NURBS曲面重构中的几何连续性问题
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文研究NURBS曲面重构中的几何连续性问题。在反向工程、CAD/CAM、计算机辅助几何设计(CAGD)和计算机图形学等领域,一个关键的问题是复杂曲面的重建,所使用的标准工具是NURBS曲面。由于世间物体表面复杂多样,用单片曲面很难精确描述其曲面形状,如果我们将其表面分解成相对较小的曲面片,并用NURBS曲面来拟合这些曲面片,就能比较容易的构造复杂物体的表面模型。物体的表面一般都具有一定的光滑性,因此拟合小曲面片的这些NURBS曲面之间就必须达到一定程度的光滑连接。由于几何连续与具体的参数选取无关,因此在理论研究和工程应用中被广泛采用。本文的目的是研究一些典型的NURBS曲面的几何连续条件,指出节点向量和曲面片的次数对几何连续性的影响。并针对任意拓扑的四边形剖分,给出了构造光滑NURBS曲面的方法,克服了采用所谓的简单共线法处理几何光滑连接的缺陷。
     节点向量是内部单节点的NURBS曲面是最简单也是最常用的,本文重点针对单节点的双四次、双五次和双k次B样条曲面及双三次NURBS曲面,运用节点插入技术和Bézier曲面的几何连续理论成果,导出了它们之间的几何光滑拼接条件,同时得到了公共边界曲线所必须满足的本征方程,其中本征方程是NURBS曲面所独有的现象。这些结果对我们改进工程中所使用的NURBS曲面模型有着重要的指导意义。
     用NURBS曲面分片逼近物体表面带来的问题就是要处理大量的控制顶点,特别是N面角附近的控制顶点更需要特别处理,因为曲面片之间的几何连续约束在角点处互相缠结。一般不采用整体求解所有角点附近的几何连续约束组成的方程组来调整角点附近的控制顶点,因为这样就丧失局部调整曲面形状的功能。通常都采用“局部”方法来处理角点附近的几何连续约束,即将约束涉及到的控制顶点从相邻曲面片中“剥离”出来,这样调整这些顶点只会影响角点附近的曲面形状。利用“局部格式”构造G~1光滑的曲面模型,一般有两种方式可供选择:一是加细原始剖分将连续性约束局部化以提供足够的自由度;二是根据连续性约束的传播性质适当提高曲面片的次数。本文论证了对剖分不作特殊要求时,内部单节点的B样条曲面要具备这种“局部”调整的特征,双五次是最低的要求。已有的曲面重构方法大多采用Bézier曲面工具,并且采取了加细原始剖分的方式。本文论述的“局部格式”调整方法不对剖分区域施加任何限制,主要采用内部具有二重节点的双四次B样条曲面和单节点的双五次B样条曲面做为拟合工具,给出了“局部”调整的方法,该方法能很好的保持拼接曲面的几何特征,克服了许多已有的重构方法仅采用简单共线法处理几何光滑性的弊端。采用内部具有二重结点的双四次B样条曲面做为拟合工具保证了单片曲面内部是二阶参数连续的,并且适当降低了曲面片的次数,基本上能够满足工程的需要。
This thesis studies the problems of geometric continuity in NURBS surfaces reconstruction. In the fields of Reserve Engineering, CAD/CAM, Computer Aided Geometric Design, Computer Graphics, etc., the key problems are the reconstruction of complicated surfaces and the standard tools are NURBS curves and surfaces. Objects often have complex surfaces, so that it is extremely difficult to represent them using a single patch. On the other hand, if one subdivide the surface into a large or small number of pieces, and represents each piece by a NURBS surface patch, one can model a complex surface more easily. The object's surface often possesses some particular continuities, so it is indispensable to be able to control the desired continuities between adjacent NURBS patches. Because geometric continuity is not relative to special parametrizations, it is applied in theoretical researches and engineer applications extensively. The aims of this thesis are researching some typical NURBS surfaces' geometric continuous conditions and pointing out the effects of knot vector and the degree of surface on geometric continuities. Moreover, this thesis offers the mothod of generate smooth NURBS surfaces over arbitrary quadragulation. This mothod overcomes the defects of adopting so called simple collinear continuous condition to deal with the problem of geometric continuity.
    NURBS surfaces with single interior knots are simple and used widely. The thesis main aims at biuquartic, biquintic, k x fc-degree B-spline surfaces and bicubic NURBS with single interior knots. One of the contributions is to apply knot refinement and the geometric continuous conditions of Bezier surfaces to deduce the geometric continuous constraints of NURBS patches and obtain the intrinsic equations of common boundary curves, where the intrinsic equations are the special phenomena of NURBS surfaces. These results are more useful to improve the smoothness of NURBS models.
    The main difficulty along with approximating to object's surface with multi-NURBS patches is that one must deal with more control points, especially the control points around the JV-patch corner because of the intertwining of the geometric continuous constraints along the boundaries converging on the corner. In general, it is not wise to solve the global complex system composed with the geometric continuous constraints around the corner in that it will lose the abilities to local control the object's shapes. This thesis induces a local scheme to the geometric continuous constraints around the corner, i.e., isolating the involved control points around the corner, so it will only effect the local shape by adjusting these points. Generally, there are two approaches for constructing a Gn(n > 1) smooth and local scheme. The one is to localize the propagation of continuity constraints by refining surfaces in order to obtain supplementary degrees of freedom, the other is to increase the degrees of surfaces as appropriate according to the propagation of continuity constraints. Another approach of this thesis is to demonstrate that the lowest degree is 5 in order to make the B-spline patches hold the property of local adjustment if no specific
    111
    
    
    
    Abstract
    restriction to the partition. Most existed surfaces reconstruction methods adopt Bezier tool and demand particular partition. The local scheme addressed in this thesis doesn't restrict the partitions of fitted surfaces, and the fitting tools is biquartic B-spline surfaces with double interior knots and biquintic B-spline surface with single interior knots. This thesis obtains a good local scheme which could overcome the defects arose by using simple collinear continuous condition and preserve fine geometric properties of adjacent patches. Using biquartic B-spline surfaces with double interior knots guarantees the patches are internally parametrically C2. This could fulfill the basic requirement in engineer fields.
引文
[1] R. E. Barhill, Surfaces in CAGD-a survey with new results. Computer Aided Geometric Design, 2 (1):1-17, 1985.
    [2] Farin, G. Curves and Surfaces for Computer Aided Geometric Design, 3rd ed. Academic Press, 1997.
    [3] G. Herron, Smooth closed surfaces with discrete triangular interpolators. Computer Aided Geometric Design, 2 (4): 297-306, 1985.
    [4] G. Moustakides, D. Briassoulis, E. Psarakis and E. Dimas, 3D image acquisition and NURBS based geometry modelling of natural objects. Advances in Engineering software, 31: 955-969, 2000.
    [5] G. M. Nielson, CAGD's Top Ten: What to Watch. IEEE Computer & Applications, 13(1):35-37, 1993.
    [6] Piegl, L. and Tiller, W. The NURBS Book. Springer, 1997, Second Edition.
    [7] 施法中,计算机辅助几何设计与非均匀有理B样条(CAGD&NURBS),北京:北京航空航天大学出版社,1994.
    [8] Bajaj, C., Bernardini, F., and Xu, G. Automatic reconstruction of surfaces and scalar fields from 3D scans. Computer Graphics (SIGGRAPH'95 Proceedings) (1995), 109-118.
    [9] Curless, B., and Levoy, M. A volumetric method for building complex models from range images. Computer Graphics (SIGGRAPH'96 Proceedings) (1996), 303-312.
    [10] Forsey, D., and Barrels, R. Surface fitting with hierarchical splines. ACM Transactions on Graphics 14, 2 (1995), 134-161.
    [11] Hoppe, H., DeRose, T., Duchamp, T., McDonald, J., and Stuetzle, W. Surface reconstruction from unrganized points. Computer Graphics (SIGGRAPH'92 Proceedings) 26, 2 (1992), 71-78.
    [12] Venkat Krishnamurthy. Fitting smooth surfaces to dense polygon meshes. Ph.d. thesis, Univ. of Standford.
    [13] Venkat Krishnamurthy and Marc Levoy. Fitting smooth surfaces to dense polygon meshes. Computer graphic(Proceedings of SIGGRAHP'96), 313-324, 1996.
    [14] J. P. Kruth and A. Kerstens, Reverse engineering modelling of free-from surfaces from point slouds subject to boundary conditions. Journal of Meterials processing Technology, 76: 120-127, 1998.
    [15] Milory, M., Bradley, C., Vickers, G. and Weir, D. G~1 continuity of B-spline surface patches in reverse engineering. CAD 27(1995), 471-478.
    [16] I. K. Park I. D. Yun and S. U. Lee, Automatic 3-D model synthesis from measured range data. IEEE Transzctions on circuits and System for Video Technology, 10(2): 293-301, 2000.
    [17] B. Sarkar and C-H Menq, Smooth-surface approximation and reverse engineering, Computer-Aided Design, 23(9):623-628,1991.
    
    
    [18] D. Volpin, A. Sheffer, M. Bercovier and L. Joskowicz, Mesh simplification with smooth surface reconstruction. Computer-Aided Design, 30(11): 875-882, 1998.
    [19] Toms Vrady, Ralp R. Martin and Jordan Cox. Reverse engineering of geometric models-an introduction, Computer-Aided Design, 29(4):255-268, 1997.
    [20] S. Campagna, L. Kobbelt, and H. -P. Seidel. Efficient decimation of complex triangle meshes. Technical Report 3, Universitt Erlangen-Nürnberg, 1998.
    [21] A. Certain, J. Popovié, T. DeRose, T. Duchamp, D. Salesin, and W. Stuetzle. Interactive multiresolution surface viewing. In ACM Comp. Graph. (SIGGRAPH '96 Proc.), 91-98, 1996.
    [22] H. Hoppe. Progressive meshes. In ACM Comp. Graph. (SIGGRAPH '96 Proc.), 99-108, 1996.
    [23] W. Schreder, J. Zarge, and W. Lorensen. Decimation of triangle meshes. In ACM Comp. Graph. (SIGGRAPH '92 Proc.), 65-70, 1992.
    [24] A. D. Kavin, R. H. Taylor. Superfaces: Polygonal mesh simplification with bounded error, IEEE Computer Graphics and Applications, 5:64-77, 1996.
    [25] Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., and Stuetzle, W. Multiresolution analysis of arbitrary meshes. Computer Graphics (SIGGRAPH'95 Proceedings) (1995), 173-182.
    [26] B. A. Barsky and T. D. DeRose, Geometric continuity of parametric curves: Three equivalent characterizations. IEEE Computer Graphics and Applications, 11:60-68,1989.
    [27] W. Boehm. Curvature continuous curves and surfaces. Computer-Aided Design, 18(2):105-106,1986.
    [28] W. Boehm. Smooth curves and surfaces. In G. Farin, editor, Geometric Modeling: Algorithms and New Trends, 175-184. SIAM, Philadelphia, 1987.
    [29] W. Boehm. On the definition of geometric continuity. Computer-Aided Design, 20(7): 370-372, 1988. Letter to the Editor.
    [30] W. Boehm. Visual continuity. Computer-Aided Design, 20(6):307-311, 1988.
    [31] Wendelin L. F. Degen, Explicit continuity conditions for adjacent Bézier surface patches. Computer Aided Geometric Design, 7(1-4): 181-189,1990.
    [32] DeRose, T. Necessary and sufficient conditions for tangent plane continuity of Bézier surfaces. Computer Aided Geometric Design, 1990, 7(1-4): 165-180.
    [33] Farin, G. A construction for the visual C~1 continuity of polynomial surface patches. Computer Graphics and Image Processing, 1982, 20: 272-282.
    [34] G. Herron, Techniques for visually continuity. In G. Farin (ed.), Geometric Modeling: Algorithms and New Trends, Philadelphia: SIAM, 1987: 163-174.
    [35] M. E. Hohmeyer and B. A. Barsky, Rational continuity: Parametric, Geometric and Frenet Frame continuity of rational curves. ACM Transactions on Graphics, 8(4): 335-359, 1989.
    [36] Liu, D. and Hoschek, J. GC~1 continuity conditions between adjacent rectangular and triangular Bézier surface Patches. Computer-Aided Design, 1989, 21: 194-200.
    [37] Liu, D. GC~1 continuity conditions between adjacent rational Bézier surface Patches. Computer Aided Geometric Design 1990,7(1-4), 151-163.
    [38] Piper, B. Visually smooth interpolation with triangular Bézier patches. In G. Farin (ed.), Geometric Modeling: Algorithms and New Trends, Philadelphia:SIAM, 1987: 221-233.
    [39] M. Watkins. Problems in geometric continuity. Computer-Aided Design, 20:499-502, 1988.
    [40] Xiuzi Ye, Youdong Liang and Horst Nowachi, Geometric continuity between adjacent Bézier patches
    
    and their constructions. Computer Aided Geometric Design, 13: 521-548, 1996.
    [41] J. Kahmann. Continuity of curvature between adjancent Bézier patches, In R. E. Barnhill, W. Boehm eds., Surface in CAGD, Amesterdam: North-Holland, 65-75, 1983.
    [42] 梁友栋,曲线曲面几何连续性问题,数学年刊11:A辑,1990,274-286.
    [43] 施锡泉,赵岩.双三次B样条的G~1连续条件.计算机辅助设计与图形学报,接收待发表.
    [44] 周西军,杨海成.NURBS曲面G~1光滑拼接算法.计算机辅助设计与图形学报,8 (3):227-233,1996.
    [45] E. Beeker, Smoothing of shapes designed with free-form surfaces. Computer-Aided Design, 18(4): 224-232, 1986.
    [46] Wen-Hui Du and Francis J M Schmitt. On the G~1 continuity of piecewise Bézier surface: a review with new results. Computer-Aided Design, 1990, 22(9): 556-573.
    [47] J. M. Hahn. Geometric continuous patch complexes. Computer Aided Geometric Design, 6:55-67, 1989.
    [48] A. K. Jones, Nonrectangular surface patches with curvature continuity. Computer-Aided Design, 20(6): 325-335, 1988.
    [49] K. Hllig and H. Mgerle, G-splines. Computer Aided Geometric Design, 7: 197-207, 1990.
    [50] S. L. Lee and A. A. Majid, Closed smooth bicubic surfaces. ACM Transactions on Graphics,10(4), 342-365, 1991.
    [51] S. L. Lee, H. H. Tan and A. A. Majid, Smooth piecewise biquartic surfaces from quadrilateral control polyhedra with isolated n-sided faces. Computer-Aided Design, 27(10): 741-758, 1995.
    [52] H. Li and S-Q Liu, Local interpolation of curvature continuous surfaces, Computer-Aided Design, 24(9): 491-503, 1992.
    [53] Y. Liang, X. Ye and X. Fang, G~1 smoothing solid objects by bicubic Bézier patches, in: D. A. Duce and P. Jancene, eds., Eurographics'88, North-Holland, Amsterdam, 343-355, 1988.
    [54] Li-Zhuang Ma and Qun-Sheng Peng. Modeling of smooth closed surfaces with Bézier patches. Progress in Natural Science, 1993, 3(3): 253-269.
    [55] L. Ma and Q. Peng. Smoothing of free-form surfaces with Bézier patches. Computer Aided Geometric Design, 1995, 12: 231-249.
    [56] Moreton, H. and Séquin, C. Functional optimization for fair surface design. Computer Graphics 26, 3(July 1992), 167-176.
    [57] Jrg Peters. Local smooth surface interpolation: A classification, Computer Aided Geometric Design, 7: 191-195, 1990.
    [58] Jrg Peters, Smooth interpolation of a mesh of curves. Constr. Approx., 7: 221-246,1991.
    [59] Jrg Peters. Constructing C~1 surface of arbitrary topology using biquadratic and bicubic splines, In Designing Fair Curves and Surfaces, N. Sapidis, ed., SIAM, 277-293, 1994.
    [60] Jrg Peters. C~1-surface spline, SIAM J. Numer. Anal., 32(2): 645-666, 1995.
    [61] Jrg Peters. Biquartic C~1-surface splines over irregular meshes, Computer Aided Design, 27(12): 895-903, 1995.
    [62] U. Reif, Biquadratic G-spline surfaces, Computer Aided Geometric Design, 12: 193-205, 1995.
    [63] U. Reif, TURBS-Topologically Unrestricted Rational B-splines. Contr. Approx., 8(4):57-77,1998.
    [64] Sarraga, R. F. G~1 interpolation of generally unrestricted bicubic Bézier curves. Computer Aided Geometric Design, 4:23-29,1987.
    [65] L. Shirman and C. Sequin, Local surface interpolation with Bézier patches, Computer Aided Geo-
    
    metric Design, 4: 279-295, 1987.
    [66] L. Shirman and C. Séquin. Local surface interpolation with Bézier patches: errata and improvements, Computer Aided Geometric Design, 8(3):217-222, 1991.
    [67] G. Westgaard and H. Nowacki. Construction of fair surfaces over irregular meshes, Solid Modeling'01, 2001.
    [68] J. van Wijk. Bicubic patches for approximating non-rectangular cortrol-point meshes, Computer Aided Geometric Design, 3:1-13,1986.
    [69] Xiuzi Ye and Horst Nowachi, Ensuring compatibility of G~2-continuous surface patches around a nodepoint. Computer Aided Geometric Design, 13:931-949, 1996.
    [70] Rainer Zeifang, Local bases of G~2 continuous G-splines. Computer Aided Geometric Design, 16:1-20:1999.
    [71] Jrg Peters. Joining smooth patches around a vertex to form a C~k surface, Computer Aided Geometric Design, 9:387-411,1992.
    [72] 黄正东,王启付,周济,余俊.构造G~1曲面的变分优化方法.计算机辅助设计与图形学报,8(5):352-360,1996.
    [73] Matthias Eck and Hugues Hoppe. Automatic reconstruction of B-spline surfaces of arbitrary topological type. Computer graphic(Proceedings of SIGGRAHP'96), 325-334,1996.
    [74] Jrg Peters. Patching Catmull-Clark meshes, In Computer Graphics (Proceedings of SIGGRAPH'2000), 255-258, 2000.
    [75] Rogers, D., and Fog, N. Constrained B-spline curve and surface fitting. CAD 21 (1989), 641-648.
    [76] Xiquan Shi and Tianjun Wang, G~1 continuous conditions of bicubic B-spline surfaces with interior double knots, Raindrop Geomagic Research Report, September 1999; also appeared in NSF SBIR Phase Ⅱ Project "Automation Creation of NURBS Pathces From Triangulated Surface" (Award 9901627), Report 4 (Appendix 2), August 2001.
    [77] Shi, X. and Wang, T. Reconstruction of Convergent G~1 Smooth B-spline surfaces, manuscript.
    [78] Shingo Takeuchi, Takashi Kanai, Hiromasa Suzuki, Kenji Shimada and Fumihiko Kimura, Subdivision surface fitting with QEM-based mesh simplification and reconstruction of approximated B-splines surfaces. Pacific Graphics2000:202-212,2000.
    [79] G. Greiner and K. Hormann. Interpolating and approximating scattered 3D data with hierarchical tensor product B-splines. In A. Mhaut, C. Réabuté, and L. L. Schumaker, editors, Surface Fitting and Multiresolution Methods, 163-172. Vanderbilt University Press, 1997.
    [80] Seungyong Lee, G. Wolberg and Sung Yong Shin. Scattered data interpolation with multilevel B-spline. IEEE Trans. on Visualization and Computer Graphics. 3(3):228-244, 1997.
    [81] 崔汉锋,马维垠,林奕鸿,周济.多个曲面拓扑模型及光滑重建方法的研究.计算机辅助设计与图形学报,12 (10):740-745,2000.
    [82] 宁涛,经玲,关志东,唐荣锡.优化技术在B样条拼接中的应用.计算机辅助设计与图形学报,9(2):136-142,1997.
    [83] 周蕴时,梁学章.数值逼近,吉林:吉林大学出版社,1992,109-117.
    [84] E. Cohere T. Lyche, L. L. Schumarker. Degree raising for splines, Journal of Approximation Theory, 46:170-181,1986.
    [85] L. A. Piegl, W. Tiller, Software-engineering approach to degree elevation of B-spline curves, Computer-Aided Design, 26(1):17-28,1994.
    
    
    [86] H. Prautzsch, B. Piper, A fast algorithm to raise the degree of spline curves, Computer Aided Geometric Design, 8:253-265,1991.
    [87] 秦开怀.B样条曲线升阶的矩阵方法,中国科学(E辑),26(60):558-566,1996.
    [88] Cohen, E., Lyche, T. and Riesenfeld, R. Discrete B-spline and subdivision techniques in computer-aided geometric design and computer graphics. Computer Graphics and Image Processing, 1980,14:87-111.
    [89] D. Terzopoulos and Hong Qin, Dynamic NURBS with geometric contraints for interactive sculpting. ACM Transactions on Graphics, 13(2):103-136,1994.
    [90] L. A. Piegl, W. Tiller. Computing the derivative of NURBS with respect to a knot, Computer Aided Geometric Design, 15:925-934,1998.
    [91] G. Farin. From conics to NURBS: a tutorial and survey, IEEE Computer Graphics and Applica-tions, 9:78-86, 1992.
    [92] Ma, W., and Kruth, J. Parametrization of randomly measured points for least squares fitting of B-spline curves and surfaces. CAD 27 (1995), 663-675.
    [93] Piegl, L. and Tiller, W. Parametrization for surface fitting in reversing engineering. Computer-Aided Design, 33:593-603,2001.
    [94] C. Bennis, J.-M. Vézien, and G. Iglésias. Piecewise surface flattening for non-distorted texture mapping. In ACM Comp. Graph. (SIGGRAPH '91 Proc.), 237-246, 1991.
    [95] S. Campagna and H. -P. Seidel. Parameterizing meshes with arbitrary topology. In H. Niemann, H. -P. Seidel, and B. Girod, editors, Image and Multidimensional Digital Signal Processing '98, 287-290. infix, 1998.
    [96] M. S. Floater. Parameterization and smooth approximation of surface triangulations. CAGD, 14:231-250, 1997.
    [97] K. Hormann and G. Greiner. MIPS: an efficient global parametrization method. Technical Report 27, Universitt Erlangen-Nürnberg, 1998.
    [98] A. W. F. Lee, W. Sweldens, P. Schrder, L. Cowsar, and D. Dobkin. MAPS: Multiresolution adaptive parameterization of surfaces. In ACM Comp. Graph. (SIGGRAPH '98 Proc.), 95-104,1998.
    [99] J. Maillot, H. Yahia, and A. Verroust. Interactive texture mapping. In ACM Comp. Graph. (SIG-GRAPH '93 Proc.), 27-34, 1993.
    [100] U. Pinkall and K. Polthier. Computing discrete minimal surfaces and their conjugates. Experimental Mathematics, 2(1):15-36, 1993.
    [101] M. S. Floater. Meshless parameterization and B-spline surface approximation, in The Mathematics of Surfaces IX, R. Cipolla and R. Martin (eds.), Springer-Verlag (2000), 1-18.
    [102] M. S. Floater, M. Reimers. Meshless parameterization and surface reconstruction, Computer Aided Geometric Design, 18:77-92. 2001.
    [103] K. Hormann, G. Greiner. Quadrilateral Remeshing, in B. Girod. G. Greiner, H. Niemann and H.-P. Seidel (eds.), Vision. Modeling. and Visualization 2000. infix. 2000.
    [104] Weiyin Ma and Peiren He. B-spline surface local updating with unorgnized points. Computer-Aided Design. 30(11):853-862,1998.
    [105] Piegl, L. and Tiller, W. Modifying the shape of rational B-splines. Part1: Curves. Computer-Aided Design. 21(8):509-518,1989.
    
    
    [106] Piegl, L. and Tiller, W. Modifying the shape of rational B-splines. Part1: surfaces. Computer-Aided Design, 21(9):538-546,1989
    [107] Calming Zhang and Fuhua(Frank) Cheng, Removing local irregularities of NURBS surfaces by modifying highlight lines, Computer-Aided Design, 30(12):923-930,1998.
    [108] E. Catmull and J. Clark. Recursively generated B-spline surfaces on arbitrary topological meshes. Computer Aided Design, 10:350-355, 1978.
    [109] Doo, D., and Sabin, M. Behavior of recursive division surfaces near extraordinary points. Computer-Aided Design, 10, 6(September 1978), 356-360.
    [110] M. Halstead, M. Kass and Tony DeRose. Efficient, fair interpolation using Catmull-Clark surfaces. Computer Graphics (SIGGRAPH'93 Proceedings) (1993), 35-44.
    [111] Jos Stam. On subdivision schemes generalizing uniform B-spline surfaces of arbitrary degree, Computer Aided Geometric Design, 18:383-396,2001.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700