超临界CO_2中γ射线预辐射高聚物的整体接枝改性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
通用高分子材料如聚丙烯、聚乙烯的功能化接枝改性是改善其性能提高附加值的重要途径之一。目前,最常用的溶液和熔融接枝方法存在诸如使用大量有机溶剂、反应温度偏高和非接枝均聚物多且难以除去等问题。
     本论文结合γ-射线预辐射聚合物形成的陷落自由基引发接枝聚合和超临界CO_2溶胀聚合技术的优势,提出一种在较低温度下对聚合物材料进行整体化学接枝改性新方法。其基本路线是:将聚合物基体置于具有高穿透能力的γ-射线场中辐照,整体高聚物材料将产生较为均匀并具有稳定性的大分子陷落自由基。然后,在辐照场外与溶解在超临界CO_2中的单体进行接枝聚合反应。由于超临界CO_2对高聚物的溶胀作用,使得单体不仅在材料表面而且还渗透到材料内部参与接枝反应,达到整体接枝改性目的。接枝改性程度可以通过辐照剂量、接枝时间、温度等实验参数来调控。成功实现了苯乙烯、甲基丙烯酸甲酯、N-乙烯基吡咯烷酮和甲基丙烯酸β-羟乙酯等乙烯基单体对聚丙烯、低密度聚乙烯和硅橡胶等聚合物膜的整体化学接枝改性。接枝过程中无需使用有机溶剂,同时还避免了接枝单体及其均聚物在改性聚合物材料中残留。采用红外光谱、元素分析、扫描电镜、透射电镜和动态接触角测定等方法对接枝共聚物进行表征。透射电镜分析表明接枝聚合物链是以纳米尺寸均匀分布在整个改性聚合物基体中。DSC和XRD分析表明接枝聚合反应主要发生在聚合物基体的无定型部分,而且接枝聚合物链也是无定型的。
     针对大分子陷落自由基不稳定,不易保存等缺点,将预辐射过氧化物接枝法与超临界CO_2溶胀聚合方法有机地结合起来,提出了超临界CO_2中大分子过氧自由基引发聚合物整体化学接枝改性新方法。以苯乙烯为模式乙烯基单体,探讨了聚乙烯和聚丙烯在超临界CO_2中过氧自由基引发苯乙烯接枝反应中的反应时间、温度、压力和单体浓度对接枝率的影响。改性聚合物膜在各个层面碳含量分析表明:接枝聚苯乙烯链均匀分布在整个改性聚合物膜。较之前一种方法,本方法更容易操作,也易获得高接枝率;接枝聚合物中未接枝均聚物低于5%;改变实验参数,容易对接枝过程进行控制。改性聚合物膜内、外层的红外光谱和切面电镜分析也充分表明整体接枝的均匀性。
     在上述工作基础上,结合氮氧基活性自由基聚合方法的优势,初步实现了苯乙烯和甲基丙烯酸甲酯对聚烯烃膜的整体活性接枝聚合改性。
Functional graft-modification of general-purpose polymer materials such as polypropylene or polyethylene is one of important routes for providing the desired properties in connection with higher added value applications. Usually, grafting reaction is carried out in organic solvent or melts extrusion. The limitation in these methods is that the need for organic solvent or/and the requirement for high temperature lead to the formation of ungrafted homopolymer, which along with organic solvent and unreacted monomer trapped in polymer substrate is very difficult to remove.
     In this thesis, a green and versatile route for uniform bulk graft-modification of vinyl monomers to polymer materials at relatively low temperature was presented by combining gamma (γ)-ray preirradiation-induced graft copolymerization and supercritical CO_2-swelling polymerization techniques. The polymer substrates were first irradiated withγ-rays originated from cobalt-60 resource under nitrogen atmosphere at ambient temperature, and thereby leading to uniform formation of trapped radicals on polymer backbone. Then, the produced polymer trapped-radicals were utilized to initiate graft-polymerization of vinyl monomers dissolved in supercritical CO_2 within polymer substrates. Finally, the un-reacted monomers trapped in polymer matrix were further removed via supercritical CO_2 extraction. Altering irradiation dose, reaction time and temperature can control the grafting process. The present method was succeeded in applying to bulk chemical graft-modification of various vinyl monomers such as styrene, N-vinylpyrrolidone (N-VP), methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) to polypropylene, low-density polyethylene and silicon rubber membranes. The grafting process did not require any organic solvent, and the resulting modified polymer materials did not remain unreacted monomer as well as ungrafted homopolymer. The bulk graft-modification of polymer materials were confirmed by fourier transform infrared spectroscopy (FTIR), element analysis, dynamic contact angles determination, scanning electron microscope (SEM) and transmission electron microscopy (TEM) analyses. SEM and TEM micrographs indicated that the side graft-chains in nano size were uniformly dispersed in the polymer matrix throughout the thickness of the modified sample. Differential scanning calorimetry (DSC) measurements showed that the graft predominately occured in amorphous part of the polymer substrate and the resulting graft-chains were also amorphous.
     In consideration of their low stability of polymer trapped-radicals, a novel method for bulk graft-modification of polymer materials was presented by combining gamma (γ)-ray preirradiation-induced polymer-diperoxide graft-copolymerization and supercritical CO_2-swelling polymerization techniques. With styrene as model vinyl monomer, the influences of reaction time, temperature, pressure and monomer concentration on grafting yield were investigated in the graft-modification of styrene to polypropylene and low-density polyethylene membranes initiated by polymer-diperoxide with supercritical CO_2 both as solvent and swelling agent. As comparing with the former route, this method has some advantages such as easily controlling the reaction process and obtaining relative high grafting yield. Although ungrafted homopolymer was found in the modified polymer materials, its content was usually less than 5% with regard to that of the side graft-chains. FTIR analyses for comparing characteristic peak intensity of side graft chain of the modified polymer membranes at outer and inner layer, as well as SEM and TEM observations of a cross-section all demonstrated the uniformly bulk grafting property.
     On the basis of the work mentioned above, bulk living graft-copolymerization modification of styrene or MMA to polyolefin membranes was initially performed by combining the advantages of nitroxide-mediated living free radical polymerization.
引文
[1] 韩布兴.超临界流体科学与技术.北京:中国石化出版社,2005.
    
    [2] Johnston K P, Haynes C. Extreme solvent effects on reaction rate constants at supercritical fluidconditions. AIChE J. 1987,33: 2017-2019.
    
    [3] Brennecke J F, Chateauneuf J E. Homogeneous organic reactions as mechanistic probes in supercriticalfluids. Chem. Rev. 1999, 99: 433-452.
    
    [4] Jessop P G, Hsiao Y. Noyori R. Catalytic production of dimethylformamide from supercritical carbondioxide. J. Am. Chem. Soc. 1994, 116: 8851-8852.
    
    [5] 胡英著.近代化工热力学.上海:上海科技文献出版社,1994,p.133.
    
    [6] Guan Z, Combes J R, DeSimone J M et al. Homogeneous free radical polymerizations in supercriticalcarbon dioxide: 2. Thermal decomposition of 2,2'-azobis(isobutyronitrile). Macromolecules 1993, 26:2663-2669.
    
    [7] Hagiwara M, Mitsui H, Machi S et al. Liquid carbon dioxide as a solvent for the radiationpolymerization of ethylene. J. Polym. Sci. Part A, 1968,6(3): 603-608.
    
    [8] Hagiwara M, Mitsui H, Machi S et al. Kinetics of the γ-radiation induced polymerization of ethylene inliquid carbon dioxide. J. Polym. Sci. Part A, 1968,6(3): 609-621.
    
    [9] DeSimone J M, Guan Z, Elsbernd C S. Synthesis of fluoropolymers in supercritical carbon dioxide.Science 1992,257: 945-947.
    
    [10] DeSimone J M, Maury E E, Menceloglu Y Z et al. Dispersion polymerizations in supercritical carbondioxide. Science 1994, 265: 356-359.
    
    [11] Shieh Y T, Su J H, Manivannan G et al. Interaction of supercritical carbon dioxide with polymers Ⅰ:Crystalline polymers. J. Appl. Polym. Sci. 1996, 59: 695-705.
    
    [12] Shieh Y T, Su J H, Manivannan G et al. Interaction of supercritical carbon dioxide with polymers Ⅱ:Amorphous polymers. J. Appl. Polym. Sci. 1996, 59: 707-717.
    
    [13] Berens A R, Huvard G S. Application of compressed carbon dioxide in the corporation of additivesinto polymers. J. Appl. Polym. Sci. 1992,46: 231-242.
    
    [14] Chiou J S, Barlow J W, Paul D R. Plasticization of glassy polymers by CO_2. J. Appl. Polym. Sci. 1985,30: 2633-2642.
    
    [15] Lee M, Tzoganakis C, Park C B. Measurements and modeling of PS/supercritical CO2 solutionviscosities. Polym. Sci. Eng. 1999, 39: 99-109.
    
    [16] Zhang Y, Gangwani K K, Lemert R M. Sorption and swelling of block copolymers in the presence ofsupercritical fluid carbon dioxide. J. Supercrit. Fluids. 1997, 11(1-2): 115-134.
    
    [17] Goel S K, Beckman E J. Modelling the swelling of crosslinked elastomers by supercritical fluids.Polymer 1992, 33: 5032-5039.
    
    [18] Sand M L. Method for inpregnating a thermoplastic polymer. 1986. US: 4598006.
    
    [19] Shenoy S L, Kaya P, Erkey C et al. Synthesis of conductive elastomeric foams by an in situpolymerization of pyyrole using supercritical carbon dioxide and ethanol solvents. Synthetic. Met. 2001,123(3): 509-514.
    [20] Fu Y, Palo D R, Erkey C et al. Synthesis of conductive polypyrrole/polyurethane foams via a supercritical fluid process. Macromolecules 1997, 30: 7611-7613.
    
    [21] Nazem N, Taylor L T, Rubira A F. Metallized poly(etherether ketone) films achieved by supercritical fluid impregnation of a silver precursor followed by thermal curing. J. Supercrit. Fluids. 2002, 23(1): 43-57.
    
    [22] Rosolovsky J, Boggess R K, Rubira A F et al. Supercritical fluid infusion of silver into polyimide films of varying chemical composition. Mater. Res. 1997, 12(11): 3127-3133.
    
    [23] Schlenker W, Werthemann D, Liechti P et al. Disperse dyeing of hydrophobic textiles with azo dyes in supercritical carbon dioxide. EP: 474600, 1992.
    
    [24] Goel S K, Beckman E J, Nucleation and growth in microcellular materials: Supercritical CO_2 as foaming agent. AIChE J. 1995,41: 357-367.
    
    [25] Krause B, Diekmann K, van der Vegt N F A et al. Open nanoporous morphologies from polymeric blends by carbon dioxide foaming. Adv. Mater. 1995, 7: 1041-1044.
    
    [26] Siripurapu S, Gay Y J, Royer J R et al. Generation of microcellular foams of PVDF and its blends using supercritical carbon dioxide in a continuous process. Polymer 2002, 43(20): 5511-5520.
    
    [27] Matsuyama H, Yano H, Maki T et al. Formation of porous flat membrane by phase separation with supercritical CO_2. J. Membr. Sci. 2001, 194: 157-163.
    
    [28] Matsuyama H, Kim M, Lloyd D R. Effect of extraction and drying on the structure of microporous polyethylene membranes prepared via thermally induced phase separation. J. Membr. Sci. 2002, 204: 413-419.
    
    [29] DSxon D J, Luna-Barcenas G, Johnston K P. Microcellular microspheres and microballoons by precipitation with a vapour-liquid compressed fluid antisolvent. Polymer 1994, 35(18): 3998-4005.
    
    [30] Watkins J J, McCarthy J T. Polymerization in supercritical fluid-swollen polymers: A new route to polymer blends. Macromolecules 1994,27:4845-4847.
    
    [31] Watkins J J, McCarthy J T. Polymerization of styrene in supercritical CO_2-swollen poly (chlorotri- fluoroethylene). Macromolecules 1995, 28: 4067-4074.
    
    [32] Arora K A, Lesser A J, McCarthy T J. Synthesis, characterization and expansion of poly(tetrafluoro ethylene-m-hexafluo-propylene)/polystyrene blends processed in supercritical carbon dioxide. Macromolecules 1999, 32: 2562-2568.
    
    [33] Rajagopalan P, McCarthy T J. Two-step surface modification of chemically resistant polymers: Blend formation and subsequent chemistry. Macromolecules 1998, 31(15): 4791-4797.
    
    [34] Li D, Han B X. Phase behavior of supercritical C02/styrene/poly(vinyl chloride) system and synthesis of polystyrene/poly(vinyl chloride) composites. Macromolecules 2000, 33(12): 4555-4560.
    
    [35] Dai X H, Liu Z M, Han B X et al. Preparation of poly(vinyl chloride)/polystyrene miscible blends using supercritical CO_2 as a swelling agent. Macro. Rapid. Commun. 2002, 23(10): 626-629.
    
    [36] Liu Z, Dong Z, Han B X et al. Composites prepared by the polymerization of styrene within supercritical CO_2-swollen polypropylene. Chem. Mater. 2002, 14: 4619-4623.
    
    [37] Sun D H, Wang B, He J et al. Grafting of polypropylene with N-cyclohexylmaleimide and styrene simultaneously using supercritical CO_2. Polymer 2004, 45: 3805-3810.
    
    [38] Li D, Han B X. Impregnation of polyethylene (PE) with styrene using supercritical CO_2 as the swelling agent and preparation of PE/polystyrene composites. Ind. Eng. Chem. Res. 2000, 39: 4506-4509.
    [39] Dong Z X, Liu Z, Han B X et al. Modification of isotactic polypropylene films by grafting methyl acrylate using supercritical CO_2 as a swelling agent. J. Supercrit. Fluids. 2004, 31: 67-74.
    
    [40] Muth O, Hirth T, Vogel H. Polymer modification by supercritical impregnation. J. Supercrit. Fluids 2002,17(1):65-72.
    
    [41] Kung E, Lesser A J, McCarthy T J. Composites prepared by the anionic polymerization of ethyl 2-cyanoacrylate within supercritical carbon dioxide-swollen poly(tetrafluoroethylene-co-hexafluoro propylene). Macromo'ecules 2000, 33(22): 8192-8199.
    
    [42] Li D, Liu Z M, Han B X et al. Preparation of nanometer dispersed polypropylene/polystyrene interpenetrating network using supercritical CO_2 as a swelling agent. Polymer 2002,43(19): 5363-5367.
    
    [43] Xu Q, Chang Y N, He J N et al. Supercritical CO_2-assisted synthesis of poly(acrylic acid)/nylo(?)6 and polystyrene/nylon6 blends. Polymer 2003,44 (18): 5449-5454.
    
    [44] Liu Z M, Song L P, Dai X H et al. Grafting of methyl methylacrylate onto isotactic polypropylene film using supercritical CO_2 as a swelling agent. Polymer 2002,43 (4): 11 83-1188.
    
    [45] Spadaro G, De Gregorio R, Galia A et al. Gamma radiation induced maleation of polypropylene using supercritical CO_2: Preliminary results. Polymer 2000,41 (9): 3491-3494.
    
    [46] Gooijer de J M, Scheltus M, Jansen M A G et al. Carboxylic acid end group modification of poly(butylene terephalate) in supercritical fluids. Polymer 2003,44: 2201-2211.
    
    [47] Gooijer de J M, Ellmann J, Moller M et al. End group modification of polyamide-6 in supercritical and subcritical fluids Part 3: Amine end group modification with diketene and diketene acetone adduct in CO_2. J. Supercrit. Fluids 2004, 31: 75-87.
    
    [48] Gooijer de J M, Scheltus M, Koning C E.End group modification of polyamide-6 insupercritical and supercritical fluids Part 2: Amine and carboxylic acid end group modificationwithl, 2-epoxybutane. J. Supercrit. Fluids 2004,29: 153-164.
    
    [49] Misra B N, Dogra R, Mehta I K. Grafting onto cellulose. V. Effect of complexing agents on Fenton's Reagent (Fe_2t-H_2O_2) initiated grafting of poly (ethyl acrylate). J. Polym. Sci. Part A: Polym. Chem. 1980, 18:749-752.
    
    [50] Mishra B N, Mehta 1 K, Khetrapal R C. Grafting onto cellulose. VIII. Graft copolymerization of poly(ethylacrylate) onto cellulose by use of redox initiators. J. Polym. Sci. Part A: Polym. Chem. 1984, 22: 2767-2775.
    
    [51] Prasanth K V H, Tharanathan R N. Studies on graft copolymerization of chitosan with synthetic monomers. Carbohydr. Polym. 2003, 54(3): 43-51.
    
    [52] Xie W, Xu P, Wang W, Liu Q. Preparation and antibacterial activity of a water-soluble chitosan derivative. Carbohydr. Polym. 2002, 50: 35-40.
    
    [53] Bajpai U D N, Jain A, Ray S. Grafting of polyacrylamide onto guar gum using ascorbic acid redox initiator. J. Appl. Polym. Sci. 1990, 39(11): 2187-2204.
    
    [54] Mino G, Kaizerman S, Rasmussen E. Oxidation of pinacol by cerie sulfate. J. Polym. Sci. 1958, 31: 242-247.
    
    [55] Misra B N, Kaur 1, Dogra R. Grafting onto wool. VI. Effect of amines in cerie ion-initiated grafting of poly(vinyl acetate). J. Appl. Polym. Sci. 1979, 24: 1595-1602.
    
    [56] Zhang J, Yuan Z, Yuan Y et al. Chemical modification of cellulose membranes with sulfoamonium zwitterionic vinyl monomer to improve haemocompatibility. Coll Surf B: Biointerf. 2003,30: 249-257.
    [57] Hsueh C L, Peng Y J, Wang C C et al. Bipolar membrane prepared by grafting and plasma polymerization. J. Membr. Sci. 2003,219:1-13.
    
    [58] Han T L, Kumar R N, Rozman H D, Md Noor M A. GMA grafted sago starch as a reactive component in ultraviolet radiation curable coatings. Carbohydr. Polym. 2003, 54(4): 509-516.
    
    [59] Zhang J, Youling Y, Kehua W K et al. Surface modification of segmented poly(etherurethane) by grafting sulfoamonium zwitterionic monomer to improve haemocompatibilities. Coll Surf B: Biointerf. 2003, 30(3): 249-257.
    
    [60] Zhang J, Youling Y, Shen J et al. Synthesis and characterization of chitosan grafted poly(N,N- dimethyl-N-methacryloxyethyl-N-3-sulfopropyl ammonium) initiated by Ce(IV) ion. Eur. Polym. J. 2003, 39(4): 847-850.
    
    [61] Misra B N, Jassal J K, Pande C S. Grafting onto cellulose. Part III. Benzoyl peroxide and azobisisobutyronitrile-initiated grafting of poly(methyl acrylate). Ind. J. Chem. 1978, 16A: 1033-1035.
    
    [62] Misra 3 N, Dogra R, Kaur I et al. Grafting onto starch. II. Graft copolymerization of vinyl acetate onto starch by radical initiator. J. Polym. Sci. Part A: Polym. Chem. 1980,18: 341-344.
    
    [63] Misra B N, Dogra R. Grafting onto starch. IV. Graft copolymerization of methylmethacrylate by use of AIBN as radical initiator. J. Macromol. Sci. Chem. A. 1980, 14(5): 763-770.
    
    [64] Braun D, Braun I, Kramer I et al. Heterogeneous grafting of maleic anhydride and a-methyl styrene from atactic polypropylene. Angew. Makromol. Chem. 1997, 251: 37-48.
    
    [65] Roover B D, Devaux J, Legras R. Maleic anhydride homopolymerization during melt functionalization of isotactic polypropylene. J. Polym. Sci. Part A: Polym. Chem. 1996,34: 1195-1202.
    
    [66] Roover B D, Schavons M, Carlier V et al. Molecular characterization of maleic anhydride functionalized polypropylene. J. Polym. Sci.Part A: Polym. Chem. 1995, 33: 829-842.
    
    [67] Gaylord N G, Mishra M K. Non-degradative reaction of maleic anhydride and molten polypropylene in the presence of peroxides. J. Polym. Sci. Part C: Polym. Lett. 1983, 21: 23-28.
    
    [68] Cartier H, Hu G H. Styrene assisted melt free radical grafting of glycidyl methacrylate onto polypropylene. J. Polym. Sci. Part A: Polym. Chem., 1998, 36: 1053-1063.
    
    [69] Huang H, Liu N C. Nondegradative melt functionalization of polypropylene with glycidyl methacrylate. J. Appl. Polym. Sci. 1998, 67: 1957-1963.
    
    [70] Chen L F, Wong B, Baker W E. Melt grafting of glycidyl methacrylate onto polypropylene and reactive compatibilization of rubber toughened polypropylene. Polym. Eng. Sci. 1996, 36: 1594-1607.
    
    [71] Sun Y J, Hu G H, Lambla M. Melt free radical grafting of glycidyl methacrylate onto polypropylene. Angew. Makromol. Chem. 1995, 229: 1-13.
    
    [72] Rao G, Srinivasa S, Choudhury M S et al. Functionalization of isotactic polypropylene with acrylic acid in the melt: Synthesis, characterization and evaluation of thermomechanical properties. Eur. Polym. J. 1996,32:695-700.
    
    [73] Patel A C, Brahmbhatt R B, Jain R C. Grafting of 2-HEMA on PP and in situ chlorinated PP through solution polymerization. J. Appl. Polym .Sci. 1998, 69: 2107-2113.
    
    [74] Liu N C, Yao G P, Huang H. Influences of grafting formulations and processing conditions on properties of silane grafted moisture crosslinked polypropylenes. Polymer 2000, 41:4537-4542.
    [75] Vainio T, Hu G H, Lambla M et al. Functionalized polypropylene prepared by melt free radical grafting of low volatile oxazoline and its potential in compatibilization of PP/PBT blends. J. Appl. Polym. Sci. 1996,61:843-852.
    
    [76] Liu N C, Baker W E. Basic functionalization of polypropylene and the role of interfacial chemical bonding in its toughening. Polymer 1994, 35: 988-994.
    
    [77] Schellenberg J, Hamann B. Preparation and properties of graft copolymers of vinyl chloride on atactic polypropylene. Angew. Makromol. Chem. 1990, 174: 105-110.
    
    [78] Kaur I, Barsola R, Gupta A et al. Graft copolymerization of acrylonitrile and methacrylonitrile onto gelatin by mutual irradiation method. J. Appl. Polym. Sci. 1994, 54: 1131-1139.
    
    [79] Kaur I, Misra B N, Chauhan M S et al. Viscometric, conductometric and ultrasonic studies of gelatin-g-polyacrylamide composite. J. Appl. Polym. Sci. 1996, 59: 389-397.
    
    [80] Kaur I, Misra B N, Barsola R et al. Viscometric studies of starch g-polyacrylamide composites. J. Appl. Polym. Sci. 1993, 47: 1165-74.
    
    [81] Basu S, Bhattacharya A, Mondal P C et al. Spectroscopic evidence for grafting of N-vinyl carbazole on cellulose acetate film. J. Polym. Sci. Part A: Polym. Chem. 1994, 32: 2251-2255.
    
    [82] Aich S, Bhattacharya A, Basu S. Fluroscence polarisation of N-vinyl carbazole on cellulose acetate film and electron transfer with 1,4 dicyanobenzene. Radiat. Phys. Chem. 1997; 50(4): 347-354.
    
    [83] Aich S, Sengupta T, Bhattacharya A et al. Magnetic field effect on an exciplex between A'-vinyl carbazole grafted on cellulose acetate film and 1,4-dicyanobenzene. J. Polym. Sci. Part A: Polym. Chem. 1999,37:3910-3915.
    
    [84] Bhattacharyya S N, Maldas D, Pandey V K. Radiation induced graft copolymerization of A'-vinyl carbazole and methylmethacrylate onto cellulose acetate film. J. Polym. Sci. 1986,24: 2507-2515.
    
    [85] Peng T, Cheng Y L. PNIPAAm and PMAA cografted porous PE membranes: Living radical co-grafting mechanism and multi-stimuli responsive permeability. Polymer 2001, 42(5): 2091-2100.
    
    [86] Bellobono I R, Calgari S, Leonari M C et al. Photochemical grafting of acrylated azo dyes onto polymeric surfaces. IV. Grafting of 4-(N-ethyl N-2-acryloxyethyl)amino-4- nitroazobenzene onto cellulose. Angew. Makromol. Chem. 1981, 100: 135-146.
    
    [87] Kubota H, Suka I G, Kuroda S et al. Introduction of stimuli-responsive polymers into regenerated cellulose film by means of photografting. Eur. Polym. J. 2001, 37: 1367-1372.
    
    [88] Kubota H, Ogiwara Y. Cellulose peroxides derived from carboxylated cellulose and hydrogen peroxide. J. Appl. Polym. Sci. 1980, 25: 683-689.
    
    [89] Russell K E. Free radical graft polymerization and copolymerization at high temperatures. Prog. Polym. Sci. 2002, 27: 1007-1038.
    
    [90] Stehling U M, Malmstrom E E, Waymouth R M et al. Synthesis of poly(olefin)graft copolymers by a combination of metallocene and living free radical polymerization techniques. Macromolecules 1998, 31: 4396-4398.
    
    [91] Percec V, Barboiu B. 'Living' radical polymerization of styrene initiated by arenesulfonyl chlorides and Cul (bpy)_nCl. Macromolecules 1995, 28: 7970-7972.
    
    [92] Wang J S, Matyjaszewski K. Controlled 'Living' radical polymerization. Atom transfer radical polymerization in the presence of transition-metal complexes. J. Am. Chem. Soc. 1995,117: 5614-5615.
    
    [93] Matyjaszewski K, Xia J. Atom transfer radical polymerization. Chem. Rev. 2001, 101: 2921-2990.
    [94] Matyjaszewski K. Transition metal catalysis in controlled radical polymerization: atom transfer radical polymerization. Chem. Eur. J. 1999, 5:3095-3102.
    
    [95] Coessens V, Pintauer T, Matyjaszewski K. Functional polymers by atom transfer radical polymerization. Prog. Polym. Sci. 2001,26: 337-377.
    
    [96] Kato M, Kamigaito M, Sawamoto M et al. Polymerization of methylmethacrylate with the carbon tetrachloride /dichlorotris(triphenylphosphine)ruthenium(II) /methylaluminum bis(2,6-di-tert-butyl phenoxide) initiating system: Possibility of living radical polymerization. Macromolecules 1995, 28: 1721-1723.
    
    [97] Borner H G, Matyjaszewski K. Graft copolymers by atom transfer polymerization. Macromol. Symp. 2002, 177: 1-15.
    
    [98] Paik H J, Gaynor S G, Matyjaszewski K. Synthesis and characterization of graft copolymers of poly(vinyl chloride) with styrene and (meth)acrylates by atom transfer radical polymerization. Macromol. Rapid. Commun. 1998, 19: 47-52.
    
    [99] Hong S C, Pakula T, Matyjaszewski K. Preparation of polyisobutene-graft-poly(methylmethacrylate) and polyisobutene-graft-polystyrene with different compositions and side chain architectures through atom transfer radical polymerization (ATRP). Macromol. Chem. Phys. 2001, 202: 3392-3402.
    
    [100] Matyjaszewski K, Teodorescu M, Miller P J et al. Graft copolymers of polyethylene by atom transfer radical polymerization. J. Polym. Sci. Part A: Polym Chem 2000, 38: 2440-2448.
    
    [101] Garcia F G, Pinto M R, Soares B G. Grafting of polymethyl methacylate from poly(ethylene-co- vinylacetate)copolymer using atom transfer radical polymerization. Eur. Polym. J. 2002, 38(4): 759-769.
    
    [102] Beers K L, Gaynor S G, Matyjaszewski K et al. The synthesis of densely grafted copolymers by atom transfer radical polymerization. Macromolecules 1998, 31: 9413-9415.
    
    [103] Boerner H G, Duran D, Matyjaszewski K et al. Synthesis of molecular brushes with gradient in grafting density by atom transfer polymerization. Macromolecules 2002, 35: 3387-3394.
    
    [104] Neugebauer D, Zhang Y, Pakula T et al. Heterografted PEO-PnBA brush copolymers. Polymer 2003, 44:6863-6871.
    
    [105] Qin S, Matyjaszewski K, Xu H, et al. Synthesis and visualization of densely grafted molecular brushes with crystallizable poly(octadecyl methacrylate) block segments. Macromolecules 2003, 36: 605-612.
    
    [106] Yamada K, Miyazaki M, Ohno K et al. Atom transfer radical polymerization of poly(vinyl ether) macromoinomers. Macromolecules 1999,32: 290-293.
    
    [107] Roos S G, Mueller A H E, Matyjaszewski K. Copolymerization of n-butyl acrylate with methylmethacrylate and PMMA macromonomers: comparison of reactivity ratios in conventional and atom transfer radical copolymerization. Macromolecules 1999, 32: 8331-8335.
    
    [108] Shinoda H, Matyjaszewski K. Improving the structural control of graft copolymers. Copolymerization of poly (dimethylsiloxane) macromonomer with methylmethacrylate using RAFT polymerization. Macromol. Rapid. Commun. 2001, 22: 1176-1181.
    
    [109] Shinoda H, Matyjaszewski K, Okrasa L et al. Structural control of poly(methylmethacrylate) -g-poly(dimethylsiloxane) copolymers using controlled radical polymerization: Effect of the molecular structure on morphology and mechanical properties. Macromolecules 2003, 36: 4772-4778.
    [110] Shinoda H, Matyjaszewski K. Structural control of poly(methylmethacrylate)-g-poly (lactic acid) graft copolymers by atom transfer radical polymerization (ATRP). Macromolecules 2001,34:6243-6248.
    
    [111] Hong S C, Jia S, Teodorescu M et al. Polyolefin graft copolymers via living polymerization techniques: Preparation of poly(n-butyl acrylate)-graft-polyethylene through the combination of Pd-mediated living olefin polymerization and atom transfer radical polymerization. J. Polym. Sci., Part A: Polym. Chem. 2002,40:2736-2749.
    
    [112] Matyjaszewski K, Beers K L, Kern A et al. Hydrogels by atom transfer radical polymerization. I. Poly(N-vinylpyrrolidinone-g-styrene) via the macromonomermethod. J. Polym. Sci., Part A: Polym. Chem. 1998, 36: 823-830.
    
    [113] Pyun J, Matyjaszewski K. Synthesis of nanocomposite organic/inorganic hybrid materials using controlled 'living' radical polymerization. Chem. Mater. 2001, 13: 3436-3448.
    
    [114] Matyjaszewski K, Miller P J, Shukla N et al. Polymers at interfaces: using atom transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules, 1999, 32: 8716-8724.
    
    [115] Pyun J, Xia J, Matyjaszewski K. Organic-inorganic hybrid materials from polysiloxanes and polysilsesquioxanes using controlled/living radical polymerization. ACS Symp Ser. 2003, 838: 273-284.
    
    [116] Ejaz M, Yamamoto S, Tsujii Y et al. Fabrication of patterned high-density polymer graft surfaces. 1. Amplification of phase-separated morphology of organosilane blend monolayer by surface-initiated atom transfer radical polymerization. Macromolecules, 2002, 35: 1416-1424.
    
    [117] Pyun J, Matyjaszewski K, Kowalewski T et al. Synthesis of well-defined block copolymers tethered to polysilsesquioxane nanoparticles and their nanoscale morphology on surfaces. J. Am. Chem. Soc. 2001, 123: 9445-9446.
    
    [118] Pyun J, Jia S, Kowalewski T et al. Synthesis and characterization of organic/inorganic hybrid nanoparticles: kinetics of surface-initiated atom transfer radical polymerization and morphology of hybrid nanoparticle ultrathin films. Macromolecules 2003, 36:5094-5104.
    
    [119] Savin D A, Pyun J, Patterson G D et al. Synthesis and characterization of silica-graftpolystyrene hybrid nanoparticles: effect of constraint on the glass-transition temperature of spherical polymer brushes. J. Polym. Sci. Part B: Polym. Phys. 2002,40: 2667-2676.
    
    [120] Kowalewski T, McCullough R D, Matyjaszewski K. Complex nanostructured materials from segmented copolymers prepared by ATRP. Eur. Phys. J. E: Soft. Matter. 2003, 10: 5-16.
    
    [121] Carlmark A, Malmstroem E. Atom transfer radical polymerization from cellulose fibers at ambient temperature. J. Am. Chem. Soc. 2002, 124: 900-901.
    
    [122] Ejaz M, Tsujii Y, Fukuda T. Controlled grafting of a welldefined polymer on a porous glass filter by surface-initiated atom transfer radical polymerization. Polymer 2001, 42: 6811-6815.
    
    [123] Sakaguchi M, Shimada S. Well defined polystyrene grafted to polypropylene backbone by 'living radical' polymerization with TEMPO. Macromolecules 2001,34:2089-94.
    
    [124] Chen T, Kumar G, Harries M T et al. Enzymatic grafting of hexyloxyphenol onto chitosan to alter surface and rheological properties. Biotechnol. Bioeng. 2000, 70(5): 564-573.
    
    [125] 哈鸿飞,吴季兰.高分子辐照化学-原理与应用.北京:北京大学出版社,2002.
    [126] Van Damme H S, Hogt A H, Feijen J. Surface mobility and structural transitions of poly(n-alkyl methacrylates) probed by dynamic contact angle measurements. J. Colloid. Interface. Sci. 1986, 114: 167-172,
    
    [127] Hawker J C, Bosman A, Harth E. New polymer synthesis by nitroxide mediated living radical polymerizations. Chem. Rev. 2001, 101: 3661-3688.
    
    [128] Cameron N R, Alistair R. n-butyl actylate polymerization mediated by a PROXYL nitroxide. Macromolecules 2002, 35: 9890-9895.
    
    [129] Georges M K, Lukkarila J L, Szkurhan A R. TEMPO-Mediated n-Butyl Acrylate Polymerizations. Macromolecules 2004,37: 1297-1303.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700