys were selected as the matrix, respectively, which were adjusted so as to get composites with excellent property and low cost. The research provided a theoretical base for finding a kind of short fiber reinforcement Al matrix composite material for civil use.
     The microstructure and interface of Al_2O_3·SiO_(2sf)/Al composites are investigated by SEM, TEM and DEX. The results showed that during the manufacturing process of Al_2O_3·SiO_(2sf)/Al composites, there was a chemical reaction between the liquid Al and the SiO2 amorphous layer on the fiber surface. Therefore, the silicon dissolved into matrix alloy or precipitated as single crystal silicon phase. The aggregation of Cu element which generated at the interface of the fiber could effectively prevent or inhibit the reaction. When the Cu content increased to 5%, the reaction at the interface basically did not occur, the solute atoms in the matrix changed from silicon to Cu. In addition, small amount of CuAl2 phase precipitated at the local area of interface. X-ray results showed that CuAl2O4 spinel and MgAl2O4 spinel were formed in the Al_2O_3·SiO_(2sf)/Al-Cu and Al_2O_3·SiO_(2sf)/(2024Al+Mg) composites. Gibbs energy calculation of possible reactions in Al_2O_3·SiO_(2sf)/Al-Cu and Al_2O_3·SiO_(2sf)/ (2024Al+Mg) composites shows that CuAl2O4 is obtained through oxidation of CuAl2, not the reaction product of the interface, and that MgAl2O4 was the reaction product between fiber and matrix alloy during extrusion cladding.
     The age hardening precipitation behavior of Al_2O_3·SiO_(2sf)/Al-Cu and Al_2O_3·SiO_(2sf)/(2024Al+Mg) composites was studied. Results showed that with the increasing of Cu content, the hardness was increased, and the peak aging time was shortened. The effect was the most obvious when aging at temperature 190oC. With the increasing of Mg content the peak aging time was postponed and the temperature range of peak aging was enlarged. The most obvious effect of aging treatment was at 185 oC. The results of hardness test and microstructure observation showed that the precipitation of Al_2O_3·SiO_(2sf)/(2024Al+1%Mg) was fine and acicular, which provided with the best effect of strengthening and plasticity. Some bulk precipitation, which the size was still small, was found in the Al_2O_3·SiO_(2sf)/(2024Al+2%Mg) composite and a slight decrease of hardness is obtained. For Al_2O_3·SiO_(2sf)/(2024Al+3%Mg), the precipitation grows larger which leads to further decrease of hardness.
     Addition of Cu and Mg elements were both benefit to decrease the thermal expansion coefficients (CTEs) of the Al_2O_3·SiO_(2sf)/Al composites. The CTEs value of composites decreased with the Cu or Mg increasing. With the addition of Mg in the 2024 matrix alloy, the CTE curve of the composite was flat and the thermal expansion property of the Al_2O_3·SiO_2/(2024Al+3%Mg) composite material was optimum. During the heating temperature of 100~300oC the CTE values of the Al_2O_3·SiO_(2sf)/(2024Al+Mg) composites increased linearly and slowly with the temperature increasing. When the temperature is above 300oC the CTE value of Al_2O_3·SiO_(2sf)/(2024Al+Mg) composites increased sharply with the temperature increasing. While the thermal expansion was coefficient of Al_2O_3·SiO_(2sf)/(2024Al+3%Mg) composite increased smoothly.
     Research work on the wear process showed that Al_2O_3·SiO_2 short fiber was firmly fixed in the matrix and formed the framework. The fiber in composites would be hardly pulled out during the wear processing. When the soft matrix material in the composite worn off, the bare area of Al_2O_3·SiO_2 fiber frictionated the opposite grinding material, The contact area was reduced and the fiber either took partial load or reduced local stress, protecting the comparatively soft matrix and improved the wear resistance of the composites. The wear mechanism of Al_2O_3·SiO_(2sf)/pure Al composite was mainly adherence abrasion. The wear mechanism of Al_2O_3·SiO_(2sf)/Al-Cu composite was mainly appeared to be adhesive wear, accompanied by abrasive wear. For the Al_2O_3·SiO_(2sf)/(2024Al+Mg) composite, the mechanism mainly was adhesive wear and grain wear mechanism.
     At the same time, the loss of the material on the surface of the matrix alloy appeared to be grinding debris, peeling-off type and flow slip.
     The result showed that the friction coefficient of the Al_2O_3·SiO_(2sf)/Al composites decreased with the load increasing under low spinning speed and same sliding distance, but the friction coefficient of the Al_2O_3·SiO_(2sf)/Al composites increased with the load increasing under high spinning speed. The addition of multi-components made it possible to obtain smaller friction coefficient under both high load and high speed. In addition, the stability of the friction coefficient showed the excellent wear resistance of the Al_2O_3·SiO_(2sf)/(2024Al+1%Mg) after design.
引文
1 赵渠森.复合材料,国防工业出版社,2002:5-8.
    2 师昌绪.九十年代我国复合材料展望.1990:1-8.
    3 王惠杰,郝建伟.我国航空复合材料发展展望.第九届全国复合材料学术会议,北京,1996. 北京,1-9.
    4 J.W. Kaczmar, K. Pietrzak, W. Wlosinski. Production and application of metal matrix composite materials. Journal of Materials Processing Technology. 2000, 106(1~3):58~67
    5 Yun-Mo Sung, Kyung-Yol Yon,S.A.Dunn,et al.Wetting behavior and mullite formation at the interface of inviscid melt-spun CaO-Al2O3 fibre-reinforced Al-Si alloy(4032) composites.J.Mater.Sci, 2003,29:5583-5589.
    6 操光辉. (Al2O3-xSiO2)ZL109复合材料界面结构及性能研究. 东南大学博士学位论文.1999:16-18.
    7 A. Sata, R. Mehrabian. Menchenical properties of Al2O3 fibre-reinforced Al-Si alloy. Metall. Trans. 2006, 713:443-450.
    8 张国定. 铝基复合材料界面研究. 材料研究学报,1997,11(6):649-654.
    9 S. Koham. Wear behavior of an Al-12Si alloy reinforced with low fraction alumunosilicate short fiber. Materials & Manufacturing Process, 2003, 5(1): 51.
    10 高田隆,汽车制造业必须重视晶须增强复合材料的开发和应用. 材料与工艺. 2005,1:65-69.
    11 Lijun.Yao, Gen.Sasaki, Hideharu, Fukunaga. Reactivity of aluminum alloys. Materials Scince and Engineering.2004,A225:59-68.
    12 Bi.Gang, Wang.Haowei, Wu.Renjie, Zhang Di, Shi Zhongliang. High temperature DSC study on interfacial reaction of aluminum borate whisker reinforced aluminum alloys.1999:5-6.
    13 H.Fukunaga,J.Soc.Mat.Sci.,Japan,2003,43:373-381.
    14 国家自然科学基金委员会. 金属材料科学. 北京:科学出版社,1995 ,74-76.
    15 D. J. Lloyd. Particle reinforced aluminium and magnesium matrix composites. Inter. Mater. Rev. 2004, 39(1):1-8.
    16 王左银,吴申庆. 硅酸铝纤维增强复合材料的研究及应用,材料科学与工程, 1994, 1 (12): 20 - 36.
    17 姚力军, 耿林, 姚忠凯. 27vol%-SiCw/6061复合材料170℃时效的双硬度峰现象. 复合材料学报. 1996,135-39.
    18 J.P.Tu, J.Pan, M. Matsumura , H. Fukunaga. The solid particle erosion behavior [AlBO] whisker-reinforced AC4C al alloy matrix composites.Wear. 1998, A223: 22-30.
    19 吴人洁. 金属基复合材料的现状与展望. 金属学报.1997.33(1):78-84.
    20 张大童,李元元,龙雁.铝基复合材料研究进展.轻合金加工技术.2000,28: 5-10.
    21 A. F. Whitehouse, H. M. A. Winand, T. W. Clyne. The effect of processing route and reinforcement geometry on isothermal creep behaviour of particulate and short fiber MMCs. Mater Sci Eng, 2004, A242: 57-69.
    22 Cseh G, B-r J, Gudladt H J, et al. Indentation creep in a short fiber-reinforced metal matrix composite. Mater Sci Eng,1999, A272 (1): 145-151.
    23 K. Matsuura, N. Matsuda. Creep properties of Al matrix composites reinforced with alumina short fibers. J J pn Inst Met, 1999, 63 (4): 535-541.
    24 Kaustrater G, Skrotzki B, Eggeler G. A quantitative metallographic study of fiber fracture during processing and creep of a short fiber reinforced aluminium alloy. Prakt Metallogr-Pr M, 2000, 37(11): 619-630.
    25 Kaustrater G, Skrotzki B, Eggeler G. On the role of matrix creep in the high temperature deformation of short fiber reinforced aluminum alloys. Mater Sci Eng, 2001, A319 (319- 321): 716-720.
    26 Wang S L, Shen B L, Gao S J, et al. Creep behavior of mullite short fiber reinforced ZL109 alloy composites at high temperature. J Mater Sci Tech, 2001, 17(4):429-432.
    27 胡津, 任文超, 姚忠凯. 时效对硼酸铝晶须增强6061Al复合材料应力腐蚀开裂行为的影响. 腐蚀科学与防护技术. 2002,14:136-138.
    28 吴晶, 李文芳, 蒙继龙. Al2O3·SiO2短纤维/ZL109复合材料的机械性能. 华南理工大学学报. 2003,2(31):62-65.
    29 K.Okamura, M.Sato, T.Seguchi and S.Kawanishi, Higa-Proc. Effects of neutron irradiation on fine structure and strength of sic fibers. 1st Japan Inter.SAMPE Symp.,Nov.28-Dec.1,1989,929-934.
    30 J.Lipowitz, T.Barnard, D.Bujalski et al. Fine-diameter polycrystalline SiC fibers. Centre for Advanced Materials Technology, University of Sydney,2002,7:5-10.
    31 M.S. Dresselhaus, G. Dresselhaus, A. Jorio. Unusal properties and structure of carbon nanotubes. Annual Review of Materials Research. 2004, 34:247-278
    32 C.J.Quak,W.H.Kool.Properties of Semisolid Aluminum Matrix Composites. Mater. Sci.Eng.1994,(A188):277-282.
    33 耿林. 压铸SiCw/LD2复合材料中晶须及界面的微观结构. 哈尔滨工业大学博士学位论文, 1990:25-26.
    34 顾震隆等. 短纤维复合材料力学. 国防工业出版社. 1987:4-8.
    35 王善元,张汝光等.纤维增强复合材料.中国纺织大学出版社.1998:4-5.
    36 J.Eliosson,R. Somclstrom. Applications of Aluminum Matrix Composites. Key.Eng.Mater.,1995,104-107(Part I):3-36.
    37 P.F.Mcguine.Aluminum Composittes Come in for a Landing: New developments in an existing process bring the cost of metal matrix composites down to earth. Machine Design. 1992,23(4):72-76.
    38 落合庄治郎. 材料科学的成果与展望. 复合材料的现状与将来展望. 日本东京. 1997,36(9):829-895.
    39 Brown A S, Metal Matrix Composites Take Flight, Aerosp. Aerosp. Am, 1998,36(5):29-30.
    40 郝元恺.非连续增强轻金属复合材料研究现状及进展,材料导报.1994,(5):67-71.
    41 宋仁伯, 康永林, 杨雄飞. 电磁搅拌的半固态60Si2Mn变形特性研究。第一界半固态金属加工技术研讨会,北京,2000:93-98.
    42 H. J. Rack. Surface topography evolution during sliding wear of 2009 Al-SiCp/17-4 PH. Conference on Composite Materials (ICCM&ECCM), 1987, London, UK,2382-2389.
    43 E.A. Feest. Exploitation of the Metal Matrix Composite Concept. Composite Matrials. 1998, 60:11971~11983
    44 P.K. Rohatgi, S. Ray, Y. Liu. Tribological Properties of Metal Matrix Graphite Particle Composites. International Materials Reviews. 1992, 37(3):129~149
    45 S. Katsuaki, M. Hiroyoshi, K. Katsuhiko, K. Tetsushi, O. Haruo, F. Hiroyuki. Properties and Microstructure of Continuous Oxynitride Glass Fiber and Its Application to Aluminum Matrix Composite. Journal of Materials Research. 1993, 8(1):178~86
    46 M. Strangwood, C. A. Hippsiey. J. J. Lewandowski, Segregation to SiC/Alinterfaces in Al based metal matrix composites. Scripta Metall. Mater. , 1990, 24: 1483-1487.
    47 P. Sebo, P. Stefanik. Copper Matrix Carbon Fibre Composites. International Journal of Materials and Product Technology. 2003, 18(1~3):141~159
    48 D.B. Miracle. Metal Matrix Composites Form Science to Technological Significance. Composites Science and Technology. 2005, 65 (15~16):2526~2540.
    49 J.L. Sauvajol, E. Anglaret, S. Rols, C. Journet, C. Goze, P. Bernier, W.K. Master, E. Munoz, A.M. Benito, M.T. Martinez. Sturcture and Vibrational Properties of Single Wall Carbon Nanotubes. Synthetic Metals. 1999, 103(1~3):2537~2539.
    50 E. Hunt. P. D. Pitcher, P. J. Gregson. Dry aging of beef in a bag highly permeable to water vapour. Scripta Metall. Mater. , 1990; 24: 937-941.
    51 J.H. Jang, K.H. Oh, S.I. Heo, K.S. Han. Processing and Characterization of Graphite Nanofibers Reinforced Aluminum Matrix Composites. Key Engineering Materials. 2006, 274(5293):1067~1072.
    52 T.L. Kin, G. Chong, H. David. A Critical Review on Nanotube and Nanotube/Nanoclay Related Polymer Composite Materials. Composies Part B: Engineering. 2006, 37(6):425~436.
    53 J.P. Salvtat, S. Bhattacharyya, R.B. Pipes. Progress on Mechanics of Carbon Nanotubes and Derived Materials. Journal of Nanoscience and Nanotechnology. 2006, 6(7):1857~1882.
    54 J.S. Lee, Y.S. Kang, S.K. Kwon, B.H.A. Cha, X. Qing. A New Processing Route for Net Shaped Nanoparticulate Materials. Advanced Powder Technology. 2004, 15(6):639~655.
    55 B. Tian, P. Liu, K. Song, Y. Li, Y. Liu, F. Ren, J. Su. Microstructure and Properties at Elevated Temperature of a Nano-Al2O3 Particles Dispersion Strengthened Copper Base Composite. Materials Science and Engineering A. 2006, 435~436:705~710.
    56 L.Nguyen, M.Suery.Compressive Behavior of Partially Remelted A356 Alloys Reinforced With SiC Particles.Mater.Sci.Tech.1994,(10):894-901.
    57 J.F. Colomer, C. Stephan, S. Lefrant. Large Scale Synthesis of Single Wall Carbon Nanotubes by Catalytic Chemical Vapor Deposition (CCVD) Method.Chemistry Physics Letters. 2000, 3(17):83~89
    58 S. Iijima, T. Ichihashi, Y. Pentagons. Heptagons and Negative Curvature in Graphite Microtubule Growth. Nature. 1992, 356:776~778
    59 S.Iijima. Helical microrubules of graphitic carbon. Nature. 1991, 354:56~58.
    60 G.S. Duesberg, J. Muster, H.J. Byrne, S. Roth, M. Burghard. Towards Processing of Carbon Nanotubes for Technical Application. Applied Physics A: Materials Science and Processing. 1999, 69(3):269~274
    61 N.M. Rodriguez, M.S. Kim, R.T.K. Baker. Carbon Nanofibers: a Unique Catalyst Support Medium. Journal of Physical Chemistry. 1994, 98(50):13108~13111
    62 朱宏伟, 慈立杰, 梁 吉, 魏秉庆, 徐才录, 吴德海. 浮游催化法半连续制取碳纳米管的研究. 新型炭材料.2000, 15(1):48~51
    63 H.M. Cheng, F. Li, G. Su, H.Y. Pan, L.L. He, X. Sun, M.S. Dresselhaus. Large-Scale and Low Cost Synthesis of Single Walled Carbon Nanotubes by the Catalytic Pyrolysis of Hydrocarbons. Applied Physics Letters. 1998, 72(25): 3282.
    64 W. D. Fei, X. D. Jiang, C. Li and C. K. Yao, Effect of interfacial reaction on fracture behaviour of aluminium borate whisker reinforced aluminium composite, Mater. Sci. Tech. 1997,13:918-922.
    65 K.C. Chen and C.-G. Chao, Effect of δ alumina fibers on the aging characteristics of 2024-based metal-matrix composites,Metall.&Mater. Trans. A 1995, 26(5):1035-1043.
    66 D. Nath and V. Singh, Ageing characteristic of aluminium alloy aluminosilicate discontinuous fibre reinforced composites, Sripta Materialia, 1999,40(7): 791-794.
    67 J. A. Augis and J. E. Bennett, Calculation of the avrami Parameters for heterogenous solid state reactions using a modification of the Kissinger mothod , J Thermal Analysis, 1978, 13: 283-292.
    68 J. A. Augis and J. E. Bennett, Numerical calculation of activation energy value in phase transformation of alloys by DSC method, J Electrochem., 1978, 125: 330-337.
    69 陈睿,赵平,董斌,高升吉,沈保罗,涂铭旌. 莫来石短纤维增ZL109铝基复合材料的时效行为. 中国有色金属学报, 1999, 9(4): 743-747.
    70 L. Parrini and R. Schatler, AlCu-Al203 metal matrix composites studied by mechanical spectroscopy, J Alloys and Compounds, 1994: 402-405.
    71 J. H. Hsieh, C. -G. Chao, Effect of magnesium on mechanical properties of Al203/Al-Zn-Mg-Cu metal matrix composites formed by squeeze casting, Mater. Sci. Eng. A 1996, 214:133-138.
    72 I. N. A. Oguocha, S. Yannacopoulos, Precipitation and dissolution kinetics in Al-Cu-Mg-Fe-Ni alloy 2618 and Al-alumina particle metal matrix composite,Mater. Sci. Eng. A 1997,231: 25-33.
    73 S. Abis and G. Donzelli, Effect of reinforcements on the ageing process of an Al-Cu/Si02·Al203 metal matrix composite, J. Mater. Sci. Lett. 1988,7(1): 51-52.
    74 Sheu C Y,Lin S J,Ageing behavior of SiCp-reinforced AA7075 composites, J. Mater. Sci.1997, 32(7):1741-1747.
    75 Susumu Ikeno, et al, Effects of paticle volum fration on ageing behavior of alumina particle dispersed Al-Cu-Mg alloy composite materials, J. Jan. Ins. Light metals, 1993,43(9): 465-471.
    76 Susumu Ikeno, et al, Effects of alumina particle size on aging in Al2O3/Al-Cu-Mg ally composite materials, J. Jan. Ins. Light metals, 1995, 45(5):249-254.
    77 Vijay K, Varma,et al,Ageing behavior of Al-Cu-Mg alloy matrix composite with SiCp of varying sizes, Scripta Materialia, 1997,37(4):485-489.
    78 刘秋云,费维栋,姚忠凯,赵连城,SiCw/2024Al复合材料时效机制的研究.材料研究学报. 1999,8(13): 409-411.
    79 R. D. Schueller, A. K. Sachdev and F. E. Wawner, Identification of a cubic precipitate observed in an Al-4.3Cu-2Mg/SiC cast composite, Scripta Metallurgica et Materialia, 1992,27(5): 6l7-622.
    80 R. D. Schueller, F.E. Wawner, Strengthening potential of the cubic σ precipitate in Al-Cu-Mg-Si alloys, J. Mater. Sci. 1994,29: 239-249.
    81 V K. Varma, Y.R. Mahajan and V.V.Kutumbarao, Ageing behaviour of Al-Cu-Mg alloy matrix composites with SiCp of varying sizes, Scripta Materialia, 1997,37(4): 485-489.
    82 王珊玲、沈保罗等,莫来石短纤维增强 ZL 107合金复合材料的时效特性, 金属热处理, 2000,12:6-8.
    83 Howe J M. Bonding, structure, and properties of metal/ceramic interface. Inter.Mater. Rev. , 1993, 38: 233-235.
    84 陈康华,包崇玺,刘红卫. 金属/陶瓷的润湿性(上). 材料科学与工程, 1997, 15 (3): 6-10.
    85 陈康华,包崇玺,刘红卫. 金属/陶瓷的润湿性(下). 材料科学与工程,1997, (15) 4: 27-32.
    86 X.G. Ning, H.G. Xu, H.Q. Ye, J. Zhu, K. Y. Hu, Y. X. Lu and J. Bi, Transmission electron microscope study on microstructures of an Al (Li, Cu, Mg, Zr)-SiCw composite. I. Structural characterization of SiC whiskers and phases in an Al (Li, Cu, Mg, Zr)-SiCw composite, Philosophical Magazine A, 1991,63(4): 727-746.
    87 X.G. Ning, J.Pan, J.H.Li, K.Y.Hu, H. Q. Ye, H. Fukunaga. The whisker-matrix interfacial reactions in SiC, Si3N4 and Al18B4033 whisker- reinforced aluminium-matrix composites, Mater. Sci. Lett., 1993,12:1644-1647.
    88 N. Han, G. Pollard and R. Stevens, Interfacial structure and fracture of aluminium alloy A356-SiC particle metal matrix composite, Mater. Sci. and Tech. 1992 , 8:184-187.
    89 N. Aoyagi, I. Kawahara, M. Nakagawa and Y.Kojima, Effect of heat treatment on the microstructure and strength of SiC whisker/AC4A aluminum alloy composites, J Jan. Ins. Light Metals, 1993,43(8): 410-415.
    90 K. B. Lee and H.Kwon, Interfacial reactions in SiCp/Al composite fabricated by pressureless infiltration, Scripta Materialia, 1997,36(8): 847-852.
    91 S.-K. Hong, H. Tezuka and A. Kamio, Age hardening behaviour of Al-Li alloy composites reinforced with SiC whisker fabricated by squeeze casting, J Jan. Ins. Light Metals, 1993,43(2): 82-88.
    92 Ferro A C, Derby B. Wetting behavior in the Al- Si/Sic system: interface reaction and solubility effects.Acta Metall. Mater., 1995, 43: 3061-3066.
    93 吴人洁. 复合材料. 天津大学出版社,2000:36-38.
    94 Metcalfe E. Composite Materials, Interface in Metal Matrix Composites. New York: Academic Press, 1974:68-74.
    95 Boey F YC, Yuan Z, Khor L A. Mechanical alloying for the effective disprsion of sub-micron reinforcement in Al-Li alloy composites. Mater. Sci. Eng., 1998, A252: 276-281.
    96 L. Salvo, G. L' Esperance, M. Suery and J. G. Legoux, Interfacial reactions and age hardening in Al-Mg-Si metal matrix composites reinforced with SiC particles,Mater. Sci.&Engr., A 1994, 177:173-183.
    97 D. J. Towle and C. M. Friend, Effect of fiber-matrix-binder interactions on the matrix composition and age-hardening behavior of 6061-based MMCs, J Mater. Sci., 1992, 27: 2781-2791.
    98 M. Fishkis, Interfaces and fracture surfaces in Saffil/Al-Mg-Cu metal matrixcomposites, Journal of Materials Science, 1991,26:2651-2656.
    99 Y. L. Petitcorps, J. M. Quenisset, G. Le Borgne, M. Barthole, Segregation of magnesium in squeeze-cast aluminium matrix caomposites reinforced with alumina fibres, Materials Science and Engineering, 1991,A135:37-44.
    100 H. J. Dudek, A. Kleine, R. Borath and G. Neiteet, Interfaces in alumina-fibre-reinforced aluminium piston alloys, Mater. Sci. Eng. A 1993, 167:129-135.
    101 H. J. Dudek, R. Borath, Spinel growth in the interface of δ-Al203 fibre reinforced aluminium piston alloys, Journal of Materials Science, 1996, 31: 795-802.
    102 周耀明、李贤淦、陈美怡,晶化Al2O3·SiO2纤维增强金属基复合材料, 复合材料学报, Vol. 12, No.4,1995: 12-16.
    103 Y M. Zhou, X. G.Li and M. Y Chen, Interface studies on crystallized alumina-silica fiber-reinforced Al-Si alloy composites, J Mater. Sci. 1994,29:1707-1710.
    104 G. Liu, Z. H. Zhang and J. K. Shang, Interfacial microstructure and fracture of A1203 particulate reinforced Al-Cu composite, Acta metall. mater. 1994,42(1): 271-82.
    105 Molins, J.D.Bartout, Y.Bienvenu, Microstructural and analytical characterization of Al203-(Al-Mg) composite interfaces.Materials Science and Engineering, 1991,A135:11-16.
    106 刘政,周彼得,彭德林,安阁英,氧化铝短纤维增强铝基复合材料界面的研究,复合材料学报. 1991,8(4):1-4.
    107 G. H. Cao, G. J. Shen, Z. G. Liu and S. Q. Wu, Interface study of mullite short fibres reinforced Al-12Si alloy composites, J Mater. Sci. Lett. 2001,20:501-503.
    108 P.Lu. R. E. Loehman. K. G·Ewsuk and W. G. Fahrenholtz, Transmission electron microscopy study of interfacial microstructure formed by reactingAl-Mg alloy with mullite at high temperature, Acta Matrialia, 1999,47:3099-3104.
    109 P.Lu, T. B. Du, R. E. Loehman, K. G. Ewsuk and W. G. Fahrenholtz, Interfacial microstructure formed by reactive metal penetration of Al into mullite, J Mater. Res. 1999,14:3530-3537.
    110 谈淑咏,方峰,施春陵,蒋建清,铝基复合摩擦材料摩擦磨损性能研究,摩擦学学报. 2006,5:186-191.
    111 翟秋亚, 徐锦锋,Al2O3纤维增强铝基复合材料干滑动磨损机制的研究. 摩擦学学报,2005,l25:212-217.
    112 宋国芳,杜永平,韩建民,SiC颗粒增强铝基复合材料的摩擦磨损机制研究,润滑与密封, 2007,5:60-66.
    113 林肇琦,有色金属材料学[M],东北工学院出版社,1986:30-35.
    114 张先菊. Mullite/Al合金复合材料界面微结构及微成份研究. 四川大学硕士学位论文. 2003:30-32.
    115 王黎东. 锂霞石颗粒和硼酸铝晶须混杂增强铝复合材料组织和性能,哈尔滨工业大学博士学位论文. 2003:23-24.
    116 姚力军. 硼酸铝增强铝复合材料的微观结构,哈尔滨工业大学博士学位论文. 1996:12-13.
    117 S.K.Hong, H. Tezuka and A. Kamio,Age hardening behavior of Al-Li aiioy composites reinforced with SiC whisker fabricated by squeeze casting, J Jan. Ins. Light metals,1993,43:82-88.
    118 H. Berek, O. Zywitzki, H. P. Degischer and H. Leitner, Interface reactions in an Al2O3 partcle-reinforced 6061 Al-alloy, Zeitschrift fur Metalkunde, 1994, 85:131-133.
    119 Yao L. J, Sasaki G, Fukunaga H, Reactivity of aluminum borate whisker reinforced aluminum alloy, Mater. Sci. Eng. A,1997,225:59-68.
    120 梁英教,车荫昌. 无机热力学数据手册,东北大学出版社,1996:201-208.
    121 操光辉, 吴申庆, 王恒志. 硅酸铝短纤维增强ZL109复合材料的磨损机制. 摩擦学学报. 1998,18:141-145.
    122 全永听,施高义. 摩擦磨损原理,浙江大学出版社,1988: 230-233.
    123 K.J.Bhansali and R. Mehrabian,Abrasive Wear of Aluminium Matrix Composites, J.Metals, 1982,32:30-40.
    124 Y. M. Pan, M. E. Fine and H. S. Cheng,Wear Mechanisms of Aluminium-BasedMetal Matrix Composites under Rolling and Sliding Contactin Tribology of Composite Materials, 1990:93-101.
    125 A. G. Wang and I. M. Hutchings (1989) Wear of Alumina Fibre- Aluminium Matrix Composites by Two-Body Abrasion, Mat. Sci. Tech, 1989,5:71-75.
    126 克莱因,威瑟斯著(英). 金属基复合材料导论,冶金工业出版社,1996,11: 281-289
    127 孙家枢. 金属的磨损. 冶金工业出版社. 1992: 118-122.
    128 高彩桥. 摩擦金属学. 哈尔滨工业大学出版社. 1988: 171-174
    129 P. K. Mallick. Fiber Reinforced Composite, 2nd ed., New York, Marcel Dekker, 1993, 5-6.
    130 S. F. Moustafa. Friction and Wear Properties of Al Composite. Wear, 1995, 185: 189-195.
    131 C.A. Caracostas, W.A. Chiou, M.E. Fine, H.S. Cheng. Tribological properties of aluminum alloy matrix TiB2 composite prepared by in situ processing. Meta. Mater Trans. A 1997,28:491-502
    132 E.L. Zhang, G. Zeng, S.Y. Zeng. Effect of in situ TiB Short Fibre on Oxidation Behavior of Ti-6Al-1.2B Alloy. Scripta. Mater. 2002,46:811-816.
    133 Y.C. Kang, S.L.I. Chan. Tensile Properties of Nanometric Al2O3 Particulate-Reinforced Aluminum Matrix Composites. Mater Chem Phy. 2004,85:438-443.
    134 刘小梅, 刘政. Al2O3短纤维增强铝基复合材料的耐磨性能及机理分析. 矿冶. 1997,6:50-54.
    135 Z.Y. Ma, Y.L. Li, Y. Liang, F. Zheng, J. Bi, S.C. Tjong. Nanometric Si3N4 Particulate-Reinforced Aluminum Composite. Mater Sci Eng A. 1996,219:229-231.
    136 李伟,沈保罗,景山,高升吉,涂铭旌,王鸿华,吴桢干,张荻,吴人洁.Cu含量对 Mullite/Al-Cu 复合材料时效硬化行为的影响. 中国有色金属学报. 2001,11:253-257

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700