几种外源物质对水曲柳幼苗生理特性低温响应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水曲柳是我国东北林区重要珍贵硬阔叶树种。低温危害对水曲柳造林的成活率、保存率都有重要影响。因此,掌握水曲柳寒害规律,揭示其在低温胁迫下受害和抗寒性改变的机制,并在此基础上提出有效的防治技术措施,对培育和保护水曲柳人工林具有重要意义。本文以盆栽水曲柳幼苗为材料,比较了人工低温或秋季自然降温条件下5种不同的外源物质对于水曲柳幼苗叶片防御系统的影响,测定了相对电导率、可溶性蛋白和可溶性糖含量、SOD和POD活性、光合速率等生理指标,研究了外源物质在水曲柳低温逆境中的生理效应,旨在获得一个提高水曲柳抗寒性的抗寒剂配方。研究结果如下:
     芸苔素浓度为1.0μmol·L-1和2.0μmol·L-1均能有效缓解电解质外渗量发生改变,增加可溶性蛋白质和增强保护酶活性,但2.0μmol·L-1处理不利于叶片低温下可溶性糖的积累。低浓度的0.7μmol·L-1的处理对于各生理指标基本无显著性影响。自然降温下,1.0μmol·L-1处理维持电导率不上升效果好于其它两种浓度处理。综合比较,1.0μmol·L-1浓度效果较好。
     复硝酚钠处理在常温下可提高水曲柳幼苗叶片胞内可溶物含量,对于人工低温胁迫下质膜透性的稳定及保护酶系没有明显效果,自然降温过程中对于电导率也无影响,对于水曲柳幼苗不表现出抗寒效果。
     脱落酸处理浓度为10mg·L-1时抗寒效果最好,能有效缓解电解质外渗量发生改变,增强保护酶活性和提高渗透调节物质含量。30mg·L-1和60mg·L-1脱落酸在人工低温下的电导率、可溶性蛋白含量和POD酶活性方面表现出一定程度的副作用。自然降温时,10mg·L-1脱落酸处理对于维持膜透性的稳定效果也比较好。综合比较,10mg·L-1浓度效果较好。
     亚精胺处理浓度为1mmol·L-1抗寒效果较好,可缓解0℃幼苗叶片电导率下降,提高渗透调节物质含量,增强SOD活性。5mmol·L-1浓度处理在可溶性蛋白和可溶性糖方面不如1mmol·L-1效果显著。而低浓度的0.5mmol·L-1处理对于生理指标的变化无明显影响。综合比较,1mmol·L-1浓度效果较好。
     浓度为50mg·L-1的赤霉素处理对于水曲柳抗寒性有帮助,可一定程度延缓0℃低温胁迫下的叶片电导率下降,提高渗透调节物质,一定程度增强保护酶SOD和POD活性。100mg·L-1、150mg·L-1处理表现出一定的抑制作用,效果不理想。综合比较,50mg·L-1浓度效果较好。
     在以上实验结果的基础上,配制了5种抗寒剂组合,在秋季自然降温过程中,通过光合指标和膜透性变化,确定了提高水曲柳抗寒性的抗寒剂配方,即10mg·L-1脱落酸,0μmol·L-1芸苔素,1mmol·L-1亚精胺,50mg·L-1赤霉素。
The Fraxinus mandshurica was an important precious hard hardwood species of China Northeast forest. The low damage had a significant impact on survival rate and preservation rate of Ash afforestation. Thus, it was important that mastering the chilling injury of Fraxinus mandshurica and revealing the mechanism of their victimization and change on the cold temperature stress, and on this basis proposing effective measures for prevention and control technologies to nurture and protect the plantation of Fraxinus mandshurica. The Fraxinus mandshurica seedling was used to study the effects of five different exogenous substances on the defense system of seedling leaveseffects under the artificial low temperature or fall natural temperature reduction. The relative conductivity, soluble protein and soluble sugar content, SOD and POD activity, photosynthetic rate and other physiological indicators were measured. In this paper, the effects of exogenous substances on physiological characteristics of Fraxinus mandshurica seedling in responses to low temperature were studied to obtain an dose formulation that could increase cold resistance of Fraxinus mandshurica. The results were as follows:
     1.0μmol·L-1 and 2.0μmol·L-1 concentration of brassinolide could effectively alleviate the change of electrolyte leakage amount, increase the content of soluble protein and the activity of protective enzymes, but 2.0μmol·L-1 concentration processing was not conducive to the soluble sugar accumulation of leaf at low temperatures. The low concentrations of 0.7μmol·L-1 processing had no significant effect for all the physiological indexes. Under natural cooling, the 1.0μmol·L-1 processing to maintain the conductivity was better than the other two concentrations. Comprehensive comparison, the 1.0μmol·L-1 concentration of brassinolide was better.
     Sodium nitrophenolate could increase the intracellular soluble content of seedling leaves at room temperature, but had no significant effect on the stability of membrane permeability and the protective enzymes under artificial low temperature stress. Sodium nitrophenolate had no effect on the conductivity under the natural cooling process and did not show a cold tolerance effect for seedling.
     10mg·L-1 concentration of ABA was best, which could effectively alleviate the change of electrolyte leakage amount, enhance the protective enzymes and the content of osmotic adjustment matter. 30mg·L-1 and 60mg·L-1 ABA demonstrated a degree of side effects on the conductivity, soluble protein content and POD activity under artificial low temperature. Under natural cooling,10 mg·L-1 ABA in maintaining the stability of membrane permeability was better. Comprehensive comparison, the 10mg·L-1 concentration of ABA was better.
     1mmol·L-1 concentration of spermidine was better on cold intimidate, which could ease the decline of leaves conductivity at 0℃and enhance osmotic adjustment matter content and SOD activity.5mmol·L-1 concentrations was not more remarkable than 1mmol·L-1 in terms of soluble protein and soluble sugar. Low concentrations of 0.5mmol·L-1 was not significant for the physiological indices. Comprehensive comparison, lmmol·L-1 concentration was better.
     50mg·L-1 concentration of GA treatment was helpful to the cold resistance of Fraxinus mandshurica, a certain degree to delay the decreace of leaf conductance, increase osmotic adjustment matter content, to some extent enhance the activity of protective enzymes SOD and POD. 100mg·L-1, 150mg·L-1 treatment showed some inhibition and result was not satisfactory. Comprehensive comparison, 50mg·L-1 concentration was better.
     The five kinds of cold dose combination were preparated on the base of above results. In the autumn natural cooling process, the formulation that could improve the cold resistance of Fraxinus mandshurica was determined, that 10mg·L-1ABA,1.0μmol·L-1 brassinolide, 1mmol·L-1 spermidine, 50mg·L-1 GA.
引文
[1]潘瑞枳,董愚德.植物生理学.北京:高等教育出版社,1995:322-328
    [2]宋洪伟,董英山.用膜脂脂肪酸法鉴定小浆果资源的抗寒性.落叶果树,2000,(3):6-8
    [3]刘艳,赵虎成,李雄等.梨枝条中淀粉、还原糖及脂类物质动态变化与抗寒性的关系.内蒙古农业大学学报,2002,23(1):57-60
    [4]OuYang Z. C, Zeng G. P, Zhang C. L, et al. Effects of Low Temperature Stress on the Physiological and Biochemical Characteristics in Kidney Bean. Journal of Changjiang Vegetables,2008,4:48-50
    [5]蔡仕珍,潘远智,陈其兵等.低温胁迫对花叶细辛生理生化及生长的影响.草业学报,2010,19(1):95-102
    [6]吴中军,赵亚特.低温胁迫对彩叶草幼苗生理生化特性的影响.西南大学学报(自然科学版),2009,31(2):132-135
    [7]王红星,古红梅.不同生长时期叶片中可溶性糖含量与抗寒性关系.周口师范学院学报,2003,20(5):51-52
    [8]薛琳,和红云,田丽萍等.低温对加工番茄光合生理特性的影响.北方园艺,2008(7):11-13
    [9]谢吉容.南方红豆杉(TaxusChinensisVar.Mairei)叶片膜保护系统与温度的关系.四川师范大学学报:自然科学版,2002,25(2):194-197
    [10]王丽,侯雷平,赵慧等.低温胁迫对白菜抗氧化相关生理特性的影响.北方园艺,2009,(2):63-65
    [11]曾乃燕,何军贤,赵文等.低温胁迫期间水稻光合膜色素与蛋白水平的变化.西北植物学报,2000,20(1):8-14
    [12]Bruggemann W, Linger P. Long-term Chilling of Young Tomato Plants under Low Light and Subsequent Recovery (Ⅱ). Chlorpophyll Fluorescence, Carbon Metabolism and Activity of Rubisco. Planta,1992,186:179-187
    [13]Hutchison R S, Groom Q, Ort D R. Differential Effects of Chilling Induced Photooxidation on the Redox Regulation of Photosynthesis Enzymes. Biochemistry,2000,39:6679-6688
    [14]BruggemannW. Low Temperature Limitations of Photosynthesis in Three Tropical Vigna Species:A Chlorophyll Fluorescence Study. Photosynth Res,1992,34:301-310
    [15]谢潮添,杨盛昌,廖启炓等.低温胁迫下董棕幼苗叶肉细胞内Ca2+水平及细胞超微结构的变化.植物学通报,2003,20(2):212-217
    [16]陈善娜,邹晓菊,梁斌.水稻不同抗冷性品种幼苗叶细胞膜系统的电镜观察.植物生理学通讯,1997,33(3):191-194
    [17]王毅,方秀娟,徐欣等.黄瓜幼苗低温锻炼对叶片细胞叶绿体结构的影响.园艺学报,1995,22(3):299-300
    [18]Yordanov I, Velikova V. Photoinhibition of Photosystem I. Bulgarian Journal of PlantPhysiology,2000,26:70-92
    [19]郭延平,张良诚,洪双松等.温州蜜柑叶片气体交换和叶绿素荧光对低温的响应.植物生理学报,2000,26(2):88-94
    [20]杨华庚,林位夫.低温胁迫对油棕幼苗光合作用及叶绿素荧光特性的影响.中国农学通报,2009,25(24):506-509
    [21]刘建,项东云,陈健波等.低温胁迫对桉树光合和叶绿素荧光参数的影响.桉树科技,2009,26(1):1-6
    [22]龙海涛,李玲,万小荣.ABA诱导基因及其与逆境胁迫的关系(综述).亚热带植物科学,2004,33(4):74-77
    [23]郭凤领,卢育华,李宝光.外源ABA对番茄苗期和开花期抗冷特性的影响.山东农业大学学报(自然科学版),2000,31(4):357-362
    [24]杨亚军,郑雷英,王新超.冷驯化和ABA对茶树抗寒力及其体内脯氨酸含量的影响.茶叶科学2004,24(3):177-182
    [25]Larkindale J and Huang BR. Effects of Abscisic Acid, Salicylic Acid, Ethylene and Hydrogen Peroxide in Thermotolerance and Recovery for Creeping Bentgrass. Plant Growth Regulation, 2005,47(1):17-28
    [26]Hartung W, Schraut D, Jiang F. Physiology of Abscisicacid (ABA) in Roots under Stress-A Review of the Relationship between Root ABA and Radial Water and ABA Flows. Aust J AgrRes,2005,56(11):1253-1259
    [27]Yu J, Zhang L, Cang J, et al. Effects of Exogenous ABA on Cold Resistance and Tender Seedlings Growth of Winter Wheat Dongnongdongmai 1 in Cold Area. Journal of Triticeae Crops,2008,28(5):883-887
    [28]You Y, Yuan ZL, Zhang XY, et al. Effect of Spraying Leaves with ABA on Cold Resistance in Cinnamomum camphora of Seedlings. Henan Science,2008,26(11):1351-1354
    [29]Wei AZ, Yang TX, Zhang R, et al. Effect of Exogenous ABA on Cold-Resistant Ability and Related Physiological Indicators of Almond-apricot during Blossom Period. Journal of Northwest A & F University (Natural Science Edition),2008,36(5):79-84
    [30]Hou YD, Guo ZF, Yi Y, et al. Effects of Cold Acclimation and Exogenous Pytohormone Abscisic Acid Treatment on Physiological Indicators of Winterness Wheat. Journal of Plant Sciences,2009,724-729
    [31]钟新榕,郁继华,颉建明.NaCl胁迫及外源ABA和GA3对黄瓜幼苗抗氧化酶活性的影响.甘肃农业大学学报,2005(4):467-470
    [32]Chen SL, Wang SS, Aloys Huttermann-Arie Altman. Xylem Abscisic Acid Accelerates Leaf Abscission by Modulating Polyamine and Ethylene Synthesis in Water-stressed Intact Poplar. Trees-Structure and Function,2002,16:16-22
    33]刘兴宇.新型植物生长调节剂复硝酚钠及其应用.农药市场信息,2007:14
    [34]王美桂.新型植物生长调节剂一复硝酚钠.中国农村科技,2006,2(1):12
    35] Zhang S, Hu J, Zhang Y, et al. Seed Priming with Brassinolide Improves Lucerne (Medicago sativa L.) Seed Germination and Seedling Growth in Relation to Physiological Changes under Salinity Stress. Australian Journal of Agricultural Research,2007,58(8):811-815
    [36]Tae-Wuk K, Sun M. L, Se-Hwan J, et al. Elongation and Gravitropic Responses of Arabidopsis Roots are Regulated by Brassinolide and IAA. Plant, Cell & Environment,2007,30(6):679-689
    [37]Leonid V. Kurepin, Mirwais M. Qaderi, Thomas G Back, et al. A Rapid Effect of Applied Brassinolide on Abscisic Acid Concentrations in Brassica Napus Leaf Tissue Subjected to Short-term Heat Stress. Plant Growth Regulation,2008,55(3):165-167
    [38]Maity U, Bera A. K. Effect of Exogenous Application of Brassinolide and Salicylic Acid on Certain Physiological and Biochemical Aspects of Green Gram (Vigna Radiata L. Wilczek). Indian Journal of Agricultural Research,2009,43(3):367-370
    [39]段辉国,袁澍,刘文娟等.多胺与植物逆境胁迫的关系.植物生理学通讯,2005,41(4):531-536
    [40]Shang QM, Zhang ZG. Roles of Spermidine in Induced Resistance of Cucumber Seedlings to Botrytis Cinerea Pers. Ying Yong Sheng Tai Xue Bao,2008; 19(4):825-830
    [41]Dou JX, et al. Effects of Exogenous Spermidine on the Salt Resistance of Saltbush under Salt Stress. Journal of Anhui Agricultural Sciences,2009,37(6):2376-2377
    [42]崔凤芝,张运涛.多胺与园艺植物生长发育的关系.河北农业大学学报,1996,19(3):94-98
    [43]余海兵,杨安中,熊祖煦.亚精胺浸种对水稻生长及其产量的影响.安徽技术师范学院学报,2002,16(4):47-49
    [44]王汉忠,赵福庚,张国珍.多胺延缓植物衰老的机制.山东农业大学学报,1995,26(2):227-232
    [45]赵维峰,孙光明,李绍鹏等.多胺与植物的抗逆性.广西农业科学,2004,35(6):443-447
    [46]宋士清,贺字典,郭世荣等.外源亚精胺对黄瓜幼苗盐胁迫逆境的诱抗作用机理.河北科技师范学院学报,2006,20(3):1-6
    [47]段九菊,郭世荣.外源亚精胺对NaCl胁迫下黄瓜幼苗耐盐性的影响.中国蔬菜,2005(12):8-10
    [48]Sun C, Liu Y, Zhang W. Mechanism of Effect of Polyamines on Activity of Tonoplasts of Barley Roots under Salt Stress. Acta Botanica Sinica,2002,44(10),1167-1172
    [49]Jiang XY, Song J, Fan H, et al. Regulations of Exogenous Calcium and Spermidine on Ion Balance and Polyamine Levels in Maize Seedlings under NaCl Stress. Acta Phytophysiologica Sinica,2000,26(6):539-544
    [50]林定波,刘祖祺,张石城.多胺对柑桔抗寒力的效应.园艺学报,1994,21(3):222-226
    [51]古红梅,刘怀攀.亚精胺对小麦幼苗耐冷性的影响.种子,2003(4):26-28
    [52]乔勇进,冯双庆,李丽萍等.多胺处理对黄瓜贮藏冷害及品质的影响.吉林农业大学学报,2005,27(1):55-58
    [53]汪天,王素平,郭世荣等.低氧胁迫下黄瓜幼苗根系多胺代谢的变化.园艺学报,2005,32(3):433-437
    [54]Kuznetsov V. V, Rakitin V. Y, Sadomov N. G, et al. Do Polyamines Participate in the Long-Distance Translocation of Stress Signals in Plants? Russian Journal of Plant Physiology,2002, 49(1):120-130
    [55]Rajasekaran L. R, Blake T. J. New Plant Growth Regulators Protect Photosynthesis and Enhance Growth under Drought of Jack Pine Seedlings. J Plant Growth Regu,1999,18:175-181
    [56]刘爱荣,张远兵,翟从新.多胺浸种对油菜抗逆性的影响.种子,2002(3):20-23
    [57]王学,施国新,马广岳.外源亚精胺对荇菜抗Hg2+胁迫能力的影响.植物生理与分子生物学学报,2004,30(1):69-74
    [58]Zhao FG, Qin P. Protective Effect of Exogenous Polyamines on Root Tonoplast Function against Salt Stress in Barley Seedlings. Plant Growth Regulation 2004,42:97-103
    [59]Paul C. Bethke, Igor G L. Libourel, Natsuyo Aoyama, et al. The Arabidopsis Aleurone Layer Responds to Nitric Oxide, Gibberellin, and Abscisic Acid and Is Sufficient and Necessary for Seed Dormancy. Plant Physiology,2007,143:1173-1188
    [60]Fan WL, Ning W, Li TL, et al. Effect of Gibberellin (GA3) On Aralia continentalis Kitagwa Seed Dormancy-Breaking Process under Fluctuating Temperature. Journal of Shenyang Agricultural University,2008,39(1):80-82
    [61]You YW, Wang YZ, Li X. The Effect of Gibberellin (GA3) on the Dormancy of Celery (Apium graveolens L.)and the Effect of TDZ on the Proliferation of Celery. Journal of Shenyang Agricultural University,2008,22:61-63
    [62]王廷芹,杨暹.赤霉素对青花菜叶片生理特性的影响.安徽农业科学,2008,36(35):15341-15342,15345
    [63]钱仙云,徐迎春,柴翠翠等.低温和GA3处理对凤丹种子萌发及幼苗质量影响.林业科技开发,2009,23(6):48-51
    [64]李合生.植物生理生化实验原理和技术.北京:高等教育出版社,2000
    [65]Cakmak I, Marschner H. Magnesium Deficiency and High Light Intensity Enhance Activities of Superoxide Dismutase Ascorbate Peroxides, and Glutathione Reductase in Bean Leaves. Plant Physiology,1992,98(4):1222-1227
    [66]王晶英.黑龙江东部山区水源涵养林树种水分适应性研究.东北林业大学博士论文,2007:84-86
    [67]张吉立,刘振平,毕海等.冬季自然条件下4种彩叶植物抗寒生理研究.山西农业科学,2009,37(7):44-47
    [68]范川,李贤伟,张健等.毛豹皮樟苗木对低温胁迫的生理响应.林业科技,2009,34(1):8-11
    [69]谢吉容.南方红豆杉叶片膜保护系统与温度的关系.四川师范大学学报:自然科学版,2002,25(2):194-197
    [70]缴丽莉,倪志云,路丙社等.低温胁迫对青榨槭幼树抗寒指标的影响.河北农业大学学报,2006,29(4):44-47
    [71]Zhou J, You Y, Yuan DY. Effect of Low Temperature Stress on Physiological Characteristics of Magnolia grandiflora. Journal of Northwest Forestry University,2008,23(6):38-42
    [72]Cao H, et al. Effects of Low Temperature Stress on the Related Physiological Indexes in Grape Seedlings. Journal of Anhui Agricultural Sciences,2008,36(4):1351-1352,1364
    [73]薛建辉,苏敬,刘金根等.5个常绿阔叶园林树种对低温变化的生理响应.南京林业大学学报(自然科学版),2009,33(4):38-42
    [74]梁李宏,梅新,林锋等.低温胁迫对腰果幼苗叶片组织结构和生理指标的影响.生态环境学报,2009,18(1):317-320
    [75]Wu XX, Zha DS, Tai X. Effects of Low Temperature Stress on Growth, Activities of Antioxidant Enzymes and Osmotic Substance of Eggplant Seedlings. Jiangsu Journal of Agricultural Sciences,2008,24(4):471-475
    [76]Guan YJ, Hu J, Wang XJ, et al. Seed Priming with Chitosan Improves Maize Germination and Seedling Growth in Relation to Physiological Changes under Low Temperature Stress. Journal of Zhejiang University-Science B,2009,10(6):427-433
    [77]Liu XQ, Song LQ, Yang YJ, et al. The Effects of Low Temperature Stress on the Physiological Characteristics of Five Different Phalaenopsis Cultivars. Shandong Science,2008,21(5):31-35
    [78]M. Rapacz, M. Tyrka, W. Kaczmarek, et al. Photosynthetic Acclimation to Cold as a Potential Physiological Marker of Winter Barley Freezing Tolerance Assessed under Variable Winter Environment. Journal of Agronomy and Crop Science,2008,194(1):61-71
    [79]Leon A. Bravo, Felipe A. Saavedra-Mella, Felipe Vera, et al. Effect of Cold Acclimation on the Photosynthetic Performance of Two Ecotypes of Colobanthus Quitensis (Kunth) Bartl. Journal of Experimental Botany,2007,58(13):3581-3590
    [80]E. Pociecha, A. Plazek, M. Rapacz, et al. Photosynthetic Activity and Soluble Carbohydrate Content Induced by the Cold Acclimation Affect Frost Tolerance and Resistance to Microdochium nivale of Androgenic Festulolium Genotypes. Journal of Agronomy and Crop Science,2009,196(1):48-54
    [81]庞金安,马德华.低温锻炼对黄瓜幼苗光合作用的影响.河南农业大学学报,2000,34(1):40-42
    [82]郭卫东,郑建树,张真真等.短暂低温对佛手光合生理的影响.生态学报,2009,29(5):2286-2293
    [83]周玲,魏小春,郑群等.脱落酸与赤霉素对瓜尔豆叶片光合作用及内源激素的影响.作物杂志,2010,15-20
    [84]Ren XQ, Miao MM. Effect of ABA on Photosynthesis Characteristics and N, P, K in Capsicum annum under Chilling Stress. Hubei Agricultural Sciences,2008,47(12):1461-1463
    [85]Corgan H. N, Widmoyer F. B. The Effects of Gibberillic Acid on Flower Differentiation Date of Bloom, and Flower Hardiness of Peach-J Amer Soc Hort Sci,1971,96(1):54
    [86]严寒静,谈锋.自然降温过程中栀子叶片脱落酸,赤霉素与低温半致死温度的关系.西南师范大学学报(自然科学版),2001,26(2):195-199
    [87]彭波,鞠东.复硝酚钠对马铃薯生长发育的影响.当代生态农业,2009,(1):112-113
    [88]阳廷密,王明召,张戈壁.复硝酚钠对西红柿的品质改善初探.广西园艺,2004,15(1):36-37
    [89]包山青,张英杰.98%复硝酚钠粉剂在水稻上的应用效果.中国农村小康科技,2007,(8):54
    [90]陆晓民,封跃.复硝酚钠在灵芝栽培中的应用研究.中国林副特产,2000,(4):54-55

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700