带状电子注的形成,传输与应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
带状(或片状,高椭圆率)电子注器件,也被称为平板结构器件,是微波,毫米波电真空器件新的发展方向之一,也是一个正在被不断开拓的领域。由于带状电子注器件具有空间电荷场低,能够传输大电流等一些独特的优点,使它更适用于产生高频率,高功率的辐射。而高频率(频率高至太赫兹),高功率(功率高至吉瓦级)的电真空器件一直以来都是我们追求的目标,因此,对带状电子注器件的研究是非常必要的。
     本文对带状电子注的形成和稳定传输进行了深入的研究,主要工作如下:
     一、基于对轴对称收敛型皮尔斯枪研究,提出了设计了带状电子注电子枪的方法,并采用该电子枪直接发射了带状电子注。
     二、研究了采用磁四极子对圆柱形电子注进行水平方向扩散,垂直方向压缩,从而形成带状电子注的方法。
     三、提出并研究了椭圆螺线管压缩圆柱形电子注形成带状电子注的方法。
     四、研究了在螺线管磁场中带状电子注Diocotron不稳定性(即Diocotron模)的形成。分析了各个参数对Diocotron不稳定性的影响。
     五、对周期磁场结构(包括周期摇摆磁场,周期凹凸磁场)抑制Diocotron不稳定性,稳定传输带状电子注的条件进行了深入研究。
     六、提出了周期对称和非对称磁四极子能够稳定传输带状电子注,并通过分析得到了其稳定传输带状电子注的条件。
     七、分析了周期椭圆螺线管磁场,并对该磁场以及其稳定传输带状电子注的条件进行了系统研究。
     八、组建了带状电子注器件的实验平台,正在开展带状电子注器件的实验研究。
     通过本文的研究,在现有的条件下,带状电子注的形成和稳定传输(即聚焦并抑制Diocotron不稳定性)是可行的,进一步推动和发展带状电子注器件是必须也是现实的。本文的研究为进一步发展高功率、高频率带状电子注电真空器件打下了良好的基础。
Sheet electron beam (or ribbon beam, high-elliptical beam) vacuum electronic devices, or planar devices, are one of the developing fields and a new branch of modern vacuum electronics. Sheet electron beam devices can be a new branch and suitable to produce high-power, high-frequency radioation, because of their unique virtues-be able to transport high current beam at reduced space charge field. In the twenty-first century, high-frequency(to teraherz), high-power(to gigawatt) are two most important development of modern vaccum electronics. Sheet electron beam device will be well boom in this background.
     In this paper, some basic research on sheet electron beam device are done and lised as the following:
     1. based on the research of Pierce gun, we design sheet electron beam gun and produce sheet electron beam. .
     2. we have acquired sheet electron beam from round electron beam, when the round beam pass through a quadrupole, because quadrupole can extant the electron beam in horizontal direction, while it can compress the electron beam in vertical direction.
     3. We acquire sheet electron beam by round electron beam pass through a elliptical solenoid.
     4. We have investigated the diocotron mode (diocotron instability) of sheet electron beam.
     5. We have investigated the conditions for stably transporting sheet electron beam in periodic magnetic field (include wiggler field and periodic cusped magnetic field).
     6. We have investigated the conditions for stably transporting sheet electron beam in periodic magnetic quadrupole (include symmetric and non-symmetric quadrupole).
     7. We have investigated the conditions for stably transporting sheet electron beam in periodic elliptical solenoid.
     8. We have set up platform for experimental of sheet electron beam device. We have designed sheet electron beam BWO and are carrying on experimental.
     Based on our research, formatting and stably transporting sheet electron beam is possible. Research on sheet electron beam devices is urgent and real. The methods in this paper are viable ways for formation and focusing sheet electron beam and will be useful in further study and design of high-power, high-frequency sheet electron beam devices.
引文
[1] H.A.Boot, J.T.Randall. Historical notes on the cavity magnetron. IEEE-ED, 1976, ED23(7):724-729
    [2] G.B.Collins. Microwave magnetrons. MIT radar laboratory series, Vol.6, McGrawhill, New York,1948.
    [3] W.E.Willshaw, L.Rushfort, A.G.Stainsby, et al. High-power pulsed magnetron development and design for radar application. J.Inst.Electr.Eng.XCIII(Part IIIA, No5),1946,985-1005.
    [4] R.kompfner. The invention of the traveling wave tube. San Francisco Prent, 1964
    [5] V.L.Ginzburg. On emission of microwaves and their absorption in air. Izv.Akad.Nmik SSSR, 1947, Ser. Fiz.11, 165-182
    [6] L.Brillouin. A theorem of larmour and its importance for electrons in magnetic field. Phys. Rev., 1945,67(260):260-266
    [7] J.R.Pierce. Theory of the beam type traveling wave tube. Proc. IRE, 1947,35(1):111-123.
    [8] C.V.Litton. Electrode structure for velocity modulation tubes. US Patent No.2325865,1943
    [9] J.R.Pierce. Rectilinear flow in beams. J.Appl.Phys., 1940,11(8):548-554
    [10]M.A.Allen, G.S.Kino. On the theory of strongly coupled cavity chains. IRE Trans. MTT 1960,8(3):362-372
    [11]M.Chodorow, R.A.Craig. Some new circuits for high power traveling wave tubes. Proc.IRE, 1957,45(8):1106-1118
    [12]J.R.Pierce. Traveling Wave Tubes. D.Van.Nostrand, New York, 1950.
    [13]R.kompfner, N.T.Williams. Backward wave tubes. Proc. IRE, 1953,41(51):1602-1611
    [14]P.Guenard, O.Doehler, B.Epsztein. New oscillator tubes with wide electronic tuning band for urltra-high frequencies. Compt.Rend.Acad.Sci. Paris, 1956,235(1):236-237
    [15]R.M.Phillips. The ubitron, a high-power traveling-wave tube based on a periodic beam interaction in unloaded waveguide. IRE-ED,1960,ED-7(4):231-241
    [16]J.Verweel, G.H.Plantinga. A range of waves. Philips Tech.Rev., 1959,21(Dec):1-9
    [17]J.Feinstein, R.J.Collier. A magnetron controlled by symmetrically coupled TE011 mode cavity. Le vide,1957,12(1):247-254
    [18]J.A.Saloom. U.S. DoD advisory committee on electron devise. private communication. 2003
    [19]W.C.Brown. The microwave magnetron and its derivatives. IEEE-ED,1984,ED-31(11):1595-1605
    [20]W.C.Brown. Description and operating characteristics of the platinotron- a new microwave tube device. Proc.IRE,1957,45(9):1209-1222.
    [21]J.E.Sterrett, J.Heffner. The design of periodic magnetic focusing structures. IRE-ED, 1958, ED-5(1):35-42
    [22]O.Buneman. Dissipation of electron currents in ionized media. Phys.Rew., 1959, 115, 507-508.
    [23]C.E.Enderby, R.M.Phillips. The ubitron amplifier-a high power millimeter wave TWT. Proc.IEEE, 1965, 53(10): 1648-1650
    [24]I.I.Antakov, V.M.Bokov, R.P.Vasilev, et al. Interaction of trochoidal electron beam with electromagnetic wave in a rectangular waveguide. Izv.Vuz.Radiofit, 1960, 3(6):1033-1044
    [25]I.I.Antakov, A.V.Gaponov, O.V.Malygin, et al. Application of induced cyclotron radiation of electrons for the generation and amplification of high power electromagnetic waves. Radio Eng.Electron Phys., 1966,11(1):1195-1197
    [26]V.A.Flyagin, A.V.Gaponov, M.I.Petelin, et al. The gyrotron. IEEE-MTT, 1977,25(6):514-521
    [27]J.F.Skowron, W.C.Brown, G.H.Macmaster. The super power CW amplitron. Microwave J., 1964, 1(1):65-69
    [28]V.Vanke, et al. Cyclotron wave electrostatic and parametric amplifiers. US Naval Research Laboratory Report NRL/MR/6707-97-7910,1977
    [29]E.I.Gordon. Charged-partile orbits in varying magnetic fields.J.App.Phys.,1960, 31(7):1187-1190
    [30]V.A.Vanke, V.M.Lopukhin, V.L.Savvin. Super low-noise cyclotron-wave amplifiers. Uspekhi Fiz Nauk, 1969,99(4):545-546
    [31]G.H.Plantinga. Pulsed magnetrons for 4 and 2.5mm wavelength. Microwave-proceedings of the 4th international congress, 1963,202-205
    [32]M.A.Allen, C.S.Biechler, P.Chorney. Beam-plasma amplification for high power density application. Proceedings of 5th intern. Congress on microwave tubes. Paris France, 1964, Academic Press, 435-438
    [33]Ta.Yeou. Generation des ondes millimetriques et submillimetriques. Tubes pour Hyperfrequences travaue du 5th congress international, Paris, 1964,151-161
    [34]A.L.F.Eastman. Superpower tubes: Their capabilities and limitations. Electronics, 1964, 37(20):48-54
    [35]R.Day, J.A.Noland. A space charge focused extended interaction Oscillator for MinllimeterWave. in Proceedings,Tubes pour Hyperfrequences travaue du 5th congress International,Paris,1964,157-159
    [36]A.D.Larue. The twystron hybird TWT. Electron.Des.News, 1964, 9 :S17-S23
    [37]F.S.Rusin, and G.D.Bogomolov. Generation of electromagnetic oscillations in an open resonator. 1966, JETP Lett., 4(1):160-162.
    [38]李名加,康强,常安碧. Tesla变压器与Blumlein线一体化装置设计.强激光与粒子束,2010,22(6):1429-1432
    [39] N.C.Christofios. High-current linear induction accelerator for electrons. Rev.Sci. Instrum. ,1964,35(7):886-890
    [40]E.Schamiloglu, R.J.barker, M.Gundersen, et al. modern pulsed power: Charlie Martin and beyond. Proc IEEE, 2004, 92(7):1014-1020
    [41]C.A.Spindt. A thin film field-emission cathode. J.Appl.Phys., 1968,39(12):3504-3505
    [42]R.J.Collier, G.D.Helm, J.P.Laico, and K.M.Striny. The ground station high-power traveling-wave tube.The Bell Syst.Tech.J., 1963,23(1): 1829-1861
    [43]Caryotakis, George. Stanford Linear Accelerator, Private communication,2003
    [44]Lange, Gordon. Boeing Electron Devices Division. Private communication, 2003
    [45]V.E.Golant. Electron cyclotron heating of a tokamak plasma. Physica Scripta, 1982, T2(2):428-434
    [46]B.G.Eremin, A.G.Litvak. Observation of electromagnetic wave self-focusing in plasma. Pisma Zh.Eksp.Teor.Fiz, 1971, 13(1): 603-606
    [47]N.L.Zaytsev, T.B.Pankratova, M.I.Petelin. Millimeter and submillimeter-wave gyrotrons. Radio Eng.Electron.Phys., 1974, 21(1), 103-107
    [48]M.E.Read. Spatial and temporal coherence of a 35GHz gyromonotron using the TE01 circular mode. IEEE-MTT, 1980, 28(8):875-878
    [49]N.S.Ginzburg, V.I.Krementsov, M.I.Petelin, P.S.Strelkov, and A.G.Shkvarunets. Cyclotrons-resonance maser with a high-current relativistic electron beam. Pis’ma ZhTF , 1978, 4(1):149-153 [Sov.Tech.Phys.Lett., 1978,4(1):61-62
    [50]S.E.Graybill, S.V.Nablo. Observations of magnetically self-focusing electron streams. Appl.Phys.Lett., 1966, 8(1):18-20
    [51]L.A.Harris. Closely spaced,aligned grids in vacuum tubes. IRE-ED ,1961, ED-8(6):480-488
    [52]G.Bekefi,and T.S.Orzechowski. Giant microwave bursts emitted from a field-emission,relativistic-eletron-beam magnetron. Phys.Rev.Lett., 1976, 37(6):379-382.
    [53]D.A.G.Deacon, L.R.Elias, J.M.J.Madey, et al. First operation of a free electron laser. Phys.Rev.Lett., 1977,38(16):892-894
    [54]H.P.Freund, T.M.Antonsen,Jr. Principles of Free-Electron Lasers. 2nd edit, Chapman & Hall, London, 1996
    [55]M.C.Clark, B.M.Marder, L.D.Bacon. Magnetically insulated transmission Line Oscillator, Appl.Phys.Lett., 1988, 52(1):78-80
    [56]S.D.Korovin, V.V.Rostov, A.V.Smorgonskly. A plused periodic relativistic carciotron. Radiophys. Quantum Electron, 1986, 29(12): 1278-1280
    [57]V.V.Alikaev, N.L.Vasin, Yu.V.Esipchuk. Optimal ECR power deposition profile in T-10 tokamak. Proceedings 14th European conference on controlled fusion and plasma physics, Madrid, spain, 1987, 11D, 854
    [58]K.E.Felch, H.Huey, H.Jory. Gyrotrons for ECH applications. J.Fusion Energy, 1990, 9(1):59-75
    [59]P.Garin,E.Jedar, G.Jendrzejchak. Symmetric and non-symmetric modes in a 200KW,100GHz gyrotron. Digest of 12th international conference on IR and MM waves, Orlando, FL, December 1987,W4.2, 194-195
    [60]R.Longo. Dispenser Cathode life model. Proceedings of the IEDM, 1984, 318
    [61]S.Gilmour,Jr. principles of traveling wave tubes. Artech house, Boston, 1994
    [62]C.R.Smith, C.M.Armstrong, J.Duthie. The microwave power module: a versatile RF building block for high-power transmitters. Proc.IEEE, 1999, 87(5): 699-889
    [63]H.Limberg. Boeing Electron Devices Division. Private Communication, December, 2002.
    [64]K.L.Felch, B.G.Danly, H.R.Jory, et al. Characteristics and applications of fast-wave gyrodevices. Proc.IEEE, 1999, 87(5):752-781
    [65]A.G.Litak, M.V.Agapova, G.G.Denisov, et al. New results in development of MW output power gyrotrons for fusion systems. Digest of 27th International conference on infrared and millimeter waves, 2002, San Diego, CA, 295-296
    [66]A.A.Tolkachev, B.A.Levitan, G.K.Solovjev, et al. A megawatt power millmeter-wave phased-arry radar. IEEE AES Syst.Mag, 2000,15(7): 25-31
    [67]D.Sprehn. SLAC RF source research at X-band. Proceedings of RF 2003 6th work shop on high energy density and high power RF, Coolfont, West Virginia, 2003, S.H.Gold and G.S.Nusinovich, AIP conf.proc. 691,15-21
    [68]G.Caryotakis, E.Jongewaard, R.phillips, et al. Gigawatt Multibeam Klystron(GMBK): A2-Gigawatt, 1,Microsecond, microwave source. Proceedings of 11th International conference on high power particle beams, Prague, Czeth Republic, 1996
    [69]S.D.Korovin, S.D.Polevin, A.M.Roitman, et al. Relativistic backward wave tube with variable phase velocity. Sov.Tech.Phys.Letter, 1992, 18(2):265-267
    [70]Y.Carmel, K.Miami,R.A.kehs, et al. Demonstration of efficiency enhancement in a high-power back ward-wave oscillator by plasma injection. Phys.Rev.Lett., 1989,62(20):2389-2392
    [71]D.M.Goebel, R.MWatkins. High current low pressure plasma cathode electron gun. Rev.Sci.Instrum, 2000, 71(2): 388-389
    [72]D.M.Goebel, Y.Carmel, G.Nusinovich. Advances in plasma filled microwaves sources. Phys.Plasmas, 1999, 6(5): 2225-2232
    [73]A.B.Shkvarunets, Y.Carmel, G.S.Nusinovich, et al. Realization of high efficency in a plama-assisted microwave source with two dimensional electron motion. Phys of Plasmas, 2002, 9(10):4114-4117
    [74]M.M.Karliner. The magnicon-an advanced version of the gyrotron. Nucl.Instrum.Methods, 1988, A269(5):459-473
    [75]R.Miler. Pulse shortening in high-perk-power Reltron tubes. IEEE-PS, 1998, 26(3): 340-347
    [76]J.H.Booske. Plasma physics and related challenges of millimeter-wave-to-terahertz and high power microwave generation. Phys of Plasma, 2008, 15(5): 055502, 1-16
    [77]B.E.Carlsten, L.M.Earley, F.L.Krawczyk, et al. stable two-plane focusing for emittance dominated sheet-beam transport. Phys.Rev Special topics-accelerators and beams, 2005, 8(6) :062002, 1-17
    [78]B.E.Carlsten, L.M.Earley, S.J.Russell, et al. Technology development for a mm-wave sheet beam traveling-wave tube. IEEE.Tran.PS, 2005, 1(33):85-93
    [79]王战亮.带状电子注Diocotron不稳定性研究.[硕士学位论文].成都:电子科技大学,2006
    [80]Humphries, S.Russell, B Carlsten, et al. Circular-to-planar transformations of high-perveance electron beam by asymmetric solenoid lenses. Phys.Rev., Spcical topics-Accelerators and beams, 2004, 7(6), 060401:1-10
    [81]J.H.Booske, W.W.Destler, Z.Segalov, et al. Propagation of Wiggler focused relativistic sheet electron beams,J.Appl.Phys., 1988, 64(6): 6-11
    [82]J.H.Booske, B.D.Mcvey, T.M.Antonsen Jr. Stability and confinement of nonrelativistic sheet electron beams with periodic cusped magnetic focusing. J. Appl. Phys., 1993, 73(9): 4140-4155
    [83]R.L.Kyhl, H.F.Webster. Breakup of hollow cylindrical electron beams. IRE Trans. Electron Devices, 1956, ED-3(4):172-183
    [84]C.C.Cutler. Instability in hollow and strip electron beams. J.Appl.Phys., 1956, 27(9):1028-1029
    [85]J.R.Pierce. Instability of hollow beams. IRE Trans. Electron Devices, 1956, ED-3(4):183-189
    [86] O.Buneman. Ribbon Beams. J.Electron.Control, 1957, 3(5):507-509
    [87]W.Fnauer. Diocotron instability in plasmas and gas discharges. J.App.Phys., 1966, 37(2):602-611
    [88]O.Buneman. Stability of crossed-field electron beams. J.App.Phys., 1966, 37(8):3203-3222
    [89]R.W.Gould. Space charge effects in beam-type magnetrons. J.App.Phys., 1957, 28(5):599-605
    [90] T.M.Antonsen, Jr. and E.Ott. Velocity shear driven instabilities of an unneutralized electron beam. Phys.Fluids, 1975, 18(9):1197-1208
    [91] R.C.Davidson, H.W.Chan, C.Chan, et al. Equilibrium and stability properties of intense non-neutral electron flow. Rev.Mod.Phys, 1991, 63(2):341-374
    [92] R.Cdavidson, K.T.Tang, H.S.Hum. Diocotron instability for intense relativistic non-neutral electron flow in planar diode geometry. Phys.Fluids, 1988, 31(6):1727-1737
    [93] E.T.Scharlemann. Wiggler plane focusing in linear Wigglers. J.Appl.Phys.. 1985, 58(6):2154-2161
    [94] S.Humphries, S.Russell, B.Carlten, et al. Focusing of high-perveance planar electron beams in a miniature Wiggler magnet array. IEEE.Trans. Plasma Sci., 2005, 33(2):882-891
    [95] W.W.Destler, V.L.Granatstein, I.D.Mayergoyz, et al. Near-millimeter free electron laser designs based on measured characteristics of small-period electromagnet Wigglers. J.Appl.Phys., 1986, 60(2):521-528
    [96] B.E.Carlsten, L.M.Earley, F.L.Krawczyk, et al. stability of an emittance-dominated sheet-electron beam in planar Wiggler and periodic permanent magnet structures with natural focusing. Phys. Rev.ST Accel.Beams, 2005, (8 062001)
    [97] J.H.Booske, A.H.Kumbasar, M.A.Basten. Periodic focusing and ponderomotive stabilization of sheet electron beams. Phys.Rev.Lett., 1993, 71(24):3979-3982
    [98] J.H.Booske, M.A.Basten, A.H.Kumbasar, et al. Pperiodic magnetic focusing of sheet electron beams. Phys.Plasma Sci.s, 1994, 1(5):1714-1720
    [99] M.A.Basten. Formation and transport of high-perveance electron beams for high-power, high-frequency microwave devices. Ph.D.dissertation, University of Wisconsin-Madison,Madison, WI, 1996
    [100] M.A.Basten, and J.H.Booske. Two-plane focusing of high-space-charge sheet electron beams using periodically cusped magnetic fields. J.Appl.Phys., 1999, 85(9) :6313-6322
    [101] J.H.Booske, M.A.Basten. Demonstration via simulation of stable confinement of sheet electron beams using periodic magnetic focusing. IEEE.Tran. Plasma Sci., 1999, 27(1):134-135
    [102]王战亮,宫玉彬,魏彦玉,等.周期凸起磁场聚焦带状电子注的3维粒子模拟.强激光与粒子束,2007,12(19):2075-2078.
    [103] V.Ivanov, A.Krasnykh, G.Scheitrum, et al. 3D modeling activity for novel high power electron gun at SLAC. Proceedings of the 2003 Particle Accelerator Conference, 2003, 3312-3314.
    [104] P.John, N.Khanh, W.Edward, et al. Low-voltage, sheet beam MMW amplifiers. 2008, IRMMW-THz 2008, 33rd International conference on Infrared, Millimeter and Terahertz Waves, 1-2
    [105] N.Khanh, P.John, W.Edward, et al. High-perveance W-band electron gun design. IEEE 35th International conference on plasma science ,2008, ICOPS, 2008,179-180
    [106] J. H. Booske, Daniel J. Radack, Thomas M.Antonsen. Design of high average power near millimeter free electron laser oscillators using short period Wigglers and sheet electron beams. IEEE Trans. Plasma Sci., 1990, 18(3):399-415
    [107] Wang Shuzhong, Wang Yong, Ding Yaogen, et al. Design of an electron optics system for a W-band sheet beam Klystron. IEEE Trans PS, 2008, 16(3):665-669
    [108] Jin Xu, Wenxiang Wang and Ling-na Yue, et al. Slow-wave characteristics of elliptical corrugated waveguides with a concentrical circular hole. Chin. Phys. Lett., 2006, 23(1):243-246
    [109] Jin Xu, Wenxiang Wang and Yubin Gong. Characteristic study of the periodically iris-loaded elliptical waveguide for slow-wave structures. Int. J. of Infra. and Millim. waves, 2005, 26(9):1355-1168
    [110] J.Rodney, M.Vanshan. Synthesis of the pierce gun. IEEE Trans ED, 1981,28(1):37-41
    [111] R.D.Fiost, O.T.Rurl. ASD Rep. Watkins-Johnson co., 1962, ASD-TR-61-635
    [112] Li Lili, Wang Yiman, Liu Wei, et al. Development of high-current sheet beam cathodes for terahertz sources. IEEE Trans.ED, 2009,5(56):762-767
    [113]代宪菊.大功率行波管周期永磁聚束系统研究. [硕士学位论文].成都:电子科技大学,2004
    [114]廖平,杨中海,雷文强.周期永磁聚焦电子注性能计算机模拟.强激光与粒子束, 2004, 16(1):68-72
    [115] M. A. Basten, J. H. Booske, J. Anderson. Magnetic quadrupole formation of elliptical sheet electron beams for high power microwave devices. IEEE Trans. Plasma Sci., 1994, 22(5):960-966
    [116] Ze-Xiang Zhang, Victor L.Granatstein & W.W.Destler, et al. Experimental and numerical studies of sheet electron beam propagation through a planar Wiggler magnet. IEEE.Tran. Plasma Sci., 1993, 21(6) :760-767
    [117] D. J. Radack, J. H. Booske, Y. Carmel. Wiggler focused relativestic sheet beam propagation in a planar free electron laser configuration. Appl. Phys. Lett., 1989, 55(20) :2069-2071
    [118]王树忠,王勇,丁耀根,等.Wiggler聚焦带状注速调管电子光学系统设计.强激光与粒子束,2007, 19(9):1517-1520
    [119] J. Joe, J. Scharer, J. Booske. Wave dispersion and growth analysis of low voltage grating cerekov amplifiers. Phys. Plasma, 1994, 1(1):176-188
    [120] L. J. Louis, J. E. Scharer, J. H. Booske. Collective single pass gain in a tunable rectangular grating amplifier. Phys. Plasma, 1998, 5(7):2797-2805
    [121] Brian D. Mcvey, Mark A. Basten, John H. Booske. Analysis of rectangular waveguide-gratings for amplifier applications. IEEE. Trans. Microwave Theory Tech., 1994, 42(6) :995-1003
    [122] Lu Zhigang, Gong Yubin, Wei Yanyu, et al. Analysis of rectangular waveguide grating slow-wave structure with the arbitrary shaped grooves. IJIMW, 2006, 6(27):791-807
    [123] Lu Zhigang, Gong Yubin, Wei Yanyu, et al. Study of the double rectangular waveguide grating slow-wave structure. Chin.Phys., 2006, 11(15):2661-2668.
    [124] Lu Zhigang, Gong Yubin, Wei Yanyu, et al. Dielectric effect on the radio-frequency characteristics of a rectangular waveguide grating traveling wave tube. IJIMW, 2006, 27(8):1095-1108.
    [125]王贵荣,杨震华.圆柱螺旋电磁Wiggler的场形分析.强激光与粒子束, 1998, (10)4:499-504
    [126]唐天同,康永锋,王兆宏.考虑电子热初速分布计算磁聚焦强流电子注的新方法.真空科学与技术学报, 2004, 24(3):161-165
    [127]孙瑜,屈迅,唐天同.周期永磁聚焦系统直流状态下聚焦性能的计算机模拟.电子学报,1997, 25(6):94-96
    [128] J.T.Donohue, J.Gardelle. Simulation of smith-purcell radiation using a particle-in-cell code. Phys.Rev. special topic- accelerators and beams, 2005, 8(6):060702:1-9
    [129] J. H. Booske, S. W. Bidwell, B. Levuah. Universal efficiency and gain computations for high gain free electron laser amplifiers. J. Appl. Phys., 1991, 69(11):7503-7509
    [130]电子管设计手册编辑委员会.微波电子管磁路设计手册.北京:国防工业出版社,1984,275-278

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700