阳极氧化法制备高度有序TiO_2纳米管(多孔)阵列膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
二氧化钛具有独特的湿敏、气敏、紫外光吸收、光电转化及光催化性能,在传感器、介电材料、自清洁材料、有机-无机太阳能电池、光催化降解污染物等领域有着广阔的应用前景。TiO_2纳米管因其特殊的结构而表现出更优异的性能。本论文以“阳极氧化法制备高度有序TiO_2纳米管(多孔)阵列膜的研究”为题,主要述及以下几方面的研究工作:
     1.分别在HF水溶液、含NH4F和H2O的乙二醇有机溶液中对Ti箔进行阳极氧化,得到高度有序、分布均匀、垂直取向的TiO_2纳米管阵列结构。通过阳极氧化工艺条件(如阳极氧化电压、电解液的选择与配比以及氧化时间等)实现了对其结构参数(如管径、管壁厚度、管密度、管长等)的有效控制。利用XRD研究了纳米管阵列的物相结构。结果表明:通过电解液的选配和退火条件的优化可控制TiO_2纳米管阵列的物相组成及其晶化程度。
     2.在SiO_2玻璃衬底上用脉冲激光沉积(PLD)技术,分别沉积Ti和Ti/Al膜,经电化学阳极氧化成功制备了多孔TiO_2/SiO_2和TiO_2/Al/SiO_2纳米复合结构。实验研究了Al过渡层对多孔TiO_2薄膜光吸收特性的影响。发现,无Al过渡层的多孔TiO_2薄膜其紫外吸收峰在270nm处,且峰强不随阳极氧化工艺参数调节;而有Al过渡层的多孔TiO_2薄膜其紫外吸收峰红移至293nm处,峰强和峰形不仅受阳极氧化电压调节而且受Al过渡层厚度的影响也很敏感。进一步分析了多孔TiO_2薄膜吸收边附近的光跃迁特性。
     3.通过分析阳极氧化过程中的电流-时间曲线,研究了TiO_2纳米管阵列膜和多孔TiO_2薄膜的生长机理。认为两种结构的形成过程均发生了场致氧化、场致溶解和化学溶解等三个反应。对于前者,TiO_2纳米管阵列的形成是这三个反应共同作用并逐步达到动态平衡的结果,其形成须经历致密氧化层的形成、多孔层的形成和纳米管的形成及稳定生长三个阶段的演化过程;对于后者,多孔TiO_2薄膜的形成是这三个反应未能达到动态平衡的结果。
TiO_2 nanomaterials have widely studied due to their unique electrical and electrochemical properties that are suitable for sensing, catalysis and solar cells. In recent years, TiO_2 nanotubes with high surface-to-volume ratios have received considerable attention because of their potential applications of highly efficient photocatalysis and photovoltaic cells. This dissertation titled“Investigation of The TiO_2 nanotube arrays and porous TiO_2 films prepared by anodic oxidation”mainly describes the following work and results:
     1. The highly ordered and uniform TiO_2 nanotube arrays are fabricated by anodic oxidation of titanium foil in HF aqueous solution or ethylene glycol containing NH4F and deionized water. The diameter, density, length and wall thickness of nanotube arrays can be controlled effectively by varying anodization parameters including electrolyte composition, voltage, and time. The microstructures of the titania nanotube arrays are characterized by X-ray diffraction (XRD). The results show that the structure and crystallinity of titania nanotube arrays can be controlled by varying electrolyte composition and annealing condition.
     2. The porous TiO_2/SiO_2 and TiO_2/Al/SiO_2 nanostructures are fabricated by anodic oxidation of titanium or titanium/aluminum thin films deposited on transparent SiO_2 glass substrates with pulsed laser deposition (PLD) technique. The influence of Al buffer layer on the optical absorption of the porous TiO_2 thin films is investigated. The results show that without Al buffer layer the UV absorption peak of the porous TiO_2 films is fixed at 270 nm and the intensity of absorption peak is not modulated via anodic potential. However, with Al buffer layer the UV absorption peak will shift to 293 nm, and the intensity of absorption peak is not only modulated via anodic potential, but also sensitively influenced by the thickness of Al buffer layer. Moreover, the optical transition property of porous TiO_2 thin films at absorption edge is analyzed.
     3. The growth mechanism of TiO_2 nanotube arrays and porous TiO_2 thin films is studied by analyzing current-time curves recorded during anodization. The results show that the field assisted oxidation of Ti metal to form titanium dioxide, field assisted dissolution of Ti metal ions in the electrolyte and chemical dissolution of Ti and TiO_2 are three key processes for formation of TiO_2 nanotube arrays and porous TiO_2 thin films. When three processes occurred simultaneously and reached dynamic balance, the TiO_2 nanotube arrays formed, otherwise, the porous TiO_2 thin films formed.
引文
[1]陈朝华,刘长河.钛白粉生产及应用技术[M]北京:化学工业出版社,2006, 31-35.
    [2] Hiroshi I, Shinya H, Tomokazu U, Seunghun E, Akane O, Soonchul K, Yoshihiro M, Tetsuya S, Supachai N, Susumu Y. Comparison of Electrode Structures and Photovoltaic Properties ofPorphyrin-Sensitized Solar Cells with TiO_2 and Nb, Ge, Zr-Added TiO_2 Composite Electrodes[J]. Langmuir, 2006, 22, 11405-11411.
    [3] Wang Q, Ito S, Gra1tzel M, Francisco F S, Iva′n M S, Juan B, Takeru B, Hachiro I. Characteristics of High Efficiency Dye-Sensitized Solar Cells [J]. J. Phys. Chem. B, 2006, 110, 25210-25221
    [4] Motonari A, Masaru S, Jinting J, Yukio O, Seiji I. Determination of Parameters of Electron Transport in Dye-Sensitized Solar Cells UsingElectrochemical Impedance Spectroscopy [J]. J. Phys. Chem. B, 2006, 110, 13872-13880
    [5] Su P G, Huang L N. Humidity sensors based on TiO_2 nanoparticles /polypyrrole composite thin films [J]. Sensors and Actuators B, 2007, 123, 501–507.
    [6] Francioso L, Presicce D S, Siciliano P, Ficarella A. Combustion conditions discrimination properties of Pt-doped TiO_2 thin film oxygen sensor [J]. Sensors and Actuators B, 2007, 123, 516–521.
    [7] Hideji A, Yasuo A, Takashi A, Masayoshi H, Kiyoshi A, Keiichi K. Improvement of response characteristics of TiO_2 humidity sensors by simultaneous addition of Li2O and V2O5 [J]. Ceramics International, 2008, 34(4), 819-822.
    [8] Kristof D, Jo D, Bavo D W, Anne B, Herman V L. Heterogeneous photocatalytic removal of toluene from air on building materials enriched with TiO_2 [J]. Building and Environment, 2008, 43(4), 406-414.
    [9] Doh S J, Kim Ch, Lee S G, Lee S J, Kim H Y. Development of photocatalytic TiO_2 nanofibers by electrospinning and its application to degradation of dye pollutants [J]. Journal of Hazardous Materials, 2008, 154(1-3), 118-127.
    [10] Hou X G, Liu A D. Modification of photocatalytic TiO_2 thin films by electron beam irradiation [J]. Radiation Physics and Chemistry, 2008,77(3), Pages345-351.
    [11]高濂,郑珊,张青红.纳米氧化钛光催化材料及应用[M]北京:化学工艺出版社,2002,8-9
    [12] Qamar M, Yoon C R, Oh H J, Lee N H, Park K, Kim D H, Lee K S, Lee W J, Kim S J. Preparation and photocatalytic activity of nanotubes obtained from titanium dioxide [J]. Catalysis Today, 2008, 131 (1-4), 3-14.
    [13] Paramasivam I, Macak J M, Schmuki P. Photocatalytic activity of TiO_2 nanotube layers loaded with Ag and Au nanoparticles [J]. Electrochemistry Communications, 2008,10(1), 71-75.
    [14] Zhang G G, Huang H T, Zhang Y H, Chan H L W, Zhou L M. Highly ordered nanoporous TiO_2 and its photocatalytic properties[J]. Electrochemistry Communications, 2007, 9(12), 2854-2858.
    [15] Huang L H, Sun C, Liu Y L. Pt/N-codoped TiO_2 nanotubes and its photocatalytic activity under visible light[J]. Applied Surface Science, 2007, 253(17), 7029-7035.
    [16] Ismael C F, Jilian N D F, Claudia L, De Paoli M A, Herbert W, Nogueira A F. Dye-sensitized solar cells based on TiO_2 nanotubes and a solid-state electrolyte [J]. J. Photochem. and Photobio. A: Chem. 2007, 189(2-3), 153-160.
    [17] Xie Y B, Zhou L M, Huang H T. Enhanced photoelectrochemical current response of titania nanotube array[J]. Materials Letters, 2006, 60(29-30), 3558-3560.
    [18] Ruan C, Paulose M, Varghese O K, Grimes C A. Enhanced photoelectrochemical -response in highly ordered TiO_2 nanotube-arrays anodized in boric acid containing electrolyte[J]. Sol. Energy Mater. Sol. Cells. 2006, 90( 9), 1283-1295.
    [19] Jan M M, Hiroaki T, Andrej G, Patrik S. Dye-sensitized anodic TiO_2 nanotubes[J]. Electrochemistry Communications. 2005, 7(11), 1133-1137.
    [20] Patrick H. Formation of a Titanium Dioxide Nanotube Array [J]. Langmuir 1996, 12, 1411-1413.
    [21] Tomoko K, Masayoshi H, Akihiko H, Toru S, and Koichi N. Formation of Titanium Oxide Nanotube [J]. Langmuir, 1998, 14, 3160-3163.
    [22] Gong DW, Grimes C A., Varghese O K, Hu WCh, Singh RS, Chen Zh, Elizabeth C D. Titanium oxide nanotube arrays prepared by anodic oxidation [J]. J. Mater. Res.,2001, 16(12), 3331-3334.
    [23]赵坤,朱凤,王莉芳,孟铁军,张保澄,赵夔.反应溅射法制备TiO_2薄膜[J].物理学报, 2001, 50(7), 1390-1395.
    [24]胡林华,戴松元,王孔嘉,溶胶-凝胶法制备的纳米TiO_2结构相变及晶体生长动力学[J].物理学报, 2003, 52(9), 2135-2139.
    [25]黄晖,罗宏杰,姚熹.水热法制备TiO_2薄膜的研究[J].物理学报, 2002, 51, 1881-1186.
    [26]孙德明,肖梦秋,汪荣昌,戎瑞芬. Pt/TiO_2二极管湿敏传感器[J].半导体学报, 1999, 20(3), 200-205.
    [27] Shinsuke Y, Tsuyoshi H, Hiroaki M, Ken K, Masayoshi U. Fabrication of oxide nanohole arrays by a liquid phase deposition method [J]. Journal of Alloys and Compounds, 2004, 373(1-2), 312-315.
    [28] Brinda B L, Peter K D, Charles R M. Sol-Gel Template Synthesis of Semiconductor Nanostructures [J]. Chem. Mater, 1997, 9(3), 857–862.
    [29]李晓红,张校刚,力虎林. TiO_2纳米管的模板法制备及表征[J].高等学校化学学报, 2001, 22(1) , 130~132.
    [30]Peng T Y,Yang H P ,Chang G. Synthesis of bamboo-shaped TiO_2 nanotubes in nanochannels of porous aluminum oxide membrane[J]. Chem Lett, 2004, 33(3), 336-337.
    [31] Tomoko K. Formation of titanium oxide nanotubes using chemical treatments and their characteristic properties [J]. Thin Solid Films, 2006, 496, 141–145.
    [32] Ou HH, Lo ShL. Review of titania nanotubes synthesized via the hydrothermal treatment: Fabrication, modification, and application [J]. Separation and Purification Technology, 2007, 581, 79–191.
    [33] Lee ChK, Wang ChC, Lyu MD, Juang LCh, Liu ShSh, Hung ShH. Effects of sodium content and calcination temperature on the morphology, structure and photocatalytic activity of nanotubular titanates [J]. J. Colloid and Interface Science, 2007, 316, 562–569.
    [34] Tsai ChCh, Nian JN, Teng H. Mesoporous nanotube aggregates obtained from hydrothermally treating TiO_2 with NaOH[J]. Applied Surface Science, 2006, 253,1898–1902.
    [35] Ma YT, Lin Y, Xiao XR, Zhou XW, Li XP. Sonication–hydrothermal combination technique for the synthesis of titanate nanotubes from commercially available precursors[J]. Materials Research Bulletin, 2006, 41, 237–243.
    [36] Wei M-D, Konishia Y, Zhoua H, Sugihara H, Arakawa H. Formation of nanotubes TiO_2 from layered titanate particles by a soft chemical process [J]. Solid State Communications, 2005, 133, 493–497.
    [37] Ryuhei Y, Yoshikazu S, Susumu Y. Effects of synthetic conditions and heat-treatment on the structure of partially ion-exchanged titanate nanotubes[J]. Materials Chemistry and Physics, 2005, 91, 409–416.
    [38]宋旭春,岳林海,刘波,韩贵,陈卫祥,徐铸德.水热法合成掺杂铁离子的小管径TiO_2纳米管[J].无机化学学报, 2003, 19(8), 899-901.
    [39] Wang W Z, Varghese O K, Paulose M, Grimes C A, Wang Q L, Dickey E C. [J]. J. Mater. Res., 2004, 19(2), 417-422.
    [40] Yao B D, Chan Y F, Zhang X Y, Zhang W F, Yang Z Y, Wang N. Formation mechanism of TiO_2 nanotubes[J]. Appl. Phys. Let., 2003, 82 (2), 281-283.
    [41] Wang Y Q , Hu G Q , Duan X F , Sun H L , Xue Q K. Microstructure and formation mechanism of titanium dioxide nanotubes [J]. Chem. Phys. Lett., 2002, 365, 427–431.
    [42] Seo DS, Lee JK, Kim H. Preparation of nanotube-shaped TiO_2 powder [J]. Journal of Crystal Growth, 2001,229, 428–432.
    [43] Wang DA, Zhou F, Liu Y, Liu WM. Synthesis and characterization of anatase TiO_2 nanotubes with uniform diameter from titanium powder[J]. Materials Letters, 2008, 62, 1819–1822.
    [44]吴省,蒋淇忠,马紫峰,上官文峰.利用微波法合成二氧化钛纳米管[J].无机化学学报, 2006, 22(2) , 341-345.
    [45] Wu X, Jiang QZh, Ma ZF, Shangguan WF. Tile overlapping model for synthesizing TiO_2 nanotubes by microwave irradiation[J]. Solid State Communications, 2007,143, 343–347.
    [46] Zwilling V, Aucouturier M, Darque-Ceretti E. Anodic oxidation of titanium andTA6V alloy in chromic media. An electrochemical approach[J]. Electrochim. Acta, 1999, 45(6), 921-929.
    [47] Hahn R, Macak J M, Schmuki P. Rapid anodic growth of TiO_2 and WO3 nanotubes in fluoride free electrolytes[J]. Electrochemistry Communications, 2007, 9, 947–952.
    [48] Yang Y, Wang X H, Li L T. Synthesis and growth mechanism of graded TiO_2 nanotube arrays by two-step anodization[J]. Materials Science and Engineering B, 2008, 149, 58–62.
    [49] Xiao P, Garcia B B, Guo Q, Liu D W, Cao G Zh. TiO_2 nanotube arrays fabricated by anodization in different electrolytes for biosensing [J]. Electrochemistry Communications, 2007, 9, 2441–2447.
    [50] Jan M M, Patrik S. Anodic growth of self-organized anodic TiO_2 nanotubes in viscous electrolytes[J]. Electrochim. Acta, 2006, 52, 1258–1264.
    [51] Andrei G, Hiroaki T, Jan M M, Patrik S. Titanium oxide nanotubes prepared in phosphate electrolytes[J]. Electrochemistry Communications, 2005, 7, 505–509.
    [52] Cai Q Y, Yang L X, Yu Y. Investigations on the self-organized growth of TiO_2 nanotube arrays by anodic oxidization [J]. Thin Solid Films, 2006, 515, 1802–1806.
    [53] Varghese O K, Paulose M, Shankar K, Grimes C A. Water-Photolysis Properties of Micro-Length Highly-Ordered Titania Nanotube -Arrays [J]. J. NanoSci. Nanotech., 2005, 5(7), 1158-1165.
    [54] Mor G K., Varghese O K, Paulose M, Shankar K, Grimes C A. A review on highly ordered, vertically oriented TiO_2 nanotube arrays: Fabrication, material properties, and solar energy applications[J]. Sol. Energy Mater. Sol. Cells, 2006, 90, 2011–2075.
    [55] Cai Q Y, Paulose M, Varghese O K, Grimes C A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J]. J. Mater. Res., 2005, 20(1), 229-236.
    [56] Paulose M, Shankar K, Yoriya S, Prakasam H E, Varghese O K, Mor G K, Latempa T A, Fitzgerald A, Grimes C A. Anodic Growth of Highly Ordered TiO_2 Nanotube Arrays to 134μm in Length [J]. J. Phys. Chem. B, 2006, 110(3),16179-16184.
    [57] Raja K S, Gandhi T, Misra M. Effect of water content of ethylene glycol as electrolyte for synthesis of ordered titania nanotubes[J]. Electrochemistry Communications, 2007, 9, 1069–1076.
    [58] Kanna M, Wongnawa S. Mixed amorphous and nanocrystalline TiO_2 powders prepared by sol–gel method: Characterization and photocatalytic study[J]. Materials Chemistry and Physics, 2008, 110(1), 166-175.
    [59] Nieto J, Freer J, Contreras D, Candal R J, Sileo E E, Mansilla H D. Photocatalyzed degradation of flumequine by doped TiO_2 and simulated solar light [J]. Journal of Hazardous Materials, 2008, 155(1-2), 45-50.
    [60] Paulose M, Mor G K, Varghese O K, Shankar K, Grimes C A. Visible light photoelectrochemical and water-photoelectrolysis properties of titania nanotube arrays [J]. J. Photochem. Photobio. A: Chemistry, 2006, 178, 8–15.
    [61] Regan B O, Gr?tzel M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO_2 films[J]. Nature, 1991, 353, 737~739.
    [62] Adachi M, Murata Y, Okada I, Yoshikawa S. Formation of titania nanotubes and applications for dye-sensitized solar cells[J]. J. Electrochem. Soc. , 2003, 150, G488-G493.
    [63] Paulose M, Shankar K, Varghese O K, Mor G K, Hardin B, Grimes C A. Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes[J]. Nanotechnology, 2006, 17(1) , 1446–1448.
    [64] Varghese O K, Yang X, Kendig J, Paulose M, Zeng K, Palmer C, Ong K G, Grimes C A. Sensor Lett., 2006, 4 120-124
    [65]李守义,王成伟,李燕,王建,吕国才.草酸电解液中制备的多孔阳极氧化铝薄膜光致发光特性[J].西北师范大学学报, 2006, 42(5), 47-51.
    [66]吕国才,李燕,王建,赵新宏,王成伟.不同电解液中制备的多孔阳极氧化铝薄膜光致发光特性比较研究[J].西北师范大学学报, 2006, 42(2), 54-58.
    [67]李燕,王成伟,田军,刘维民,陈淼,力虎林.钴/氧化铝纳米有序阵列复合结构的光学特性研究[J].物理学报, 2004, 53(5), 1594-1598.
    [68]李燕,王成伟,刘维民,力虎林,财满镇明,马书懿. Ag/AAO纳米有序阵列复合结构等离子共振吸收特性研究[J].光学学报, 2005, 25, 1649-1654.
    [69]李守义,王成伟,李燕,王建,马保宏. Co/ AAO纳米有序阵列复合结构的光致发光和光吸收特性[J].光谱学与光谱分析, 2008, 28(3), 517-521.
    [70]王成伟,吕国才,李燕,王建,财满镇明. Cu /AAO纳米有序阵列复合结构的光学特性研究[J].光学学报, 2006, 26, 581-584.
    [71]李燕,王成伟,赵新宏,王建. Cu /AAO纳米有序阵列复合结构的光吸收特性[J].高等学校化学学报, 2006, 27(6), 1101-1105.
    [72]王成伟,李梦轲,力虎林.用多孔氧化铝模板制备高度取向碳纳米管阵列膜的研究[J].科学通报, 2000, 45(5), 493-497.
    [73]王成伟,李梦轲,力虎林.模板法合成高度取向碳纳米管有序阵列膜的场电子发射特性[J].中国科学(A辑), 2000, 30(11), 1019-1024.
    [1] Larry N. Lewis, James. Spivack, Shellie Gasaway, Eric D. Williams, John Y. Gui, Venkatesan Manivannan, Oltea P. Siclovan. A novel UV-mediated low-temperature sintering of TiO_2 for dye-sensitized solar cells[J]. Sol. Energy Mater. Sol. Cells, 2006, 90, 1041–1051.
    [2] Hyeon-Ju An, Song-Rim Jang, R. Vittal, Jiwon Lee, Kang-Jin Kim. Cationic surfactant promoted reductive electrodeposition of nanocrystalline anatase TiO2 for application to dye-sensitized solar cells[J]. Electrochimica Acta, 2005, 50, 2713–2718.
    [3]郭力、梁林云、陈冲、王命泰、孔明光、王孔嘉.聚苯胺基固态染料敏化太阳电池中电子输运性能的研究[J].物理学报,2007, 56(7) 4270-4276.
    [4] Hideji A, Yasuo A, Takashi A, Masayoshi H, Kiyoshi A, Keiichi K. Improvement of response characteristics of TiO2 humidity sensors by simultaneous addition of Li2O and V2O5 [J]. Ceramics International, 2008, 34(4), 819-822.
    [5] Pawe? K, Roman R. Characterization and sensor properties of sol–gel SiO2:TiO2 film/ion-exchange glass optical waveguides[J]. Optics Communications, 281(9), 2008, 2472-2480.
    [6] Kim I D, Rothschild A, Yang D J, Tuller H L. Macroporous TiO2 thin film gas sensors obtained using colloidal templates[J]. Sensors and Actuators B: Chemical, 2008, 130(1), 9-13.
    [7] Francioso L, Taurino A M, Forleo A, Siciliano P. TiO2 nanowires array fabrication and gas sensing properties Sensors and Actuators B: Chemical, 2008, 130(1), 70-76.
    [8] Shinsuke Y, Tsuyoshi H, Hiroaki M, Ken K, Masayoshi U. Fabrication of oxide nanohole arrays by a liquid phase deposition method [J]. Journal of Alloys and Compounds, 2004, 373(1-2), 312-315.
    [9] Gong D W, Grimes C A., Varghese O K, Hu WCh, Singh R S , Chen Zh Elizabeth C D. Titanium oxide nanotube arrays prepared by anodic oxidation[J] J. Mater. Res., 2001, 16(12), 3331-3334.
    [10] Zhu K, Neale N R, Miedaner A, Frank A J Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays[J]. NanoLetters, 2007, 7(1), 69-74.
    [11] Quan X, Yang S G, Ruan X L, Zhao H M Preparation of Titania Nanotubes and Their Environmental Application As Electrode[J]. Environ. Sci. Technol., 2005, 39, 3770-3775.
    [12] Hiroaki T, Jan M M, Andrei G, Arlindo S R, Luciano T, Patrik S 2007 Corrosion Science 49 203
    [1]周锋,梁开明,王国梁.电场热处理条件下TiO2薄膜的晶化行为研究[J].物理学报, 2005, 54, 2863-2867.
    [2]张勇,唐超群,戴君锐钛矿TiO2及其掺Fe所导致的红移现象研究:赝势计算和紫外光谱实验[J].物理学报, 2005, 54, 0323-0327.
    [3]黄晖,罗宏杰,姚熹.水热法制备TiO2薄膜的研究[J].物理学报, 2002, 51, 1881-1186.
    [4] Lin Y J, Wang L, Chiu W Y. Novel poly(3-methylthiophene)-TiO2 hybrid materials for photovoltaic cells[J]. Thin Solid Films, 2006, 511– 512, 199-202.
    [5] Lancelle-Beltran E, PrenéP, Boscher C, Belleville P, Buvat P, Lambert S, Guillet F, Boissière C, Grosso D, Sanchez C. Nanostructured Hybrid Solar Cells Based on Self-Assembled Mesoporous Titania Thin Films[J]. Chem. Mater. , 2006, 18, 6152-6156.
    [6] Yang H, Yu C Z, Song Q L, Xia Y Y, Li F Y, Chen Z G, Li X H, Yi T, Huang C H. High-Temperature and Long-Term Stable Solid-State Electrolyte for Dye- Sensitized Solar Cells by Self-assembly[J]. Chem. Mater., 2006, 18, 5173-5177.
    [7] Waldauf C, Morana M, Denk P, Schilinsky P, Coakley K, Choulis S A, Brabec C J. Highly efficient inverted organic photovoltaics using solution based titanium oxide as electron selective contact[J]. Appl. Phys. Lett., 2006, 89 233517-233519.
    [8]胡林华、戴松元、王孔嘉纳米TiO2多孔膜的微结构对染料敏化纳米薄膜太阳电池性能的影响[J].物理学报, 2005, 54, 1914-1918.
    [9]戴松元、孔凡太、胡林华、史成武、方琴霞、潘旭、王孔嘉.染料敏化纳米薄膜太阳电池实验研究[J].物理学报, 2005, 54, 1919-1926.
    [10]徐炜炜、戴松元、方琴霞、胡林华、孔凡太、潘旭、王孔嘉.电沉积处理与染料敏化纳米薄膜太阳电池的优化[J].物理学报, 2005, 54, 5943-5948.
    [11] Francioso L, Presicce D S, Siciliano P, Ficarella A. Combustion conditions discrimination properties of Pt-doped TiO2 thin film oxygen sensor[J]. Sensors and Actuators B, 2007, 123, 516-521.
    [12] Su P G, Huang L N. Humidity sensors based on TiO2 nanoparticles/polypyrrole composite thin films[J]. Sensors and Actuators B, 2007, 123, 501–507.
    [13]曾隆月、戴松元、王孔嘉、史成武、孔凡太、胡林华、潘旭染料敏化纳米ZnO薄膜太阳电池机理初探[J].物理学报, 2005, 54, 0053-0057.
    [14] Aroutiounian V M, Arakelyan V M, Shahnazaryan G E, Stepanyan G M, Khachaturyan E A, Wang H L, Turner J A. Photoelectrochemistry of semiconductor electrodes made of solid solutions in the system Fe2O3–Nb2O5[J]. Solar Energy, 2006 80, 1098-1111.
    [15] Dawei Gong, Craig A. Grimes, Oomman K. Varghese Wenchong Hu, R.S. Singh, Zhi Chen Elizabeth C. Dickey. Titanium oxide nanotube arrays prepared by anodic oxidation[J] J. Mater. Res., 2001, 16(12), 3331-3334.
    [16] Maggie Paulose, Karthik Shankar, Oomman K Varghese, Gopal K Mor, Brian Hardin and Craig A Grimes Backside illuminated dye-sensitized solar cells based on titania nanotube array electrodes[J]. Nanotechnology, 2006, 17(1), 1446–1448.
    [17] Zhu K, Neale N R, Miedaner A, Frank A J Enhanced Charge-Collection Efficiencies and Light Scattering in Dye-Sensitized Solar Cells Using Oriented TiO2 Nanotubes Arrays[J]. NanoLetters, 2007, 7(1), 69-74.
    [18] Quan X, Yang S G, Ruan X L, Zhao H M Preparation of Titania Nanotubes and Their Environmental Application As Electrode[J]. Environ. Sci. Technol., 2005, 39, 3770-3775.
    [19] Eu S, Hayashi S, Umeyama T, Oguro A, Kawasaki M, Kadota N, Matano Y,Imahori H. Effects of 5-Membered Heteroaromatic Spacers on Structures of Porphyrin Films and Photovoltaic Properties of Porphyrin-Sensitized TiO2 Cells[J]. J. Phys. Chem C..2007, 111, 3528.
    [20] Neale N R , Kopidakis N, Lagemaat J V D, Gr?tzel M, Frank A J. Effect of a Coadsorbent on the Performance of Dye-Sensitized TiO2 Solar Cells: Shieldingversus Band-Edge Movement[J]. J. Phys. Chem. B., 2005, 109, 23183-23189.
    [21] Sabataityte J, Oja I, Lenzmann F, Volobujeva O, Krunks M. Characterization of nanoporous TiO2 films prepared by sol–gel method[J]. C. R. Chimie, 2006, 9, 708-712.
    [22]沈学础.半导体光学[M].北京:科学出版社, 1992, 53-55.
    [23] N. Serpone, D. Lawless, R. Khairutdinov. Size Effects on the Photophysical Properties of Colloidal Anatase Ti02 Particles: SizeQuantization or Direct Transitions in This Indirect Semiconductor [J]. J. Phys. Chem., 1995, 99, 16646-16654.
    [1]江小雪,赵乃勤.多孔氧化铝膜的制备与形成机理的研究概况[J].功能材料, 2005, 36(4), 487-489.
    [2] Mor G K., Varghese O K., Paulose M, Shankar K, Grimes C A. A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications[J]. Sol. Energy Mater. Sol. Cells, 2006, 90, 2011–2075.
    [3] Cai QY, Varghese O K, Grimes C A. The effect of electrolyte composition on the fabrication of self-organized titanium oxide nanotube arrays by anodic oxidation[J]. J. Mater. Res., 2005, 20(1), 229-236.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700