微生物燃料电池的功能拓展和机理解析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
微生物燃料电池(MFC)利用微生物作为反应主体,将燃料的化学能直接转化为电能。MFC在处理废水的同时能够利用微生物进行发电,是一种具有良好前景的环境污染控制与清洁能源生产的新技术。本课题以MFC为研究对象,集成应用电化学、分析化学以及微生物学的多种方法和手段,深入探索了电活性微生物的产电机制及在电化学诱导下的催化行为,系统研究了MFC在硫化物去除以及强化废水生物制氢方面的应用。主要研究内容和研究结果如下:
     1、研究了短暂电场刺激对于启动阶段的混合菌群MFC性能的影响。结果表明,短暂电场刺激可以通过作用于阳极电活性微生物而影响MFC的电池性能。+1 V的正电场可以加速MFC的启动,石英晶体微天平实验证实该电场下微生物通过电泳机制加速在电极上的吸附,且正电场下微生物可以得到较高的代谢能量:-1 V和-5 V的负电场可以使MFC具有较好的产电性能,这是由于负电场可以增强电活性微生物膜的氧化还原能力,同时负电势也有利于厌氧细菌的生长。较高的电场刺激延缓甚至破坏MFC的启动,这是因为高电场强度下由于电空穴效应使细菌死亡所致。短暂的电场刺激可以作为电活性微生物富集驯化的辅助强化手段。
     2、构建以硫化物为基质的MFC,通过间歇实验研究了硫化物在MFC中的氧化过程。通过对硫氧化产物的分析以及功能微生物菌群的鉴定,阐明了硫化物在MFC中的氧化途径以及微生物的催化作用。结果表明,在微生物催化下MFC获得较高的持续电流;MFC中由S(-Ⅱ)经过S(0)向S(+Ⅵ)的转化可以通过电化学反应完成,而微生物的参与可以加速该过程;依靠单一的电化学机制,硫首先氧化成为单质硫和多硫化物,接着进一步氧化成为硫代硫酸盐和连四硫酸盐;在反应的初始阶段,微生物可以催化硫化物向单质硫的氧化,并使MFC具有较高的电流;MFC中微生物的催化作用主要表现在催化单质硫向硫代硫酸盐和硫酸盐的转化,而这也是MFC具有较长持续电流的主要原因:硫酸盐的生成是微生物催化作用的特殊标志;在MFC的阳极检测到硫氧化细菌和硫酸盐还原细菌,这两类细菌在还原硫的生物催化氧化方面扮演着重要角色。
     对于MFC阳极电极上和沉积物中的微生物菌群构建了16S rRNA基因克挛目狻Mü治龊捅冉掀湎妇郝浣峁沟淖槌汕榭?进一步揭示了MFC阳极细菌的多样性以及阳极反应的复杂性。研究结果表明,这两个位置的微生物具有相似性,但也有很大的不同;硫氧化细菌主要存在于电极上,而大部分硫酸盐还原细菌则在沉积物中;沉积物中的微生物多样性高于电极,表明沉积物中发生的反应比电极上发生的反应复杂:除了硫氧化细菌和硫酸盐还原细菌这两类硫功能微生物,MFC阳极室也存在很多其它种类的微生物,这些微生物与硫功能微生物相互协作,共同完成MFC中硫的氧化以及相关的产电过程。
     3、构建了微生物电解池-微生物燃料电池(MEC-MFC)产氢耦合系统,并实现了以乙酸和丙酸为基质的生物产氢。与传统的MEC相比,MEC-MFC耦合系统具有以下优势:1)由于MEC的辅助能量来源由MFC提供,产氢所需要的能量完全由MEC和MFC中的基质提供,降低了辅助能源的成本;2)对MFC而言,其电能输出后被直接利用辅助产氢,因而节省了电能的储存装置,并减少了相应的能量损失。对MEC和MFC之间的相互关系进行了研究,证实耦合系统中MEC和MFC两个电池的4个电极反应相互影响,系统的产氢效率受控于效率最低的电极反应。而高效的产氢系统要求4个电极反应均以较高的效率进行。
     通过改变负载电阻以及电助MFC的数目实现了耦合系统产氢效率的调控。结果表明,不同的负载电阻可以改变MEC的输入功率从而影响其产氢效率;系统的氢气产生速率和氢气转化率均随着负载电阻的升高而下降,这是由于高的负载电阻分担较多的MFC的功率输出;通过采用多个串联MFC作为MEC的辅助电源可以提高氢气产生速率及MEC中底物转化为氢气的转化率,但是系统总体氢气转化率则随着MFC数目的增多而下降;由于MFC内阻的差异,并联MFC电池组无法提高系统的产氢效率;采用串联MFC电池组作为MEC辅助能源,可以有效地强化耦合体系的产氢。
     4、研究了MFC中S.oneidensis MR-1以葡萄糖为基质的电子传递以及能量代谢途径。首先采用高效液相色谱法(HPLC)和三维荧光光谱法(EEM)的测定,证实MR-1在生长过程中可以分泌核黄素类物质至细胞外;通过对野生型及细胞色素c类基因缺失型菌株产电能力以及分泌核黄素能力的比较,确定核黄素无法直接进入细胞内得到电子并将其携带至胞外,而只是在附着态微生物和电极之间起到辅助电子传递的作用;细胞膜上由cymA、mtrA和mtrB调控的酶系是电子由细胞内向胞外传递所必须的。
     通过对MFC中葡萄糖代谢产物及变化趋势的分析,并结合S.oneidensisMR-1相关基因组学的研究结果,解析了葡萄糖在MFC中的代谢途径。S.oneidensis MR-1在MFC中通过ED厌氧途径代谢成为丙酮酸,并进一步厌氧代谢生成甲酸、乙醇、乙酸、丙酸和丁酸,其中丙酮酸、甲酸和丁酸可以被进一步用于产电;S.oneidensis MR-1的产电过程是非生长相关型的,在前期葡萄糖快速被消耗其能量主要用于菌体生长,而电流则是细菌在进一步利用葡萄糖的代谢产物甲酸和丁酸过程中产生的。
Microbial fuel cell(MFC) is an electrochemical cell that directly captures the energy contained in bio-convertible substrates in the form of electricity.It has attracted increasing interests to employ MFCs to produce "green" energy from wastes. In an MFC,the microorganisms that completely oxidize organic compounds with an electrode as the sole electron acceptor are so-called exoelectrogens.The exoelectrogens play a key role in the anode oxidation by facilitating electron transfer between the electron donor and the electrode.In this thesis,the electron transfer mechanisms,substrate metabolism and exoelectrogens behavior in MFCs were investigated.Also,the functions of MFCs were further extended for their utilization in sulfide removal and biohydrogen production.
     In chapter 2,the influence of a transient external electric field on the performance of an MFC inoculated with mixed cultures was investigated.Different positive and negative electric fields were applied to a set of anodes.During the start-up period,the MFCs imposed by the electric fields of +1 V,-1 V,and -5 V obtained higher current densities than the control.The MFC exposed to the electric field of +1 V had the highest maximum power density of 73.5 mW m~(-2) after 96-hr operation.On the other hand,the electric fields of +5 and +10 V delayed and even destroyed the MFC start-up.The electric field of-10 V initially induced a higher power output,but later had a detrimental effect on the MFC performance.An electrochemical quartz crystal microbalance test demonstrates that the electrophoresis was involved in the attachment/detachment of exoelectrogens on the electrode during the electric field application period.Furthermore,the application of negative electric field was proven to enhance the catalytic activity of the exoelectrogens,which was partially responsible for its influence on the MFC performance.
     In chapter 3,the sulfide oxidation process in MFCs was explored through identifying the sulfur species evolution and microbial communities.The results demonstrate that both electrochemical reactions and microbial catalysis were involved in such a complex sulfide oxidation process in the MFC anode.The microbe-assisted sulfide oxidation generated a higher persistent current density than the sulfide oxidation via single electrochemical reactions only.Three valence states of S(-Ⅱ),S (0) and S(+Ⅵ) were discovered from the sulfide oxidation,and S_0,S_x~(2-),S_4O_6~(2-), S_2O_3~(2-),and SO_4~(2-) were detected as the intermediates.The sulfur-oxidizing bacteria and sulfate-reducing bacteria were found in the MFC anode.Based on the sulfur speciation and microbial community analysis,the sulfide oxidation pathways in the MFC were proposed.The oxidation of sulfide to S_0/S_x~(2-) and further to S_4O_6~(2-)/S_2O_3~(2-) occurred spontaneously as electrochemical reactions,and electricity was generated. The formation of S_0/S_x~(2-) and S_2O_3~(2-) was accelerated by the bacteria in the MFC anode, and SO_4~(2-) was generated because of a microbial catalysis.The microbe-assisted production of S_2O_3~(2-) and SO_4~(2-) resulted in a persistent current from the MFC.
     Molecular biological techniques were applied to analyze and compare the microbial diversity on the electrode and in the sediment of the anode of the sulfide-fed MFC.The microbial community in the sediment exhibited higher diversity than that on the electrode.The population on the electrode consisted mainly ofα-Proteobacteria,β-Proteobacteria,γ-Proteobacteria and Firmicutes.In addition to four phyla above,δ-Proteobacteria,Firmicutes and Gemmatimonadetes were also found in the sediment.The sulfur-oxidizing bacteria were in much more abundance on the electrode than in the sediment.On the contrary,the sulfate-reducing bacteria preferably grew in the sediments.Besides the sulfur-related bacteria,Acinebobacter sp.was found to be rich in the MFC anode.The exoelectrogens-containing species Pseudomonas sp.,Clostridium sp and Ochrobactrum sp.were found both on the electrode and in the sediments.The microbial diversity in the MFC anode further reveals the complexity of the anodic reactions in the sulfide-fed MFC.There might be a syntrophic association among the various bacteria in the MFC anode.
     In Chapter 4,an MEC-MFC-coupled system was constructed for biohydrogen production,in which hydrogen was produced in an MEC and the extra power was supplied by an MFC.This MEC-MFC-coupled system has a potential for biohydrogen production from wastes,and provides an effective way for in situ utilization of the power generated from MFCs.In this coupled system,hydrogen was successfully produced from acetate and propionate without external electric power supply.The performance of the MEC and the MFC was influenced by each other.A stable system requires the high efficiencies of four half-reactions in both MEC and MFC,and that any reaction at a low efficiency will have a negative effect on the overall system performance.
     It was demonstrated that the hydrogen production in such an MEC-MFC-coupled system could be manipulated through adjusting the power input on the MEC.The power input of the MEC was regulated by applying different loading resistors connected into the circuit in series.All circuit current,volumetric hydrogen production rate,hydrogen recovery,Coulombic efficiency,and hydrogen yield decreased with the increase in loading resistance.Thereafter,in order to add power supply for hydrogen production in the MEC,additional one or two MFCs were introduced into this coupled system.When the MFCs were connected in series,the hydrogen production was significantly enhanced.In comparison,the parallel connection slightly reduced the hydrogen production.Connecting several MFCs in series was able to effectively increase power supply for hydrogen production,and had a potential to be used as a strategy to enhance hydrogen production in the MEC-MFC-coupled system from wastes.
     In chapter 5,experiments were conducted to elucidate the electron transfer mechanisms and glucose metabolism of Shewanella oneidensis MR-1 in an MFC.The results show that the S.oneidensis MR-1 secreted flavins into the culture as electron shuttles.The flavins were also secreted in the absence of the anode electrode, implying that they were not deliberately produced for electron transfer.A omcA/mtrC-deficient mutant,which has a poor electricity-producing ability,was observed to secrete a similar level of flavins as the wide type.This suggests that the electron transfer by flavins was not the key mechanisms in the electricity production of MR-1.During the glucose metabolism of MR-1 in an MFC,formate,acetate, propionate,butyrate,pyruvate,and ethanol were identified as the main metabolic products.In this MFC,the glucose was initially metabolized to pyruvate via ED pathway,and then to formate,acetate,propionate,butyrate,and ethanol.The electricity was not produced directly from the glucose decomposition,but was generated from the metabolism of the intermediate products such as formate and butyrate.
引文
[1]肖波,周英彪,李建芬.生物质能循环经济技术,化学工业出版社,2005.
    [2]Choi,Y.;Kim,N.;Kim,S.;Jung,S.Dynamic behaviors ofredox mediators within the hydrophobic layers as an important factor for effective microbial fuel cell operation.Bull.Korean Chem.Soc.2003,24,437-440.
    [3]Habermann W.;Pommer,E.H.Biological fuel cells with sulphide storage capacity.Appl.Microbiol.Biotechnol.1991,35,128-133.
    [4]Vega,C.A.;Fernandez,I.Mediating effect of ferric chelate compounds in microbial fuel cells with Lactobacillus planetarium,Streptococcus lactis and Erwinia dissolvens.Bioelectrochem.Bioenerg.1987,17,217-222.
    [5]Roller,S.D.;Bennetto,H.P.;Delaney,G.M.;Mason,J.R.;Stirling,J.L.;Thurston,C.F.Electron-transfer coupling in microbial fuel cells:1.comparison of redox-mediator reduction rates and respiratory rates of bacteria.J.Chem.Technol.Biotechnol.1984,34,3-12.
    [6]McKinlay,J.B.;Zeikus,J.G.Extracellular iron reduction is mediated in part by meutral red and hydrogenase in Escherichia coll.Appl.Environ.Microbiol.2004,70,3467-3474.
    [7]Park,D.H.;Zeikus,J.G.Electricity generation in microbial fuel cells using mertral red as an electronophore.Appl.Environ.Microbiol.2000,66,1292-1297.
    [8]Tanaka,K.;Vega,C.A.;Tamamushi,R.612bis-thionine and ferric chelate compounds as coupled mediators in microbial fuel cells.Bioelectrochem.Bioenerg.1983,11,289-297.
    [9]Kim,H.J.;Park,H.S.;Hyun,M.S.;Chang,I.S.;Kim,M.;Kim,B.H.A mediator-less microbial fuel cell using a metal reducing bacterium,Shewanella prtrefaciens.Enzyme Microb.Tech.2002,30,145-152.
    [10]Kim,B.H.;Kim,H.J.;Hyun,M.S.;Park D.H.Direct electrode reaction of Fe(Ⅲ)-reducing bacterium,Shewanella putrefaciens.J.Microbiol.Biotechnol.1999,9,127-131.
    [11]Lovley,D.R.The microbe electric:conversion of organic matter to electricity.Curr.Opin.Biotech.2008,19,564-571.
    [12]Holmes,D.E.;Chaudhuri,S.K.;Nevin,K.P.;Mehta,T.;Methe,B.A.;Liu,A.;Ward,J.E.;Woodard,T.L.;Webster,J.;Lovley,D.R.Microarray and genetic analysis of electron transfer to electrodes in Geobacter suifurreducens.Environ.Microbiol.2006,8,1805-1815.
    [13]Kim,B.C.;Postier,B.L.;DiDonato,R.J.;Chaudhuri,S.K.;Nevin,K.P.;Lovley,D.R.Insights into genes involved in electricity generation in Geobacter sulfurreducens via whole genome microarray analysis of the OmcF-deficient mutant.Bioelectrochemistry 2008,73,70-75.
    [14]Holmes,D.E.;Mester,T.;O'Neil,R.A.;Larrahondo,M.J.;Adams,L.A.;Glaven,R.;Sharma,M.L.;Ward,J.A.;Nevin,K.P.;Lovley,D.R.Genes for two multicopper proteins required for Fe(Ⅲ) oxide reduction in Geobacter sulfurreducens have different expression patterns both in the subsurface and on energy-harvesting electrodes.Microbiology 2008,145,1422-1435.
    [15]Reguera,G.;McCarthy,K.D.;Mehta,T.;Nicoll,J.S.;Tuominen,M.T.;Lovley,D.R.Extracellular electron transfer via microbial nanowires.Nature,2005,435,1098-1101.
    [16]Gorby,Y.A.;Beveridge,T.J.Composition,reactivity,and regulation of extracellular metal-reducing structures(nanowires) produced by dissimilatory metal reducing bacteria,2005,Warrenton,VA.
    [17]Hernandez,M.E.;Newman,D.K.Extracellular electron transfer.Cell.Mol.Life Sci.2001,58,1562-1571.
    [18]Newman,D.K.How bacteria respire minerals.Science,2001,292,1312-1313
    [19]Newman,D.K.;Kolter,R.A role for eexcreted quinones in extracellular electron transfer.Nature,2000,405,94-97.
    [20]Rabaey,K.;Boon,N.;Hofte,M.;Verstraete,W.Microbial phenazine production enhances electron transfer in biofuel cells.Environ.Sci.Technol.2005,39,3401-3408.
    [21]Marsili,E.;Baron,D.B.;Shikhare,I.D.;Coursolle,D.;Gralnick,J.A.;Bond,D. R.Shewanella secretes flavins that mediate extracellular electron transfer.Proc.Natl.Acad.Sci.USA 2008,105,3968-3973.
    [22]von Canstein,H.;Ogawa,J.;Shimizu,S.;Lloyd,J,R.Secretion of flavins by Shewanella Species and their role in extracellular electron transfer.Appl.Environ.Microbiol.2008,74,615-623.
    [23]Park,H.S,;Kim,B.H.;Kim,H.S.;Kim,H.J.;Kim,G.T.;Kim,M.;Chang,I.S.;Park,Y.K.;Chang,H.I.A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell.Anaerobe 2001,7,297-306.
    [24]Bond,D.R.;Lovley,D.R.Electricity production by Geobacter sulfurreducens attacted to electrodes.Appl.Environ.Microbiol.2003,69,1548-1555.
    [25]Chaudhuri,S.K.;Lovley,D.R.Electricity generation by direct oxidation of glucose in mediator less microbial fuel cells.Nat.Biotechnol.2003,21,1229-1232.
    [26]Pham,C.A.;Jung,S.J.;Phung,N.T.;Lee,J.;Chang,I.S.;Kim,B.H.;Yi,H.;Chun,J.A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Aeromonas hydrophila isolated from a microbial fuel cell.FEMS Microbiol.Lett.2003,223,129-134.
    [27]Rabaey,K.;Boon,N.;Siciliano,S.D.;Verhaege,M.;Verstraete,W.Biofuel cells select for microbial consortia that self-mediate electron transfer.Appl.Environ.Microbiol.2004,70,5373-5382.
    [28]Holmes,D.E.;Nicoll,J.S.;Bond,D.R.;Lovley,D.R.Potential role of a novel psychrotolerant member of the family Geobacteraceae,Geopsychrobacter electrodiphilus gen.nov,.sp.nov.,in electricity production by a marine sediment fuel cell.Appl Environ Microbiol.2004,70,6063-6030.
    [29]Min,B.;Cheng,S.;Logan,B.E.Electricity generation using membrance and salt bridge wastewater using microbial fuel cells.Water Res.2005,39,4961-4968.
    [30]Bond,D.R.;Lovely,D.R.Evidence for involvement of an electron shuttle in electricity production by Geothrix fermentans.Appl.Environ.Microbiol.2005,71,2186-2189.
    [31]Ringeisen,B.R.;Henderson,E.;Wu,P.K.;Pietron,J.;Ray,R.;Little,B.;Biffinger,J.C.;Jones - Meehan,J.M.High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.Environ.Sci.Technol.2006,40,2629-2634.
    [32]Biffinger,J.C.;Byrd,J.N.;Dudley,B.L.;Ringeisen,B.R.Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.Biosens.Bioelectron.2008,23,820-826.
    [33]Zuo,Y.;Xing,D.F.;Regan,J.M.;Logan,B.E.Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell.Appl.Environ.Microbiol.2008,74,3130-3137.
    [34]Holmes,D.E.;Bond,D.R.;Lovley,D.R.Electron transfer by Desulfobulbus propionicus to Fe(Ⅲ) and graphite electrodes.Appl.Environ.Microbiol.2004,70,1234-1237.
    [35]Kim,B.H.;Kim,H.J.;Hyun,M.S.;Park,D.H.Direct electrode reaction of Fe (Ⅲ)-reducing bacterium Shewanella putrefaciens.J.Microbiol.Biotechol.1999,9, 127-131.
    [36]Park,D.H.;Zeikus,J.G Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens.Appl.Microbiol.Biotechnol.2002,59,58-61.
    [37]Methe,B.A.;Nelson,K.E.;Eisen,J.A.;Paulsen,I.T.;Nelson,W.;Heidelberg,J.F.;Wu,D.;Wu.M.;Ward,N.;Beanan,M.J.;Dodson,R.J.;Madupu,R.;Brinkac,L.M.;Daugherty,S.C;de Boy,R.T.;Durkin,A.S.;Gwinn,M.;Kolonay,J.F.;Sullivan,S.A.;Haft,D.H.;Selengut,J.;Davidsen,T.M.;Zafar,N.;White,O.;Tran,B.;Romero,C;Forberge,H.A.;Weidman,J.;Khouri,H.;Feldblyum,T.V.;Utterback,T.R.;Aken,S.E.V.;Lovley,D.R.,Fraser,C.M.Genome of Geobacter sulfurreducens:Metal reduction in subsurface environments.Science 2003,302,1967-1969.
    [38]Coppi,M.V.;Leang,C;Sandler,S.J.;Lovley,D.R.Development of a genetic system for Geobacter sulfurreducens.Appl.Environ.Microbiol.2001,67,3180-3187.
    [39]Reguera,G.;Nevin,K.P.;Nicoll,J.S.;Covalla,S.F.;Woodard,T.L.;Lovley,D.R.Biofilm and nanowire p roduction leads to increased current in Geobacter sulfurreducens fuel cells.Appl.Environ.Microbiol.2006,72,7345-7348.
    [40]Pfennig,N.;Biebl,H.Desulfuromonas acetoxidans gen.nov.and sp.nov.,a new anaerobic,sulfur-reducing,acetate-oxidizing bacterium.Arch.Microbiol.1976,110,3-12
    [41]Roden,E.E.;Lovley,D.R.Dissimilatory Fe(Ⅲ) reduction by the marine microorganism Desulfuromonas acetoxidans.Appl.Environ.Microbiol.1993,59,734-742.
    [42]Finneran,K.T.;Johnsen,C.V.;Lovley,D.R.Rhodoferaxferrireducens sp.nov.,a psychrotolerant,facultatively anaerobic bacterium that oxidizes acetate with the reduction of Fe (Ⅲ).Int.J.Syst.Evol.Micr.2003,53,669-673.
    [43]Coates,J.D.;Ellis,D.J.;Gaw,C.V.;Lovley,D.R.Geothrix fermentans gen.nov.,sp.Nov.,a novel Fe (Hl)-reducing bacterium from a hydrocarbon-contaminated aquifer.Int.J.Syst.Bacteriol.1999,49,1615-1622.
    [44]Nevin,K.P.;Lovley,D.R.Mechanisms for accessing insoluble Fe(Ⅲ) oxide during dissimilatory Fe( Ⅲ) reduction by Geothrix fermentans.Appl.Environ.Microbiol.2002,68,2294-2299.
    [45]Park,D.H.;Gregory,Z.J.Improved fuel cell and electrode designs for producing electricity from microbial degradation.Biotechnol.Bioeng.2003,81,348-355.
    [46]Holmes,D.E.;Bond,D.R.;O'Neil,R.A.;Reimers,C.E.;Tender,L.R.;Lovley,D.R.Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments.Microb.Ecol.2004,48,178-190.
    [47]Bond,D.R.;Holmes,D.E.;Tender,L.M.;Lovley,D.R.Electrode-reducing microorganisms that harvest energy from marine sediments.Science 2002,295,483-485.
    [48]Logan,B.E.;Murano,C;Scott,K.;Gray,N.D.;Head,I.M.Electricity generation from cysteine in a microbial fuel cell.Water Res.2005,39,942-952.
    [49]Phung,N.T.;Lee,J.Y.;Kang,K.H.;Chang,I.S.;Gadd,G M.;Kim,B.H. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences.FEMS Microbiol.Lett.2004,233,77-82.
    [50]Reimers,C.E.;Girguis,P.;Stecher,H.A.;Tender,L.M.;Ryckelynck,N.;Whaling,P.Microbial fuel cell energy from an ocean cold seep.Geobiology 2006,4,123-136.
    [51]Kim,B.H.;Park,H.S.;Kim,H.J.;Kim,G.T.;Chang,I.S.;Lee,J.;Phung,N.T.Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell.Appl.Microbiol.Biotechnol.2004,63,672-681.
    [52]Lee,J.;Phung,N.T.;Chang,I.S.;Kim,B.H.;Sung,H.C.Use of acetate for enrichment of electrochemically active microorganisms and their 165 rDNA analyses.FEMS Microbiol.Lett.2003,223,185-191.
    [53]Aelterman,P.;Rabaey,K.;Pham,T.H.;Boon,N.;Verstraete,W.Continuous electricity generation at high voltages and currents using stacked microbial fuel cells.Environ.Sci.Technol.2006,40,3388-3394.
    [54]Rabaey,K.;Ossieur,W.;Verhaege,M.;Verstraete,W.Continuous microbial fuel cells convert carbohydrates to electricity.Water Sci.Technol.2005,52,515-523.
    [55]Logan,B.E.;Cheng,S.;Watson,V.;Estadt,G.Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells.Environ.Sci.Technol.2007,41,3341-3346.
    [56]梁鹏,范明志,曹效鑫,黄霞,彭尹明,王硕,巩前明,梁吉.碳纳米管阳极微生物燃料电池产电特性的研究.环境科学,2008,29,2356-2360.
    [57]Moon,H.;Seop,C.I.;Jang,K.J.;Kim,B.H.Residence time distribution in microbial fuel cell and its influence on COD removal with electricity generation.Biochem.Eng.2005,27,59-65.
    [58]Kim,J.R.;Min,B.;Logan,B.E.Evaluation of procedures to acclimate a microbial fuel cell for electricity production.Appl.Microbiol.Biotechnol.2005,68,23-30.
    [59]Lowy,D.A.;Tender,L.M.;Zeikus,J.G.;Park,D.H.;Lovley,D.R.Harvesting energy from the marine sediment-water interface II-Kinetic activity of anode materials.Biosens.Bioelectron.2006,21,2058-2063.
    [60]Crittenden,S.R.;Sund,C.;Sumne,J.J.Mediating electron transfer from bacteria to a gold electrode via a self-assembled monolayer.Langmuir 2006,32,932-939.
    [61]Oh,S.;Min,B.;Logan,B.E.Cathode performance as a factor in electricity generation in microbial fuel cells.Environ.Sci.Technol.2004,38,4900-4904.
    [62]Cheng,S.A.;Liu,H.;Logan,B.E.Increased power generation in a continuous flow MFC with advective flow through the porous anode and reduced electrode spacing.Environ.Sci.Technol.2006,40,2426-2432.
    [63]Morris,J.M.;Jin,S.;Wang,J.Q.;Zhu,C.Z.;Urynowicz,M.A.Lead dioxide as an alternative catalyst to platinum in microbial fuel cells.Electrochem.Commun.2007,9,1730-1734.
    [64]Zhao,F.;Harnisch,F.;Schroder,U.;Scholz,F.;Bogdanoff,P.;Hermann,I.Application of pyrolysed iron(II) phthalocyanine and CoTMPP based oxygen reduction catalysts as cathode materials in microbial fuel cells.Electrochern.Commun. 2005,7,1405-1410.
    [65]Pham,T.H.;Jang,J.K.;Chang,I.S.;Kim,B.H.Cathode reaction in a mediator-less microbial fuel cell with graphite or platinum-coated graphite as the cathode.J.Microbiol.Biotechnol.2004,14,324-329.
    [66]Cheng,S.;Liu,H.;Logan,B.E.Increased performance of single-chamber microbial fuel cells using an improved cathode structure.Electrochem.Commun.2006,8,489-494.
    [67]詹亚力,王琴,闫光绪,郭绍辉.高锰酸钾作阴极的微生物燃料电池.高等学校化学学报,2008,29,559-563.
    [68]Rhoads,A.;Beyenal,H.;Lewandowshi,Z.Microbial fuel cell using anaerobic respiration as an anodic reaction and biomineralized manganese as a cathodic reactant.Environ.Sci.Technol.2005,39,4666-4671.
    [69]Oh,S.E.;Logan,B.E.Proton exchange membrane and electrode surface areas as factors that affect power generation in microbial fuel cells.Appl.Microbiol.Biotechnol.2005,70,162-169.
    [70]Kim,J.R.;Cheng,S.;Oh,S.E.;Logan,B.E.Power generation using different cation,anion and ultrafiltration membranes in microbial fuel cells.Bioresource Technol.2007,98,2568-2577.
    [71]Min,B.;Cheng,S.;Logan,B.E.Electricity generation using membrane and salt bridge microbial fuel cells.Water Res.2005,39,1675-1686.
    [72]Liu,H.;Cheng,S.A.;Logan,B.E.Power generation in fed-batch microbial fuel cells as a function of ionic strength,temperature,and reactor configuration.Environ.Sci.Technol.2005,39,5488-5493.
    [73]Logan,B.E.;Murano,C.;Scott,K.;Gray,N.D.;Head,I.M.Electricity generation from cysteine in a microbial fuel cell.Water Res.2005,39,942-952.
    [74]He,Z.;Minteer,S.D.;Angenent,L.T.Electricity generation from artificial wastewater using an upflow microbial fuel cell.Environ.Sci.Technol.2005,39,5262-5267.
    [75]He,Z.;Wagner,N.;Minteer,S.D.;Angenent,L.T.An upflow microbial fuel cell with an interior cathode:assessment of the internal resistance by impedance spectroscopy.Environ.Sci.Technol.2006,40,5212-5217.
    [76]Min,B.;Logan,B.E.Continuous electricity generation from domestic wastewater and organic substrates in a flat plate microbial fuel cell.Environ.Sci.Technol.2004,38,3809-3814.
    [77]曹效鑫,梁鹏,黄霞.“三合一”微生物燃料电池的产电特性研究.环境科学学报,2006,26,1252-1257.
    [78]Biffinger,J.C.;Pietron,J.;Ray,R.A biofilm enhanced miniature microbial fuel cell using Shewanella oneidensis DSPI0 and oxygen reduction cathodes.Biosens.Bioelectron.2007,22,1672-1679.
    [79]Liu,H.;Logan,B.E.Microbial fuel cell in the presence and absence of a proton exchange membrane.Environ.Sci.Technol.2004,38,4040-4046.
    [80]Oh,S.E.;Logan,B.E.Voltage reversal during microbial fuel cell stack operation.J.Power Sources 2007,167,11-17.
    [81]Shin,S.H.;Choi,Y.;Na,S.H.;Jung,S.;Kim,S.Development of bipolar plate stack type microbial fuel cells.B.Kor.Chem.Soc.2006,27,281-285.
    [82]Logan,B.E.;Rozendal,R.A.;Hamelers,H.V.M.;Call,D.;Cheng,S.;Sleutels,T.H.J.A.;Jeremiasse,A.W.Microbial electrolysis cells (MECs) for high yieldhydrogen gas production from organic matter.Environ.Sci.Technol.2008,42,8630-8640.
    [83]Logan,B.E.;Hamelers,B.;Rozendal,R.;Schroder,U.;Keller,J.;Freguia,S.;Aelterman,R;Verstraete,W.;Rabaey,K.Microbial fuel cells:methodology and technology.Environ.Sci.Technol.2006,40,5181-5192.
    [84]Rozendal,R.A.;Hamelers,H.V.M.;Euverink,G J.W.;Metz,S.J.;Buisman,C.J.N.Principle and perspectives of hydrogen production through biocatalyzed electrolysis.Int.J.Hydrogen Energ.2006,31,1632-1640.
    [85]Cheng,S.;Logan,B.E.Sustainable and efficient biohydrogen production via electrohydrogenesis.Proc.Natl.Acad.Sci.USA 2007,104,18871-18873.
    [86]Call,D.;Logan,B.E.Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.Environ.Sci.Technol.2008,42,3401-3406.
    [87]Liu,H.;Grot,S.;Logan,B.E.Electrochemically assisted microbial production of hydrogen from acetate.Environ.Sci.Technol.2005,39,4317-4320.
    [88]Ditzig,J.;Liu,H.;Logan,B.E.Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR).Int.J.Hydrogen Energ.2007,32,2296-2304.
    [89]Cheng,H.;Scott,K.;Ramshaw,C.Intensification of water electrolysis in a centrifugal field.J.Electrochem.Soc.2002,149,D 172-D 177.
    [1]Bond,D.R.;Lovley,D.R.Electricity production by Geobacte sulfurreducens attached to electrodes.Appl.Environ.Microb.2003,69,1548-1555.
    [2]Reguear,G.;Nevin,K.P.;Nicoll,J.S.;Covalla,S.F.;Woodard,T.L.;Lovley,D.R.Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells.Appl.Environ.Microbiol.2006,72,7345-7348.
    [3]Busalmen,J.P.;Esteve-Nunez,A.;Feliu,J.M.Whole cell electrochemistry of electricity-producing microorganisms evidence an adaptation for optimal exotrocellular electron transport.Environ.Sci.Technol.2008,42,2445-2450.
    [4]Park,D.H.;Gregory,Z.J.Improved fuel cell and electrode designs for producing electricity from microbial degradation.Biotechnol.Bioeng.2003,81,348-355.
    [5]Holmes,D.E.;Bond,D.R.;O'Neil,R.A.;Reimers,C.E.;Tender,L.R.;Lovley,D.R.Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments.Microb.Ecol.2004,48,178-190.
    [6]Finkelstein,D.A.;Tender,L.M.;Zeikus,J.G.Effect of electrode potential on electrode-reducing microbiota.Environ.Sci.Technol.2006,40,6990-6995.
    [7]Aelterman,E;Freguia,S.;Keller,J.;Verstraete,W.;Rabaey,K.The anode potential regulates bacterial activity in microbial fuel cells.Appl.Microbiol.Biotechnol.2008,78,409-418.
    [8]Cho,H.Y.;Yousef,A.E.;Sastry,S.Growth kinetics ofLactobacillus acidophilus under ohmic heating.Biotechnol.Bioeng.1996,49,334-340.
    [9]Loghavi,L.;Sastry,S.K.;Yousef,A.E.Effect of moderate electric field on the metabolic activity and growth kinetics of Lactoba~illus acidophilus.Biotechnol.Bioeng.2007,98,872-881.
    [10]She,E;Song,B.;Xing,X.H.;van Loosdrecht,M.;Liu,Z.Electrolytic application of bacteria Enterobacter dissolvens by a direct current.Biochem.Eng.J.2006,28,23-29.
    [11]Poortinga,A.T.;Bos,R.;Busscher,H.J.Controlled electrophoretic deposition of bacteria to surfaces for the design of biofilms.Biotechnol.Bioeng.2000,67,117-120.
    [12]Poortinga,A.T.;Smit,J.;van der Mei,H.C.;Busscher,H.J.Electric field induced desorption of bacteria from a conditioning film covered substratum.Biotechnol.Bioeng.2001,76,395-399.
    [13]Fricke K,Hamisch F,Schroder U.On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells.Energy Environ.Sic.2008,1,144-147.
    [14]Liu,H.;Cheng,S.A.;Logan,B.E.Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.Environ.Sic.Technol.2005,39,658-662.
    [15]Garcia,D.;Gomez,N.;Nanas,P.;Raso,J.;Pagan,R.Pulsed electric fields cause bacterial envelops permeabilization depending on the treatment intensity,the treatment medium pH and the microorganism investigated.Int.J.Food.Microbiol.2007,113,219-227.
    [16]Marcus,A.K.;Torres,C.I.;Rittmann,B.E.Conduction-based modeling of the biofilm anode of a microbial fuel cell.BiotechnoL Bioeng.2007,98,1171-1182.
    [1]Nielsen,A.H.;Lens,P.;Vollertsen,J.;Hvitved-Jacobsen,T.Sulfide-iron interactions in domestic wastewater from a gravity sewer.Water Res.2005,39,2747-2755.
    [2]Kante,K.;Bandosz,T.J.Sewage sludge/metal sludge/waste oil composites as catalysts for desulfurization of digester gas.Energ.Fuel 2008,22,389-397.
    [3]Ateya,B.G.;AIKharafi,F.M.;AI-Azab,A.S.Electrodeposition of sulfur from sulfide contaminated brines.Electrochem.Solid State Lett.2003,6,C 137-140.
    [4]Anja,K.;Peter,S.;Heide,N.Anaerobic sulfide oxidation with nitrate by a freshwater Beggiatoa enrichment culture.Appl.Environ.Microbiol.2006,72,4755-4760.
    [5]Habermann,W.;Pommer,E.H.Biological fuel cells with sulphide storage capacity.Appl.Microbiol.Biotechnol.1991,35,128-133.
    [6]Cooney,M.J.;Roschi,E.;Marison,I.W.;Comninellis,C.;Stockar,U.V.Physiologic studies with the sulfate-reducing bacterium Desulfovibrio desulfuricans:Evaluation for use in a biofuel cell.Enzyme Microb.Technol.1996,18,358-365.
    [7]Wang,Y.R.;Yan,H.Q.;Wang,E.The electrochemical oxidation and the quantitative determination of hydrogen sulfide on a solid polymer electrolyte-based system.J.Electroanal.Chemistry 2001,497,163-167.
    [8]Zhao,F.;Rahunen,N.;Varcoe,J.R.;Chandra,A.;Avignone-Rossa,C.;Thumser,A.E.;Slade,R.C.T.Activated carbon cloth as anode for sulfate removal in an microbial fuel cell.Environ.Sci.Technol.2008,42,4971-4976.
    [9]Rabaey,K.;van de Sompel,K.;Maignien,L.;Boon,N.;Aelterman,P.;Clauwaert,P.;de Schamphelaire,L.;Pham,H.T.;Vermeulen,J.;Verhaege,M.;Lens,P.;Verstraete,W.Microbial fuel cells for sulfide removal.Environ.Sci.Technol.2006,40,5218-5224.
    [10]Tender,L.M.;Reimers,C.E.;Stecher,H.A.;Holmes,D.E.;Bond,D.R.;Lowy,D.A.;Pilobello,K.;Fertig,S.J.;Lovley,D.R.Harnessing microbially generated power on the seafloor.Nat.Biotechnol.2002,20,821-825.
    [11]Ryckelynck,N.;Stecher,H.A.;Reimers,C.E.Understanding the anodic mechanism of a seafloor fuel cell:Interactions between geochemistry and microbial activity.Biogeochemistry 2005,76,113-139.
    [12]Vigdis,T.;Jostein,G.;Fride,L.D.High diversity in DNA of soil bacteria.Appl.Environ.Microbiol.1990,56,782-787.
    [13]Small,M.K.Application of denaturing gradient gel electrophoresis(DGGE) and temperature gradient gel electrophoresis(TGGE) in microbial ecology.Anton.Leeuw.Int.J.G.1998,73,127-141.
    [14]Muyzer,G.;Waal,E.C.;Uitterlinden,A.G.Profiling of complex microbial populations by dematuring gradient gel electrophoresis analysis of polymerase chain reaction amplified genes encoding for 16S rRNA.Appl.Environ.Microbiol.1993,59,695-700.
    [15]Rabaey,K.;Boon,N.;Siciliano,S.D.;Verhaege,M.;Verstraete,W.Biofuel cells select for microbial consortia that self-mediate electron transfer.Appl.Environ. Microbiol.2004,70,5373-5382.
    [16]Kim,J.R.;Jung,S.H.;Regan,J.M.;Logan,B.E.Electricity generation and microbial community analysis of ethanol powered microbial fuel cells.Bioresource Technol.2007,98,2568-2577.
    [17]Kim,B.H.;Park,H.S.;Kim,H.J.;Kim,G.T.;Chang,I.S.;Lee,J.;Phung,N.T.Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell.Appl.Microbiol.Biotechnol.2004,63,672-681.
    [18]Holmes,D.E.;Bond,D.R.;O'Neil,R.A.;Reimers,C.E.;Tender,L.R.;Lovley,D.R.Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments.Microb.Ecol.2004,48,178-190.
    [19]Bond,D.R.;Holmes,D.E.;Tender,L.M.;Lovley,D.R.Electrode-reducing microorganisms that harvest energy from marine sediments.Science 2002,295,483-485.
    [20]Tomaszewicz,E.;Kurzawa,M.Use of XPS method in determination of chemical environment and oxidation state of sulfur and silver atoms in Ag_6S_3O_4 and Ag_8S_4O_4compounds.J.Mater Sci.2004,39,2183-2185.
    [21]Martinez,H.;Benayad,A.;Gonbeau,D.;Vinatier,P.;Pecquenard,B.;Levasseur,A.Influence of the cation nature of high sulfur content oxysulfide thin films MOySz (M=W,Ti) studied by XPS.Appl.Surf Sci.2004,236,377-386.
    [22]NIST X-ray Photoelectron Spectroscopy Database.www.srdata.nist.gov/xps/.
    [23]Luther,G.W.;Glazer,B.T.;Hohmann,L.;Popp,J.I.;Taillefert,M.;Rozan,T.F.;Brendel,P.J.;Theberge,S.M.;Nuzzio,D.B.Sulfur speciation monitored in situ with solid state gold amalgam voltammetric microelectrodes:polysulfides as a special case in sediments,microbial mats and hydrothermal vent waters.J.Environ.Monit.2001,3,61-66.
    [24]Dutta,P.K.;Rabaey,K.,Yuan,Z.G.;Keller,J.Spontaneous electrochemical removal of aqueous sulfide.Water Res.2008,42,4965-4975.
    [25]Reimers,C.E.;Girguis,P.;Stecher,H.A.;Tender,L.M.;Ryckelynck,N.;Whaling,P.Microbial fuel cell energy from an ocean cold seep.Geobiology 2006,4,123-136.
    [26]Friedrich,C.G.;Rother,D.;Bardischewsky,F.;Quenteier,A.;Fischer,J.Oxidation of reduced inorganic sulfur compounds by bacteria:emergence of a common mechanism? Appl.Environ.Microbial.2001,67,2873-2882.
    [27]Dambe,T.;Quentmeier,A.;Rother,D.;Friedrich,C.;Scheidig,A.J.Structure of the cytochrome complex SoxXA of Paracoccus pantotrophus,a heme enzyme initiating chemotrophic sulfur oxidation.J.Struct.Biol.2005,152,229-234.
    [28]Lovley,D.R.;Phillips,E.J.P.Novel processes for anaerobic sulfate production from elemental sulfur by sulfate reducing bacteria.Appl.Environ.Microbiol.2005,60,2394-2399.
    [29]Finster,K.;Liesack,W.;Thamdrup,B.Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp.nov.,a new anaerobic bacterium isolated from marine surface sediment.Appl.Environ.Microbiol.1998,64,119-125.
    [30]Holmes,D.E.;Bond,D.R.;Lovley,D.R.Electron transfer by Desulfobulbus propionicus to Fe(Ⅲ) and graphite electrodes.Appl.Environ.Microbiol.2004,70, 1234-1237.
    [31]Back,J.H.;Kim,M.S.;Cho,H.;Chang,I.S.;Lee,J.;Kim,K.S.;Kim,B.H.;Park,Y.I.;Han,Y.S.Construction of bacterial artificial chromosome library from electrochemical microorganisms.FEMS Microbiol.Lett.2004,238,65-70.
    [32]Choo,Y.F.;Lee,J.;Chang,I.S.;Kim,B.H.Bacterial communities in microbial fuel cells enriched with high concentrations of glucose and glutamate.J.Microbiol.Biotechnol.2006,16,1481-1484.
    [33]Park,H.I.;Sanchez,D.;Cho,S.K.;Yun,M.Bacterial communities on electron-beam Pt-deposited electrodes in a mediator-less microbial fuel cell.Environ.Sci.Technol.2008,42,6243-6249.
    [34]Logan,B.E.;Murano,C.;Scott,K.;Gray,N.D.;Head.I.M.Electricity generation from cysteine in a microbial fuel cell.Water Res.2005,39,942-952.
    [35]Lee,J.;Phung,N.T.;Chang,I.S.;Kim,B.H.;Sung,H.C.Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses.FEMS Microbiol.Lett.2003,223,185-191.
    [36]Back,J.H.;Kim,M.S.;Cho,H.;Chang,I.S.;Lee,J.;Kim,K.S.;Kim,B.H.;Park,Y.I.;Han,Y.S.Construction of bacterial artificial chromosome library from electrochemical microorganisms.FEMSMicrobiol.Lett.2004,238,65-70.
    [37]Park,H.S.;Kim,B.H.;Kim,H.S.;Kim,H.J.;Kim,G.T.;Kim,M.;Chang,I.S.;Park,Y.K.;Chang,H.I.A novel electrochemically active and Fe(Ⅲ)-reducing bacterium phylogenetically related to Clostridium butyricum isolated from a microbial fuel cell.Anaerobe.2001,7,297-306.
    [38]Rabaey,K.;Boon,N.;Siciliano,S.D.;Verhaege,M.;Verstraete,W.Biofuel cells select for microbial consortia that self-mediate electron transfer.Appl.Environ.Microbiol.2004,70,9.
    [39]Zuo,Y.;Xing,D.F.;Regan,J.M.;Logan,B.E.Isolation of the exoelectrogenic bacterium Ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell.Appl.Environ.Microbiol.2008,74,3130-3137.
    [1]Cheng,H.;Scott,K.;Ramshaw,C.Intensification of water electrolysis in a centrifugal field.J.Electrochem.Soc.2002,149,D172-D177.
    [2]Wagner,U.;Richter,S.Hydrogen production.In:Renewable Energy.Editor:Heinloth K.Springer-Verlag Berlin Heidelberg,Germany,2006,pp 485.
    [3]Liu,H.;Grot,S.;Logan,B.E.Electrochemically assisted microbial production of hydrogen from acetate.Environ.Sci.Technol.2005,39,4317-4320.
    [4]Rozendal,R.A.;Hamelers,H.V.M.;Euverink,G.J.W.;Metz,S.J.;Buisman,C.J.N.Principle and perspectives of hydrogen production through biocatalyzed electrolysis.Int.J.Hydrogen Energ.2006,31,1632-1640.
    [5]Ditzig,J.;Liu,H.;Logan,B.E.Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor(BEAMR).Int.J.Hydrogen Energ.2007,32,2296-2304.
    [6]Cheng,S.;Logan,B.E.Sustainable and efficient biohydrogen production via electrohydrogenesis.Proc.Natl.Acad.Sci.2007,104,18871-18873.
    [7]Rozendal,R.A.;Hamelers,H.V.M.;Molenkamp,R.J.;Buisman,C.J.N.Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes.Water Res.2007,41,1984-1994.
    [8]Rozendal,R.A.;Jeremaisse,A.W.;Hamelers,H.V.M.;Buisman,C.J.N.Hydrogen production with a microbial biocathode.Environ.Sci.Technol.2008,42,629-634.
    [9]Call,D.;Logan,B.E.Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane.Environ.Sci.Technol.2008,42,3401-3406.
    [10]Clauwaert,P.;Toledo,R.;van der Ha,D.;Crab,R.;Verstraete,H.H.;Udert,K.M;Rabaey,K.Combining biocatalyzed electrolysis with anaerobic digestion.Water Sci.Technol.2008,57,575-579.
    [11]Logan,B.E.;Rozendal,R.A.;Hamelers,H.V.M.;Call,D.;Cheng,S.;Sleutels,T.H.J.A.;Jeremiasse,A.W.Microbial electrolysis cells (MECs) for high yield hydrogen gas production from organic matter.Environ.Sci.Technol.2008,42,8630-8640.
    [12]Manish,S.;Banerjee,R.Comparison of biohydrogen production processes.Int.J.Hydrogen Energ.2008,33,276-286.
    [13]Liu,H.;Cheng,S.A.;Logan,B.E.Production of electricity from acetate or butyrate using a single-chamber microbial fuel cell.Environ.Sci.Technol.2005,39,658-662.
    [14]Oh,S.E.;Logan,B.E.Voltage reversal during microbial fuel cell stack operation.J.Power Sources 2007,167,11-17.
    [15]Liu,H.;Cheng,S.;Logan,B.E.Power generation in fed-batch microbial fuel cells as a function of ionic strength,temperature,and reactor configuration.Environ.Sci.Technol.2005,39,5488-5493.
    [16]Logan,B.E.;Hamelers,B.;Rozendal,R.;Schroder,U.;Keller,J.;Freguia,S.;Aelterman,P.;Verstraete,W.;Rabaey,K.Microbial fuel cells:methodology and technology.Environ.Sci.Technol.2006,40,5181-5192.
    [17]Hu,H.Q.;Fan,Y.Z.;Liu,H.Hydrogen production using single-chamber membrane-free microbial electrolysis cells.Water Res.2008,42,4172-8.
    [18]Logan,B.E.Microbial Fuel Cells.Wiley,New York,2007,pp 48,127.
    [19]Gil,G C;Chang,I.S.;Kim,B.H.;Kim,M.;Jang,J.K.;Park,H.S.;Kim,H.J.Operational parameters affecting the performance of a mediator-less microbial fuel cell.Biosens.Bioelectron.2003,18,327.
    [20]Aelterman,P.;Rabaey,K.;Pham,H.T.;Boon,N.;Verstraete,W.Continuous electricity generation at high voltages and currents using stacked microbial fuel cells.Environ.Sci.Technol.2006,40,3388.
    [21]Yao,H.;Conrad,R.Thermodynamics of propionate degradation in anoxic paddy soil from different rice-growing regions.Soil Biol.Biochem.2001,33,359-364.
    [22]Shi,X.Y;Yu,H.Q.Conversion of individual and mixed volatile fatty acids to hydrogen by Rhodopseudomonas capsulate.Int.Biodeter.Biodegr.2006,58,82-88.
    [23]Kreysa,G.;Schenck,K.;Sell,D.;Vuorilehto,K.Bioelectrochemical hydrogen production.Int.J.Hydrogen Energ.1994,19,673.
    [1]Kim,B.H.;Kim,H.J.;Hyun,M.S.;Park,D.H.Direct electrode reaction of Fe (Ⅲ) 2reducing bacterium,Shewanella putrefaciens.J.Microbiol,Biotechol.1999,9,127-131.
    [2]Park,D.H.;Zeikus,J.G.Impact of electrode composition on electricity generation in a single-compartment fuel cell using Shewanella putrefaciens.Appl.Microbiol.Biotechnol.2002,59,58-61.
    [3]Ringeisen,B.R.;Henderson,E.;Wu,P.K.;Pietron,J.;Ray,R.;Little,B.;Biffinger,J.C.;Jones - Meehan,J.M.High power density from a miniature microbial fuel cell using Shewanella oneidensis DSP10.Environ.Sci.Technol.2006,40,2629-2634.
    [4]Bretschger,O.;Obraztsova,A.;Sturm,C.A.;Chang,I.S.;Gorby,Y.A.;Reed,S.B.;Culley,D.E.;Reardon,C.L.;Barua,S.;Romine,M.F.;Zhou,J.;Belizev,A.S.;Bouhenni,R.;Saffarini,D.;Mansfeld,F.;Kim,B.H.;Fredrickson,J.K.;Nealson,K,H.Current production and metal oxide reduction by Shewanella oneidensis MR-1wild type and mutants.Appl.Environ.Microbiol.2007,73,7003-7012.
    [5]Marsili,E.;Baron,D.B.;Shikhare,I.D.;Coursolle,D.;Gralnick,J.A.;Bond,D.R.Shewanella secretes flavins that mediate extracellular electron transfer.Proc.Natl.Acad Sci.USA 2008,105,3968-3973.
    [6]von Canstein,H.;Ogawa,J;Shimizu,S.;Lloyd,J.R.Secretion of flavins by Shewanella Species and their role in extracellular electron transfer.Appl.Environ.Microbiol.2008,74,615-623.
    [7]Biffinger,J.C.;Byrd,J.N.;Dudley,B.L.;Ringeisen,B.R.Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells.Biosens.Bioelectron.2008,23,820-826.
    [8]Zhang,S.J.;Yu,H.Q.;Feng H.M.PVA-based activated carbon fibers with lotus-root like axially porous structure.Carbon 2006 44,2059-2068.
    [9]Dubois,M.;Gilles,K.A.;Hamilton,J.K.;Rebers,P.A.Smith,F.Calorimetric method for determination of sugars and related substances.Anal.Chem.1956,28,350-356.
    [10]Demain,A.L.Riboflavin oversymthesis.Annu.Rev.Microbiol.1972,26,369-388.
    [11]Lanthier,M.;Gregory,K.B.;Lovley,D.R.Growth with high planktonic biomass in Shewanella oneidensis fuel cells.FEMS Microbiol.Lett.2008,278,29-35.
    [12]Beliaev,A.S.;Klingeman,D.M.;Klappenbach,J.A.;Wu,L.;Romine,M.F.;Tiedje,J.M.;Nealson,K.H.;Fredrickson,J.K.;Zhou,J.Global transcriptome analysis of Shewanella oneidensis MR-1 exposed to different terminal electron acceptors.J.Bacteriol.2005,187,7138-7145.
    [13]Beliaev,A.S.;Saffarini,D.A.Shewanella putrefaciens mtrB encodes an outer membrane protein required for Fe(Ⅲ) and Mn(Ⅳ) reduction.J.Bacteriol.1998,180,6292-6297.
    [14]Beliaev,A.S.;Saffarini,D.A.;McLaughlin,J.L.;Hunnicutt,D.MtrC,an outer membrane decahaem c cytochrome required for metal reduction in Shewanella putrefaciens MR-I.Mol.Microbiol.2001,39,722-730.
    [15]Bencheikh-Latmani,R.,Williams,S.M.;Haucke,L.;Criddle,C.S.;Wu,L.; Zhou,J.;Tebo,B.M.Global transcriptional profiling of Shewanella oneidensis MR-1during Cr(Ⅵ) and U(Ⅵ) reduction.Appl.Environ.Microbiol.2005,71,7453-7460.
    [16]Pitts,K.E.;Dobbin,P.S.;Reyes-Ramirez,F.;Thomson,A.J.;Richardson,D.J.;Seward,H.E.Characterization of the Shewanella oneidensis MR-1 decaheme cytochrome MtrA:expression in Escherichia coli confers the ability to reduce soluble Fe(Ⅲ) chelates.J.Biol.Chem.2003,278,27758-27765.
    [17]Myers,C.R.;Myers,J.M.MtrB is required for proper incorporation of the cytochromes OmcA and OmcB into the outer membrane of Shewanella putrefaciens MR-1.Appl.Environ.Microbiol.2002,68,5585-5594.
    [18]Gorby,Y.A.;Yanina,S.;McLean,J.S.;Rosso,K.M.;Moyles,D.;Dohnalkova,A.;Beveridge,T.J.;Chang,I.S.;Kim,B.H.;Kim,K.S.;Culley,D.E.;Reed,S.B.;Romine,M.F.;Saffarini,D.A.;Hill,E.A.;Shi,L.;Elias,D.A.;Kennedy,D.W.;Pinchuk,G.;Watanabe,K.;Ishii,S.I.;Logan,B.;Nealson,K.H.;Fredrickson,J.K.Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms.Proc.Natl.Acad.Sci.USA 2006,103,11358-11363.
    [19]Myers,C.R.;Myers,J.M.Cloning and sequence of cymA,a gene encoding a tetraheme cytochrome c required for reduction of iron(Ⅲ),fumarate,and nitrate by Shewanella putrefaciens MR-1.J.Bacteriol.1997,179,1143-1152.
    [20]Myers,J.M.;Myers,C.R.Role of the tetraheme cytochrome CymA in anaerobic electron transport in cells of Shewanella putrefaciens MR-1 with normal levels of menaquinone.J.Bacteriol.2000,182,67-75.
    [21]Schwalb,C.;Chapman,S.K.;Reid,G.A.The membrane-bound tetrahaem c-type cytochrome CymA interacts directly with the soluble fumarate reductase in Shewanella.Biochem.Soc.Trans.2002,30,658-662.
    [22]Scott,J.H.;Nealson,K.H.A biochemical study of the intermediary carbon metabolism of Shewanella putrefaciens.J.Bacteriol.1994,176,3408-3411.
    [23]Venkateswaran,K.;Moser,D.P.;Dollhopf,M.E.;Lies,D.P.;Saffarini,D.A.;MacGregor,B.J.;Ringelberg,D.B.;White,D.C.;Nishijima,M.;Sano,H.;Burghardt,J.;Stackebrandt,E.;Nealson,K.H.Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp.nov.Int.J.Syst.Bacteriol.1999,49,705-724.
    [24]Serres,M.H.;Riley,M.Genomic analysis of carbon source metabolism of Shewanella oneidensis MR-1:predictions versus experiments.J.Bacteriol.2006,88,4601-4609.
    [25]Pinchuk,G.E.;Ammons,C.;Culley,D.E.;Li,S.M.;McLean,J.S.;Romine,M.F.;Nealson,K.H.;Fredrickson,J.K.;Beliaev,A.S.Utilization of DNA as a sole source of phosphorus,carbon,and energy by Shewanella spp.:ecological and physiological implications for dissimilatory metal reduction.Appl.Environ.Microbiol.2008,74,1198-1208.
    [26]Driscoll,M.E.;Romine,M.F.;Juhn,F.S.;Serres,M.H.;Mccue,L.A.;Beliaev,A.S.;Fredrickson,J.K.;Gardner,T.S.Identification of diverse carbon utilization pathways in Shewanella oneidensis MR- 1 via expression profiling.Genome Inform.2007,18,287-298.
    [27]Beliaev,A.S.;Thompson,D.K.;Khare,T.;Lim,H.;Brandt,C.C.;Li,G.;Murray,A.E.;Heidelberg,J.F.;Giometti,C.S.;Iii,Y.J.;Nealson,K.H.;Thedje,J.M.;Zhou,J.Gene and protein expression profiles of Shewanella oneidensis during anaerobic growth with different electron acceptors.Omics 2002,6,39-60.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700