气流床水冷壁气化炉熔渣沉积试验研究及水冷壁数值模拟
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气流床煤气化技术具有煤种适应性广、操作压力和操作温度高、碳转化率高、生产强度和规模大等特点,已成为煤基大容量、高效洁净的燃气与合成气制备的首选技术。水冷壁气化炉是气流床气化技术的重要类型,具有运行寿命长、维护费用低等优势,是气流床气化技术的发展方向。因此,对气化炉水冷壁技术进行研究具有重要意义。
     (1)基于实验室小型水冷壁气流床气化炉,以北宿煤为原料进行粉煤气化试验,考察气化炉内的熔渣沉积情况,并对附壁渣层的表面形态及组成进行分析研究。北宿煤灰分中碱性氧化物含量较高,灰熔点相应较低。气化渣样的XRD分析结果显示,气化过程中生成了熔点较低的复杂共熔体钙长石及磁赤铁矿。渣层形态与气化炉内的温度分布特征密切相关,总体上讲,渣层表面粗糙度随温度降低而增大。
     (2)神府煤灰渣的CaO含量相对较高,具有较低的熔融温度。试验条件下采用神府煤灰渣进料可以改善炉内结渣状况。气化过程中,渣层表面区域的煤渣处于熔融状态,形成液态渣层;渣层中存在大量气孔,气体受热膨胀,导致熔融的渣层发生变形、凸起,气体逸出后,该处渣层发生坍塌。气化渣样主要由钙长石、透辉石及钠长石组成,其孔隙率为36.6%。
     (3)建立气化炉水冷壁传热模型,采用有限元法对水冷壁的温度场进行模拟计算。气化炉正常运行状况下,采用稳态法可对水冷壁中的温度分布进行较为准确地预测,而气化炉变工况时,采用瞬态法的模拟结果则更为准确。水冷壁中的温度分布与材料的导热系数密切相关,导热系数较小的材料中存在较大的温度梯度。渣钉、水冷管及鳍片中的最高温度随渣层表面温度的升高而升高,随工质对流给热系数的增大而降低,而工质温度的影响并不明显。工业气化炉水冷壁传热稳态分析结果显示,水冷壁锥段抽出管附近区域的鳍片冷却效果较差,温度相应较高;对水冷壁结构进行优化、增设水冷管后,鳍片中的最高温度显著下降。
     (4)建立水冷壁热应力模型,对气化炉变工况水冷壁的应力场进行研究。升温阶段渣层中的热应力主要表现为压应力,而降温阶段则主要表现为拉应力。渣层的最大热应力随导热系数、孔隙率的增大而减小,随弹性模量、热膨胀系数、渣层厚度的增大而增大,渣层密度、比热的影响并不显著。初始固态渣层与新生固态渣层中的等效应力分布及其变化趋势均存在显著差异;初始固、液接触面处等效应力不连续分布。含裂纹的渣层中热应力的最大值出现在裂纹尖端,在裂纹尖端附近区域存在较大的应力梯度,而距裂纹尖端稍远处,应力梯度较小。裂纹尖端的应力强度因子与渣层温度分布、裂纹特征尺寸及断裂面与渣层表面法线夹角密切相关。当裂纹尖端的应力强度因子大于渣层的断裂韧性时,裂纹失稳扩展,且扩展具有定向性。
     (5)建立水冷壁冷却工质流动与传热模型,对冷却工质的水力特性进行研究。分配集箱中沿流向工质速度逐渐降低,静压逐渐升高。汇集集箱中沿流向工质速度逐渐增大,静压总体呈降低趋势。与集箱进口距离较远的冷却管的进、出口压差相对较大,因此具有较高的质量流量。缩小冷却管直径、增大管间夹角均可减小却冷管间流量差异,改善工质不均匀性。随集箱入口速度的增加,工质的不均匀性加剧。而在不发生相变的情况下,改变入口工质的温度对其不均匀性无显著影响。
Entrained-flow gasification has become the preferred, efficient and clean technology for coal-based large-scale gas and syngas production due to its advantages, such as insensitivity to coal type, high operating pressure and temperature, high carbon conversion, high production intensity, large scale, etc. As one of the most important types of entrained-flow gasifier, membrane wall gasifier has the advantages of long service life and low maintenance cost, and hence, it has become the development tendency of entrained-flow gasification. Consequently, it is of great significance to study on the technology of membrane wall.
     (1) Gasification experiments were performed in a bench-scale membrane wall entrained-flow gasifier using Beisu coal and the slag deposition was studied. The surface morphology and composition of the slag layer were also investigated. Beisu coal ash has a low fusion temperature for its high alkaline oxide content. According to the XRD result, anorthite and maghemite generated during the gasification. The morphology of slag layer is strongly related to the temperature distribution in the gasifier. In general, the surface roughness of slag layer increases with the decrease of temperature.
     (2) Shenfu coal ash has a low fusion temperature due to its high content of CaO. The slagging in the gasifier is improved by using Shenfu coal ash as feed stock. During the gasification, a liquid slag layer was formed by molten slag over the solid slag layer. A large amount of pores were observed in the molten slag, and gas in the pores expanded with the increasing temperature, which resulted in the deformation of the molten slag layer. The bumped slag layer collapsed after the gas released from it. The slag sample mainly consists of anorthite, diopside and albite. The porosity of slag is 36.6%.
     (3) A heat transfer model of membrane wall was established and the temperature field was simulated using FEM. Under stable operation condition, the temperature distribution in the membrane wall can be accurately predicted with static method, while transient analysis gives more accurate results for variable conditions. The temperature distribution is closely related to the conductivities of materials. Great temperature gradient is observed in the material with a low conductivity. The maximum temperatures of stud, cooling tube and fin increase with the increase of slag surface temperature, while decrease with the increasing convection coefficient of working fluid. The effect of working fluid temperature on the maximum temperatures is insignificant. The static simulation result of an industrial membrane wall gasifier shows that the fin temperature in the region near the draw-out tube is higher for the poor cooling effect there. The maximum temperature obviously decreases after structure optimization by adding a cooling tube outside.
     (4) A thermal stress model of membrane wall was developed for the stress field study. The thermal stresses of the slag layer act as compressive stresses during temperature rising process, while tension during the cooling process. The maximum of thermal stresses decreases with the increase of conductivity and porosity, but increases with the increase of Young's module, thermal expansive coefficient and slag thickness. The density and specific heat of slag have unconspicuous effects on the maximum thermal stresses. Both distribution and variation of thermal stresses are obviously different between the initial solid slag and the slag solidified, and the thermal stresses are discontinuous at the initial interface. For the slag layer with cracks, the maximum thermal stress is observed at the crack tip. There are great stress gradients in the region near the crack tip, while small gradients in others. The stress intensity factor of the crack tip has close relation with temperature distribution, feature size of crack and the angle between the crack face and the normal of slag surface. As the value of stress intensity factor exceeds fracture toughness of slag layer, the crack develops directionally.
     (5) A flow and heat transfer model of working fluid was built for the analysis of hydraulic characteristics of the membrane wall. The working fluid velocity gradually decreases along flow direction in the distribution header with the increase of static pressure. In the collection header, the velocity of working fluid gradually increases along flow direction, while the static pressure decreases in the same direction. Higher inlet-outlet pressure drop and flow rate are observed in the cooling tube which is farther from the header inlet. The maldistribution of working fluid can be reduced by diminishing the cooling tube diameter and enlarging the angle between the adjacent tubes. The maldistribution is enhanced by increasing the inlet velocity of working fluid. Changing the inlet temperature of working fluid has negligible effect on its maldistribution.
引文
[1]国家统计局.中国统计年鉴(2010)[R].北京:中国统计出版社.2010
    [2]郑振安.Shell煤气化技术(SCGP)的特点[J].煤化工.2003,31(2):7-11
    [3]连玉明.中国数字报告[M].中国社会科学出版社.2004
    [4]王顺庆.我国的生态危险管理与生态保险[J].南京财经大学学报.2005,(1):55-59
    [5]张金屯.应用生物学[M].北京:科学出版社.2003
    [6]许世森,张东亮,任永强.大规模煤气化技术[M]。北京:化学工业出版社.2006
    [7]龚欣,郭晓镭,代正华,于遵宏等.新型气流床粉煤加压气化技术[J].现代化工2005,25(3):51-54
    [8]Steinberg Meyer, Cheng Hsing C. Modern and prospective technologies for hydrogen production from fossil fuels [J]. International Journal of Hydrogen Energy.1989, 14(11):797-820
    [9]William EPreston. Texaco Gasification 2001 Status and Path Forward [A]. Presented at the Gasification Technologies Conference [C]. San Francisco, CA, Oct.10,2001
    [10]于广锁,牛苗任,梁钦锋,于遵宏.气流床水煤浆气化技术的应用现状及开发进展[J].煤化工.2004,32(3):1-5
    [11]William A Sowa, Paul O Hedman, L Dougles Smoot. The sensitivity of entrained-flow coal gasification diffusion burner to changes in geometry [J]. Fuel.1992,71(5): 593-604
    [12]郑振安.浅析SHELL煤气化技术在化工生产中的应用[J].化肥设计.1998,36(3):6-9
    [13]Higman C, Burgt MV. Gasification. Boston:Elsevier/Gulf Professional Publishing Publications,2003
    [14]Steven A. Benson, Everett A. Sondreal, John P. Hurley. Status of coal ash behavior research [J]. Fuel Processing Technology.1995,44(1-3):1-12
    [15]Benson SA, Hurley JP, Zygarlicke CJ, Steadman EN, Erickson TA. Predicting ash behavior in utility boilers [J]. Energy Fuels.1983,7(6):746-754
    [16]岑可法,樊建人等.锅炉和热交换器的积灰、结渣、磨损和腐蚀的防止原理与计算[M].北京:科学出版社.1994
    [17]李宝霞,张济字。煤灰渣熔融特性的研究进展[J].现代化工.2005,25(5):22-26
    [18]王泉清,曾蒲军.高岭石对神木煤灰熔融性的影响[J].煤化工.1997,80(3):40-45
    [19]TF Wall. False deformation temperatures for ash fusibility associated with the conditions for ash preparation [J]. Fuel,1999,78(9):1057-1063
    [20]RH Matjie. Chemical composition of glass and crystalline phases in coarse coal gasification ash [J]. Fuel.2008,87(6):857-869
    [21]Jin Bai. Characterization of low-temperature coal ash behaviors at high temperatures under reducing atmosphere [J]. Fuel.2008,87(4-5):583-591
    [22]Richard W. Bryers. Fireside slagging, fouling, and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels [J]. Progress in Energy and Combustion Science.1996,22(1):29-120
    [23]Wall TF, Juniper L, Lowe A. State-of-the-art review of ash behavior in coal fired furnaces. NewCastle, Australia:The University of NewCastle,2001
    [24]Gupta RP, Rushdi A, Browning G et al. A mechanistic approach for assessing thermal performance of coal blends. In engineering foundation conference on impact of fuel quality on power generation,2001. Snowbird:USA
    [25]Murray F. Abbott, Richerd E. Corn, Leonard G. Austin. Studies on slag deposit formation in pulverized-coal combustors [J]. Fuel.1985,64(6):827-830
    [26]Heikkinen, R. Slagging behavior of peat ash [J]. Fuel and Energy Abstracts.1996,37(6): 450-451
    [27]林加嵩.气化炉结渣的产生及其影响因素[J].大氮肥,1993,16(3): 208-211
    [28]贡文政.水冷壁气化炉热态模试研究及传热特性分析[D].华东理工大学.2007
    [29]Huggins FE, Kosmack DA, Huffman GP. Correlation between Ash-Fusion Temperatures and Ternary Equilibrium Phase Diagrams [J]. Fuel.1981,60(7):577-584
    [30]Stanislav V. Vassilev, Kunihiro Kitano, Shohei Takeda, Takashi Tsurue. Influence of mineral and chemical composition of coal ashes on their fusibility [J]. Fuel Processing Technology.1995,45(1):27-51
    [31]张堃,黄镇宇,修洪雨等.煤灰中化学成分对熔融和结渣特性影响的探讨[J].热力发电.2005,34(12):27-30,43
    [32]饶甦,曹欣玉,兰泽全等.煤灰矿物质在炉内的迁徙分布规律及其对沾污结渣的影响[J].燃料化学学报.2004,32(4):395-399
    [33]Alex Kondratiev, Evgueni Jak. Predicting coal ash slag characteristics (viscosity model for the Al2O3-CaO-FeO-SiO2system). Fuel.2001,80(14):1989-2000
    [34]于遵宏,于建国,沈才大,龚欣,王辅臣,孙建辉.德士古气化炉气化工程剖析(V)—区域模型[J].大氮肥.1994,5:352-356
    [35]夏德宏,郭美荣。水煤浆燃烧过程中的结渣机理与防治[J].冶金能源.2005,24(4):33-35,38
    [36]Peyman Givi. Model-free simulations of turbulent reactive flows [J]. Progress in Energy and Combustion Sciences.1999,15(1):1-107
    [37]Pope S B. Computations of turbulent combustion:progress and challenges. In:23rd Symposium (international) on Combustion, Orleans,1990-07. Pittsburgh, PA:The Combustion Institute,1990,591-612
    [38]Bilger R W. Conditional moment closure for turbulent reaction flow [J]. Physics of Fluids.1993,5(2):436-473
    [39]Libby P A, Williams F A. Turbulent Reciting Flows [M]. London:Academic Press, 1993
    [40]Spalding D B. Mathematical models of turbulent flames:a review [J]. Combustion Science and Technology.1976,13(1):3-25
    [41]Wang H F, Harb J N. Modeling of ash deposition in large-scale combustion facilities burning pulverized coal [J]. Progress in Energy and Combustion Sciences.1997,23(3): 267-282
    [42]M. Seggiani. Modeling and simulation of time varying slag flow in a Prenflo entrained-flow gasifier [J]. Fuel.1998,77(14):1611-1621
    [43]Reid. W. T, Cohen.P. Trans [M]. ASME,1994,66:685
    [44]韩志明,李政,倪维斗Shell气化炉的建模和动态仿真[J].清华大学学报.1999,39(3):111-114
    [45]J.R. Fan, X.D. Zha, P. Sun, K.F. Cen. Simulation of ash deposit in a pulverized coal-fired boiler [J]. Fuel,2001,80(5):645-654
    [46]徐明厚,郑楚光.煤灰沉积的传热过程模型及其数值研究[J].工程热物理学报.2002,23(1):115-118
    [47]屈强.气流床气化炉内熔渣流动及炉体导热过程研究[D].华东理工大学.2003
    [48]袁宏宇,瞿海根,任海平,王辅臣,于遵宏.气流床气化炉熔渣沉积模拟实验研究[J].华东理工大学学报(自然科学版).2005,31(3):393-397
    [49]段合龙.气流床水冷壁气化炉熔渣沉积试验研究及炉壁温度分布和热应力数值计算[D].华东理工大学.2007
    [50]贡文政,段合龙,梁钦锋,刘海峰,于遵宏.气流床气化炉水冷壁结渣特性的实验研究[J].煤炭转化.2006,29(4):21-24,28
    [51]徐赢,林伟宁,梁钦锋,刘海峰,于遵宏.水冷壁气化炉熔渣表面形态的几何特性[J].化工学报.2007,58(12):3122-3127
    [52]褚武扬.材料科学中的分形[M].北京:化学工业出版社.2004
    [53]Ramer E R, Martello D V. In Applications of Advanced Technology to Ash-Related Problems in Boilers; Baxter L L, DeSollar R, Eds; Plenum Press:New York,1996
    [54]Shuntaro Koyama, Tadaoki Morimoto, Akio Ueda, et al. A microscopic study of ash deposits in a two-stage entrained-bed coal gasifier [J]. Fuel.1996,75(4):459-465
    [55]Huafeng Wang, Janice West, John N. Harb. Microanalytical Characterization of Slagging Deposits from a Pilot-Scale Combustor [J]. Energy Fuels.1999,13(3): 570-578
    [56]Soon C. Kweon, Everett Ramer, Allen L. Robinson. Measurement and Simulation of Ash Deposit Microstructure [J]. Energy Fuels.2003,17(5):1311-1323
    [57]T. F. Wall, S. P. Bhattacharya, L. L. Baxter, G. Richards, J. N. Harb. The character of ash deposits and the thermal performance of furnaces [J]. Fuel Processing Technology. 1995,44(1-3):143-153
    [58]Mulcahy MFR, BoowJ, Goard PRC. Fireside deposits and their effect on heat transfer in a pulverized fuel boiler. PartⅠ. The radiant emittance and effective thermal conductance of the deposits [J]. J Inst Fuel.1966,39:385-394
    [59]BoowJ, Goard PRC. Fireside deposits and their effect on heat transfer in pulverized fuel boilers—Part Ⅲ [J]. J Inst Fuel.1969,42:412
    [60]Nowok JW, Steadman EN. Thermal conductivity of coal ashes and slags [C]. In: Johnson RA, Jain SG, editors. Proceeding of the 12th Gasication and Gas Stream Cleanup Systems Contractors Review Meeting. WV, USA, September 1992,154-164
    [61]H.R. Rezaei, R.P. Gupta, G.W. Bryant, et al. Thermal conductivity of coal ash and slags and models used [J]. Fuel.2000,79:1697-1710
    [62]Raask E. Mineral impurities in coal combustion [M]. Washington, DC:Hemisphere Publishing Corporation,1985
    [63]Nasr K, Viskanta R, Ramadhyani S. An experimental evaluation of the effective thermal conductivities of packed beds at high temperatures [J]. Heat Transfer.1994,116: 829-837
    [64]Gupta R P, Wall T F, Baxter L L. The thermal conductivity of ash deposits [M]. New Plenum Publishers,1999
    [65]Ana Zbogar, Flemming J. Frandsen, Peter Arendt Jensen, Peter Glarborg. Heat transfer in ash deposits:A modeling tool-box [J]. Progress in Energy and Combustion Science. 2005,31(5-6):371-421
    [66]Bird RB, Stewart WE, Lightfoot EN. Transport phenomena [M]. New York:Wiley, 2002
    [67]Nimick F B, Leith J R. A model for thermal conductivity of granular porous media [J]. Heat Transfer.1992,114(2):505-508
    [68]Leach AG. The thermal conductivity of foams. Ⅰ:models for heat conduction [J]. J. Phys. D:Appl. Phys.1993,26(5):733-739
    [69]李景湧.有限元法[M].北京:北京邮电大学出版社.1999
    [70]余艳芝,唐必光,刘勇等.低倍率锅炉膜式水冷壁温度分布的暂态分析[J].武汉水力电力大学学报.1999,32(2):51-54
    [71]李玉,陈良玉,刘作军.高炉铸铁冷却壁的传热及热应力分析[J].机械设计与制造.2008,6:96-98
    [72]Anusorn Chinsuwan, Animesh Dutta. An investigation of the heat transfer behavior of longitudinal finned membrane water wall tubes in circulating fluidized bed boilers [J]. Powder Technology.2009,193(2):187-194
    [73]屈强,刘海峰,于广锁,于遵宏.气化炉炉体关键部位温度分布研究[J].煤炭转化.2003,26(1):53-56
    [74]屈强,瞿海根,于广锁,于遵宏.气流床气化炉托砖架温度分布研究[J].煤炭转化.2003,26(2):39-42
    [75]占旺兵,水冷壁气流床气化炉熔渣特性研究及气化炉-辐射废锅接口传热分析[D].华东理工大学.2009
    [76]段合龙,贡文政,梁钦锋,刘海峰,王辅臣,于遵宏.水冷壁气化炉温度分布及影响因素分析[J].化学工程.2007,35(8):17-21
    [77]周俊虎,杨卫娟,刘建忠,周志军,曹欣玉,岑可法.锅炉变负荷引起的水冷壁渣层热应力[J].化工学报.2003,54(12):1678-1682
    [78]Ana Zbogar, Flemming Frandsen, Peter Arendt Jensen, Peter Glarborg. Shedding of ash deposits [J]. Progress in Energy and Combustion Science.2009,35(1):31-56
    [79]Kaliazine A, Tran H, Cormack D E. The mechanisms of deposit removal in kraft recovery boilers [J]. Journal of pulp and paper Science.1999,25:418-424
    [80]Piroozmand F, Tran H, Kaliazine A, Cormack D. Strength of recovery boiler fireside deposits at high temperatures [J]. Tappi proceedings.1998,1:169-179
    [81]Wain SE, Livinston WR, Sanyal A, Williamson J. Thermal and mechanical properties of boiler slags of relevance to sootlowing. In Benson, SA, editor. Inorganic Transformations and Ash Deposition during Combustion [M]. Florida,1991,459-470
    [82]Hiroshi Sato, Higeyuki Aoki, Takatoshi Miura, John W. Patrick. Estimation of thermal stress in lump coke [J]. Fuel.1997,76(4):303-310
    [83]A. Gasser, P. Boisse, J. Rousseau, Y. Dutheillet. Thermomechanical behavior analysis and simulation of steel/refractory composite linings [J]. Composites Science and Technology.2001,61:2095-2100
    [84]严春风.类混凝土脆性材料断裂力学研究与探索[M].四川:四川科学技术出版社.2005
    [85]缪正清,徐通模.集箱与并联管屏系统单相流体的流动特性[J].上海交通大学学报,2000,34(9):1206-1210
    [86]张彦军,姜孝国.超临界CFB锅炉炉内流场数值模拟[J].热力发电.2009,38(7):32-35
    [87]张彦军,杨冬,于辉,陈听宽,高翔,骆仲泱.600MW超临界循环流化床锅炉水冷壁的选型及水动力研究[J].动力工程.2008,28(3):339-344
    [88]李燕,李文凯,张建胜,岳光溪,吕俊复.气流床气化炉水冷壁设计方案的水动力 分析[J].锅炉技术.2008,39(4):29-36
    [89]M.A. Habib, R. Ben-Mansour, S.A.M. Said, et al. Evaluation of flow maldistribution in air-cooled heat exchangers [J]. Computers & Fluids.2007,31(11):1389-1406
    [90]Chandraker D K, Maheshwari N K, Saha D, Raj V V. Experimental and analytical investigations on core flow distribution and pressure distribution in the outlet header of a PHWR [J]. Experimental Thermal and Fluid Science.2002,27(1):11-24
    [91]Imteyaz Ahmad, Kwang Yong Kim, Won Jae Lee, Goon Cherl Park. Numerical study on flow field in inlet plenum of a pebble-bed modular reactor [J]. Nuclear Engineering and Design.2007,237(6):565-574
    [92]汤国华,杨俊和,张琢,郑金标.一种定量分析多孔材料孔隙结构的新方法[J].煤炭转化.2004,27(1):71-75
    [93]许述剑,翁永基.图像灰度与腐蚀特征的相关性研究[J].中国腐蚀与防护学报.2006,26(6):321-324
    [94]Marci Giuseppe, Augugliaro Vincenzo, et al. Preparation characterization and photocatalytic activity of polycrystalline ZnO/TiO2 systems.1. Surface and bulk characterization [J]. Journal of Physical Chemistry B.2001,105(5):1026-1032
    [95]Wilcox D, Dove B, McDavid D. Image tool. San Antonio:The University of Texas Health Science Centre,1995
    [96]Drzazga Wlodzimierz, Paluszynski Jaroslaw, Slowko Witold. Three-dimensional characterization of microstructures in a SEM [J]. Measurement Science and Technology. 2006,17(1):28-31
    [97]Abramoff, M.D., Magelhaes, P.J., Ram, S.J. Image Processing with ImageJ [J]. Biophotonics International.2004,11(7):36-42
    [98]Hilliard JE. Measurement of volume in volume. In:DeHoff RT, Thines FN, editors. Quantitative microscopy [M]. New York:Me Graw Hill,1968
    [99]Mustafa Toparli, Faruk Sen, Osman Culha, Erdal Celik. Thermal stress analysis of HVOF sprayed WC-Co/NiAl multilayer coatings on stainless steel substrate using finite element methods [J]. Materials Processing Technology.2007,190:26-32
    [100]Rafael Barea, Manuel Belmonte, Maria Isabel Osendi, Pilar Miranzo. Thermal conductivity of AL2O3/SiC platelet composites [J]. Journal of the European Ceramic Society.2003,23:1773-1778
    [101]吴清仁,文璧璇.SiC材料导热系数和热膨胀系数与温度关系[J].华南理工大学学报(自然科学版).1996,24(3):11-15
    [102]Hongbing Liu, Jie Tao, Yoann Gautreau, Pingze Zhang, Jiang Xu. Simulation of thermal stresses in SiC-Al2O3 composite tritium penetration barrier by finite-element analysis [J]. Materials and Design.2009,30(8):2785-2790
    [103]《工业锅炉设计计算方法》编委会.工业锅炉设计计算方法[M].北京:中国标准出版社.2005
    [104]陆煜,程林.传热原理与分析[M].北京:科学出版社.1997
    [105]杨世铭,陶文铨.传热学[M].北京:高等教育出版社.1998
    [106]孔祥谦.有限单元法在传热学中的应用(第三版)[M].北京:科学出版社.1998
    [107]陈敏恒,丛德滋,方图南,齐鸣斋.化工原理(第二版)[M].北京:化学工业出版社.2000
    [108]戴干策,任德呈等.化学工程基础一流体流动、传热及传质[M].北京:中国石油化工出版社.1991
    [109]J. F. Nye. Physical Properties of Crystals:Their Representation by Tensors and Matrices [M]. Oxford:Clarendon Press,1985
    [110]ANSYS, Inc. Theory Reference. Swanson Analysis Systems, Inc,2004
    [111]TSAN-HSING SHIH, WILLIAM W. LIOU, AAMIR SHABBIR, et al. A new k-ε eddy-viscosity model for high Reynolds number turbulent flows [J]. Computers & Fluids.1995,24(3):227-238
    [112]陈学俊,陈听宽.锅炉原理(下册)[M].北京:中国机械出版社.1981,28-32

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700