移动通信系统中的干扰控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
移动通信是整个通信领域中发展特别迅速的一部分。在现今通信用户基数大,高移动性的要求下,移动通信在理论及工程实用上均有了长足的发展。而由于移动通信系统相较于有线通信在发射机制、信道传输、接收机制上的特殊性,使得通信过程中的干扰问题显得尤为突出,因此干扰控制的研究成为一个重要方向,在保障系统正常运行、提升用户服务质量(QoS)方面发挥着独特的作用。本文讨论了三种主要的干扰类型——杂散干扰、互调干扰和阻塞干扰,并结合物理层与数据链路层对规避干扰的分数频率复用法进行了创新。全文的研究分为六部分。
     第一部分研究移动通信系统的干扰理论,包括区别于有线信道的无线信道模型、干扰类别和干扰分析方法。这部分内容是后文分析干扰的理论和方法论基础。学术界对通信干扰的分类法有多种,本章简介了有别于本文分类法中的部分干扰,并在干扰分析方法中逐渐引入本文即将展开的几种干扰类型。
     第二部分就移动通信中的一种重要干扰——杂散干扰进行研究。在通信发射和接收端的滤波器阻带因子非零的情形下,信号会产生邻频泄漏。如果存在泄漏的频段正好是其它系统的接收频段,则会产生杂散干扰。如今通信频率(特别是800-2500MHz段)资源已相当紧缺,各制式的频段间隔变得很小,这使得杂散干扰发生的概率非常高。本部分在阐述杂散干扰产生机理的基础上,分析不同制式间杂散辐射的程度,仿真计算出实际应用中的隔离度要求,并提出抑制杂散干扰的方案。减小杂散干扰成为提升系统性能的一项重要手段。
     第三部分研究移动通信中的互调干扰。如果说非理想的滤波导致杂散辐射的话,那么非理想的器件转移引发了互调信号。非理想器件的转移函数除一次项之外,还有二次及以上高次项若干,它们影响器件的线性特性。而使用中的频点越多、频段越密,则发生互调干扰的概率越大。本部分通过详细分析、推导互调干扰的各成分,以此为基础论证互调产物与器件的线性特性间的量化关系,并提出抑制互调干扰的方法。概括地说可以从硬件和软件两方面入手,即增大器件线性输入域和波道规划。
     第四部分的研究对象是阻塞干扰。在输入功率与通信器件不匹配(通常是输入功率过大)的情形下会发生阻塞干扰,这在高功率发射机普遍使用的今天并不少见。阻塞的表现形式为输出信号幅值与预期相比有较大程度的压缩,从而使信号失真;在压缩程度超过系统容忍的特定限度时,则发生阻塞干扰。本部分仍以器件的线性特性为基础,推导计算出阻塞压缩率与器件转移函数中非线性项的关系,并提出规避阻塞干扰的方法。阻塞与互调干扰成分相关,也受其它造成额外功率输入的噪声或干扰的影响。
     分别分析了三种干扰类型之后,第五部分通过干扰合路仿真平台将三种干扰整合到一起。能实现整合的原因有二:一是三种干扰的计算都需要实际系统的指标作为入口参数,这样用户只用将所需参数在平台中设置即可进行三种干扰的仿真运算;二是大多数用户关心仿真结论而不在意繁琐的中间计算过程,这样该平台将所有的中间步骤打包封装,仅提供输入和输出界面即可实现简明的人机交互。本部分使用MATLAB软件中的图形用户界面(GUI)程序来编写仿真平台,用户通过窗口数据录入和特殊参数选择完成输入,通过功能按键来控制仿真代码的运行。
     第六部分从数据链路层的角度,就一种常见的干扰控制方法——分数频率复用法进行研究。在蜂窝无线通信网中,分数频率复用降低了相邻小区(或扇区)间的干扰,提升小区边缘用户的通信质量。传统的分数频率复用有时分和频分两种模式,本部分在此基础上提出一种新的时频分模式,它通过重设帧结构使全复用和部分复用的调节更灵活。在调度的公平性上,时频分模式优于全复用,而更高的调节粒度使它比时分和频分模式更接近理想的自适应复用性能。通过合理设置帧结构的全分复用比,该模式能提升小区内的调度公平性,使边缘用户获得时频资源更有保障。
Mobile communication is one of the rapidly developing parts in communication areas. With the large base number and high mobile requirement, mobile communication is progressing sufficiently on its theory and application. As mobile communication system has its particularity on transmitting, channel transferring and receiving compared to wire communication, interference in communication procedures is much more obvious than those of other systems. Therefore, interference control has become a significant research point, which provides special effect on ensuring normal operation and raising quality of service. This paper discusses three types of interference:spurious emission, intermodulation and block distortion. It also innovates fractional frequency reuse from physical layer and data link layer. The content of this paper is divided into six parts.
     The first part studies basic theories of interference in mobile communication system, including models of wireless channel, sorts of interference and analysis techniques which are distinct from cable channel. This part is the theoretical and technical basis of following researches. There are several ways to classify communication interferences, and this part introduces some types different from that in following chapters. Meanwhile, the core types of interferences in this paper are gradually referred.
     The second part studies a significant interference, which is called spurious emission interference, in mobile communications. As long as the reject band is not equal to zero in transmitting or receiving terminals, signals will produce adjacent frequency leakage. Then the spurious emission interference takes place if such leakage locates in passband of receiver. At present the available resource of frequency band (especially between 800 to 2500 MHz) is very rare, where adjacent bands of existed systems have little gaps, which leads a high probability of spurious emission interference. This part analyzes its theoretical basis and spurious emission between distinct systems, calculated practical minimum coupling loss by simulation, and raises schemes to restrain such interference. Reducing spurious emission interference is an essential method to upgrade system performance.
     The third part focuses on intermodulation interference in mobile communications. Just like spurious emission caused by nonideal filtering, nonideal transfer function leads intermodulation. The ideal transfer function is linear (only first order), while the nonideal one contains second or higher orders, which affect the linear character of transferring. If more carriers or frequency bands are activated, intermodulation interference is more likely to occur. This part detailedly analyzes and deduces the elements of intermodulation, and demonstrates the quantitative relationship between intermodulation elements and the linearity of transfer function. After that the methods to mitigate intermodulation interference are put forward. Generally speaking, the methods include both hardware and software, that is, broaden linear input region and channel arrangement.
     The fourth part investigates block interference. If input power does not match the object device (usually the power exceeds the upper bound), the block interference comes out. It is quite familiar as high-power transmitter is widely used. Block brings an obvious compression on amplitude compared to expectation, which makes distortion in output signal. Block interference takes place when the compression falls out of the permitted region of system. This part is still based on linear character of transferring. The relationship between compression ratio and transfer function is detaily described, after which the techniques to avoid block interference are introduced. Block elements are dependent on several aspects such as intermodulation, additive noise and other types of interference.
     After analyzing those three types of interference, we integrate them by a simulation platform in the fifth part. There are two reasons on the feasibility of such integration:One reason is their common requirement on practical system data for input parameters; platform users could set these data before calculation for any one sort of interference. The other reason is users'interest on simulation result instead of the complex medium calculating process. The platform separates such process into background and just provides input and output interfaces for a concise man-machine interaction. The simulation platform in programmed by Graphical User Interface (GUI) code in MATLAB environment. Users input data by parameter boxes and multiple choices, and control the programme execution by certain buttons in the input window.
     An effective scheme for interference control, fractional frequency reuse, is studied in the sixth part from the view of data link layer. In cellular wireless communication netwok, fractional frequency reuse depresses interference between adjacent cells (or sectors), while margin users obtain a higher quality of service. Traditional fractional frequency reuse has two modes:time-divided and frequency-divided. This part raises a new mode, time-frequency mode, based on the previous two modes. This mode has a more flexible adjustment on full reuse and partial reuse by a newly constructed frame structure. Time-frequency mode has a management with better fairness, in which a more subtle granularity leads a performance closer to the ideal adaptive reuse mode. By setting a suitable full-partial reuse ratio in frames, time-frequency mode can improve fairness in cell management, where margin users are able to enjoy more transmission resources.
引文
[1]朱怀芳.移动通信的概念与技术.计算机应用,1998,18(4):31-34.
    [2]Yasunori Miyahara. Next-generation Wireless Technologies Trends for Ultra Low Energy, in:Proceedings of International Symposium on Low Power Electronics and Design (ISLPED). Tokyo, Japan:2011.345-346.
    [3]Deepti Singhal, Manish Kumar Sharma, Rama Murthy Garimella. Energy Efficient Localization of Primary Users for Avoiding Interference in Cognitive Networks, in: Proceedings of International Conference on Computer Communication and Informatics (ICCCI). Coimbatore, India:2012.1-5.
    [4]Shreeshankar Bodas, Sanjay Shakkottai, Lei Ying, R. Srikant. Low-Complexity Scheduling Algorithms for Multichannel Downlink Wireless Networks. IEEE/ACM Trans, on Networking,2012,9(9):1-14.
    [5]钟章队,艾渤,刘秋妍,林思雨.铁路数字移动通信系统(GSM-R)应用基础理论.第一版.北京:清华大学出版社/北京交通大学出版社,2009.93-136.
    [6]Jianlin Mo, Wei Wang, Xiaoming Xu. Robust identification on limited measurable frequency band, in:Proceedings of IEEE International Conference on Systems, Man, and Cybernetics. Shanghai, China:2001.1866-1871.
    [7]Wooil Kim, John H. L. Hansen. Time-Frequency Correlation-Based Missing-Feature Reconstruction for Robust Speech Recognition in Band-Restricted Conditions. IEEE Trans, on Audio, Speech, and Language,2009,17(7):1292-1304.
    [8]Li-Chun Wang, Kuan-Jiin Shieh. Spectrum Sharing for Frequency Hopped CDMA Systems with Overlaying Cellular Structures, in:Proceedings of Vehicular Technology Conference. Hsinchu, Taiwan (China):2003.1945-1949.
    [9]David Tse, Pramod Viswanath. Fundamentals of Wireless Communication第一版.李锵,周进等译.马晓莉审校.北京:人民邮电出版社,2007.88-113.
    [10]杜敏芳GSM/CDMA/PHS/WLAN/3G室内覆盖无线干扰分析与研究:[工程硕士学位论文].上海:上海交通大学图书馆,2008.
    [11]金建栋3G&PHS&WLAN三网合一室内无线综合分布系统研究与测试:[工程硕士学位论文].上海:上海交通大学图书馆,2009.
    [12]佟元媛.移动终端实现无缝切换技术的总体方案设计及干扰问题研究:[工程硕士学位论文].北京:北京邮电大学图书馆,2008.
    [13]罗志年.宽带无线信道建模方法研究与应用:[博士学位论文].上海:上海交通大学图书馆,2009.
    [14]童鑫.CDMA无线通信系统间的干扰分析与仿真实现:[硕士学位论文].成都:电子科技大学图书馆,2009.
    [15]龙腾GSM/GSM-R网络干扰检测技术研究与实现:[硕士学位论文].北京:北京交通大学图书馆,2007.
    [16]兰洋.OFDM和MIMO系统的信道估计、干扰消除和信号检测:[博士学位论文].南京:东南大学图书馆,2005.
    [17]余泽兵.3G移动通信系统间干扰分析:[工程硕士学位论文].北京:北京邮电大学图书馆,2007.
    [18]易准,赵慧慧TD-SCDMA与其他无线系统的共存干扰分析.电信技术,2010,17(9):46-48.
    [19]王建,李方伟.UWB和TD-SCDMA系统的干扰分析研究.中国无线电,2005,16(9):41-44.
    [20]Piero Castoldi, Hisashi Kobayashi. Co-Channel Interference Mitigation Detectors for Multirate Transmission in TD-CDMA Systems. IEEE J. on Selected Areas in Communications,2002,20(2):273-286.
    [21]Young-Keun Yoon. Effective Method of Interference Mitigation for UWB Cooperation with WiMAX. in:Proceedings of International Conference on Advanced Communication Technology (ICACT). Daejeon, South Korea:2010. 329-332.
    [22]Jungwon Lee, Dimitris Toumpakaris, Wei Yu. Interference Mitigation via Joint Detection. IEEE J. on Selected Areas in Communications,2011,29(6):1172-1184.
    [23]Magnus Olsson, Per Skillermark. Multiple Antenna Techniques for Downlink Interference Mitigation in Cellular Networks, in:Proceedings of European Wireless Conference. Stockholm, Sweden:2008.1-5.
    [24]Timo Nihtila, Janne Kurjenniemi, Marko Lampinen. Effect of Ideal Inter-cell Interference Cancellation to HSDPA System Performance, in:Proceedings of Annual IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, jyvaskyla, Finland:2007.1-5.
    [25]Rab Nawaz, Sumei Sun. Bluetooth Interference Mitigation in 802. 11g. in: Proceedings of International Conference on Communications (ICC). Singapore: 2008.930-935.
    [26]Keith D. Paulsen, Daniel R. Lynch. Finite Element Maxwell Equation Solutions in the Time Domain Using a Second Order Equation, in:Proceedings of Antennas and Propagation Society International Symposium. New Hampshire, USA:1989. 1100-1103.
    [27]Li Chunmao, Zhang Bo, Qiu Yajun, Wu Yuefeng. New Study of Switch Circuit Based on Maxwell Equations, in:Proceeding of the International Conference on RFID-Technology and Applications (FRID-TA). Guangzhou, China:2010.66-70.
    [28]Andrea Goldsmith. Wireless Communications第一版.杨鸿文,李卫东,郭文彬等译.北京:人民邮电出版社,2007.23-47.
    [29]Mardeni R, Lee Yih Pey, Path Loss Model Development for Urban outdoor Coverage of Code Division Multiple Access (CDMA) System in Malaysia, in: Proceedings of International Conference on Microwave and Millimeter Wave Technology (ICMMT). Cyberjaya, Malaysia:2010.441-444.
    [30]Keith T. Herring, Jack W. Holloway, David H. Staelin, Daniel W. Bliss. Path-Loss Characteristics of Urban Wireless Channels. IEEE Trans, on Antennas and Propagation,2010,58(1):171-177.
    [31]Yan Wu, Min Lin, Ian Wassell. Path Loss Estimation in 3D Environments Using a Modified 2D Finite-difference Time-domain Technique, in:Proceedings of International Conference on Computation in Electromagnetics. Cambridge, UK: 2008.98~99.
    [32]Hazer Inaltekin, Mung Chiang, H. Vincent Poor, Stephen B. Wicker. On Unbounded Path-Loss Models:Effects of Singularity on Wireless Network Performance. IEEE J. on Selected Areas in Communications,2009,27(7):1078~1092.
    [33]SangYoung Park, Hyo-Sung Ahn, Wonpil Yu. Adaptive Path-loss Model-based Indoor Localization, in:Proceedings of International Conference on Consumer Electronics (ICCE). Daejeon, South Korea:2008.1~2.
    [34]Supachai Phaiboon. An Empirically Based Path Loss Model for Indoor Wireless Channels in Laboratory Building, in:Proceedings of Conference on Computers, Communications, Control and Power Engineering. Bangkok, Thailand:2002. 1020~1023.
    [35]K. Haneda, J. Takada, K. Takizawa. Ultra Wideband Path Loss Modelling in a Line-of-sight Office Environment, in:Proceedings of European Conference on Antennas and Propagation (EuCAP). Tokyo, Japan:2007.1-6.
    [36]Sharlene Thiagarajah, Borhanuddin Mohd. Ali, Sabira Khatun, Mahamod Ismail. Empirical UWB Path Loss Models for Typical Office Environments, in: Proceedings of International Conference on Networks. Malaysia:2005.1023-1028.
    [37]Han-Shin Jo, Jong-Gwan Yook. Path Loss Characteristics for IMT-Advanced Systems in Residential and Street Environments. IEEE Antennas and Wireless Propagation Letters,2010,9(1):867-871.
    [38]Nagendra Sah, Neelam Rup Prakash, Amit Kumar, Davendra Kumar, Deepak Kumar. Optimizing The Path Loss of Wireless Indoor Propagation Models Using CSP Algorithms, in:Proceedings of International Conference on Computer and Network Technology (ICCNT). Chandigarh, India:2010.324-328.
    [39]D. Parsons. The Mobile Radio Propagation Channel, in:Proceedings of Wiley. New York, USA:1994.1-17.
    [40]A. S. Y. Poon, R. W. Brodersen. The role of multiple-antenna systems in emerging open access environments, in:Proceedings of EE Times Commun. Design Conference. UK:2003.1-10.
    [41]N. Amitay. Modeling and computer simulation of wave propagation in lineal line-of-sight microcells. IEEE Trans, on Vehicular Technology,1992,41(4): 337-342.
    [42]A. J. Rustako, N. Amitay, G. J. Owens, R. S. Roman. Radio propagation at microwave frequencies for line-of-sight microcellular mobile and personal communications. IEEE Trans, on Vehicular Technology,1991,40(1):203~210.
    [43]J. F. Wagen. Signal strength measurements at 1881MHz for urban microcells in downtown Tampa, in:Proceedings of Global Telecommunications Conference (GLOBECOM). Waltham, USA:1991.1313-1317.
    [44]R. J. C. Bultitude, G. K. Bedal. Propagation characteristics on microcellular urban mobile radio channels at 910MHz. in:Digital Communications Conference Proceedings. Ottawa, Canada:1988.152-160.
    [45]J. E. Berg, R. Bownds, F. Lotse. Path loss and fading models for microcells at 900MHz. in:Proceedings of Vehicular Technology Conference. Stockholm, Sweden: 1992.666-671.
    [46]J. H. Whitteker. Measurements of path loss at 910MHz for proposed microcell urban mobile systems. IEEE Trans, on Vehicular Technology,1988,37(3):125-129.
    [47]H. Borjeson, C. Bergljung, L. G. Olsson. Outdoor microcell measurements at 1700MHz. in:Proceedings of Vehicular Technology Conference. Lund, Sweden: 1992.927-931.
    [48]邵朝,廖延娜.小尺度衰落的定性分析.西安邮电学院学报,2000,5(1):1-4.
    [49]Yujie Zhang, Chris Bartone. Multipath Mitigation in the Frequency Domain, in: Proceedings of Position Location and Navigation Symposium. Ohio, USA:2004. 486-495.
    [50]Pete Boyer. Performance Based on Selective Multipath Reception. IEEE Trans, on Communications,2004,52(2):280~288.
    [51]Harri Holma, Kari Heiska. Performance of High Bit Rates with WCDMA over Multipath Channels, in:Proceedings of Vehicular Technology Conference. Stockholm, Sweden:1999.25~29.
    [52]Keyvan Ramezanpour, Babak H. Khalaj, Ali Fotowat-Ahmady. Reduction of Multipath Errors in Spread-Spectrum Code Tracking, in:Proceedings of International Conference on Communications (ICC). Tehran, Iran:2010.1~6.
    [53]T. S. Rappaport. Wireless communications principles and practice. Version 1. USA: Prentice Hall PTR,1996.11~20.
    [54]B. Sklar. Rayleigh Fading channels in Mobile Digital communication Systems Part I: Charcterization. IEEE Communicatons Magazine,1997,35(7):90~100.
    [55]B. Sklar. Rayleigh Fading channels in Mobile Digital communication Systems Part Ⅱ:Mitigation. IEEE Communicatons Magazine,1997,35(7):102~109.
    [56]A. J. Coulson, A. G. Willamson, R. G. Vaughan. Improved fading distribution for mobile radio. IET proc. communications,1998,145(3):197~202.
    [57]朱洪波,高攸纲.同频道干扰及衰落环境中的微蜂窝移动系统性能分析.电子学报,1998,26(12):118-125.
    [58]Khairi Ashour Hamdi. Analysis of OFDM over Nakagami-m Fading with Nonuniform Phase Distributions. IEEE Trans, on Wireless Communications,2012, 11(2):488~492.
    [59]华中理工大学数学系.概率论与数理统计.第一版.北京:高等教育出版社/施普林格出版社,1999.57-61.
    [60]广州杰赛通信规划设计院TD-SCDMA规划设计手册.第一版.北京:人民邮电出版社,2007.133-135.
    [61]3GPP Long Term Evolution Group.3GPP TS 25.105:Base Station (BS) radio transmission and receiption (TDD).3GPP Technical Specifications,2006.
    [62]3GPP Long Term Evolution Group.3GPP TR 25.942:Radio Frequency (RF) system scenarios.3GPP Technical Report,2006.
    [63]W. G. Chung, H. S. Jo, H. G. Yoon, J. W. Lim, J. G. Yook, H. K. Park. Advanced MCL method for sharing analysis of IMT-advanced systems. IET Electronics Letters, 2006,42(21):1234-1235.
    [64]Peter Seidenberg, Marc Peter Althoff, Egon Schulz, Gunther Herbster, Meik Kottkampi. Statistics of the Minimum Coupling Loss in UMT/IMT-2000 Reference Scenarios, in:Proceedings of Vehicular Technology Conference (VTC). Aachen, Germany:1999.963~967.
    [65]Han-Shin Jo, Hyun-Goo Yoon, Jae-Woo Lim, Jong-Gwan Yook. An Advanced MCL Method for Assessing Interference Potential of OFDM-Based Systems beyond 3G with Dynamic Power Allocation. in:Proceedings of European Conference on Wireless Technology. Seoul, South Korea:2006.39~42.
    [66]Liang Dong, Wang Wenbo, Li Yonghua. Monte Carlo Simulation with Error Classification for Multipath Rayleigh Fading Channel. in:Proceedings of International Conference on Telecommunications (ICT). Beijing, China:2009. 223~227.
    [67]Siqing Wu, Jinsong Liu, Chen Chen, Gang Xiong. Monte Carlo Simulation of the Binary Communications System Based on MATLAB. in:Proceedings of International Conference on Electrical and Control Engineering (ICECE). Wuhan, China:2011.2368~2370.
    [68]Honglan Yang, Fuyun Ling. Interference Analysis of CDMA Network Using Existing Integrated Wireless Distribution Systems in Subways. in:Proceedings of Vehicular Technology Conference (VTC). Shanghai, China:2003.871~876.
    [69]Hichan Yehia, Hany Kamal. Inter-System Interference Effect on WiMAX Network Performance. in:Proceedings of International Conference on Information and Communication Technologies:From Theory to Applications (ICTTA). Paris, France: 2008.1-6.
    [70]Tuure Ikaheimonen. Measurement of Radar Spurious Emission With High Dynamic Range and Optimized Measurement Time. IEEE Trans. on Instrumentation and Measurement,2011,60(3):1010~1016.
    [71]丁东TD-LTE与TD-SCDMA互干扰组网解决方案研究.移动通信,2010,38 (16):25-29.
    [72]肖清华,朱东照.共建共享模式下TD-LTE与其它系统的干扰协调.移动通信,2011,39(6):23-37.
    [73]刘伟,杨伟中,刘志辉.手机杂散干扰控制方法.安全与电磁兼容,2010,22(6):61-63.
    [74]J.A. Gibbs, D.M. Boscovic, A.P. van den Heuvel. Spurious Emission Limits for Mobile Transmitters:An Approach and Results. in:Proceedings of Vehicular Technology Conference (VTC). Basingstoke, UK:1995.991~995.
    [75]Han-Chang Hsieh, Cheng-Nan Chiu, Chi-Hsueh Wang, Chun Hsiung Chen. A New Approach for Fast Analysis of Spurious Emissions From RF/Microwave Circuits. IEEE Trans. on Electromagnetic Compatibility,2009,51(3):631~638.
    [76]Arnaud Werquin, Antoine Frappe, Andreas Kaiser. Spurious Emissions Reduction using Multirate RF Transmitter. in:Proceedings of International Symposium on Circuits and Systems (ISCAS). Lille, France:2011.965~968.
    [77]Waleed Khalil, Hiva Hedayati, Bertan Bakkaloglu, Sayfe Kiaei. Analysis and Modeling of Noise Folding and Spurious Emission in Wideband Fractional-N Synthesizers. in:Proceedings of Radio Frequency Integrated Circuits Symposium (RFIC). Arizona, USA:2008.291~294.
    [78]广州杰赛通信规划设计院,郭东亮等.WCDMA规划设计手册.第一版.北京:人民邮电出版社,2005.122-124.
    [79]广州杰赛通信规划设计院CDMA2000规划设计手册.第一版.北京:人民邮电出版社,2006.120-125.
    [80]Alan D. MacDonald. Competitor Induced Mobile Intermodulation Interference in Cellular Mobile Phones. in:Proceedings of Vehicular Technology Conference. Washington, USA:1995.371~374.
    [81]N. Maxemchuk, L. Schiff. Third Order Intermodulation Interference--Bounds and Interference-Free Channel Assignment. IEEE Trans. on Communications,1977, 25(9):1041~1046.
    [82]Isao Nakazawa, Yoshiaki Kobayashi, Ryoichi Shimada, Toshikazu Youkai, Tatsuaki Hamai, Kaoru Murakami, Hiroyo Ogawa. Theoretical Study on the Intermodulation Interference between Wide-band Mobile Radio Systems and Narrow-band Mobile Radio Systems. in:Proceedings of Wireless Communications and Networking Conference (WCNC). Kanagawa, Japan:2004.2504~2509.
    [83]P. L. Lui. Passive intermodulation interference in communication systems. IET J. of Electronics and Communication,1990,2(3):109~118.
    [84]E, Zentner, J. Bartolic. Intermodulation Interference Probability Distribution in Mobile Radiocommunication Systems. IET Electronics Letters,1993,29(3): 252~253.
    [85]Zhang Shi-quan, Wu Qin-dong, Lian Jin-tao, Ge De-biao. Analysis of Passive Intermodulation Interference in GSM Mobile Communication Antennas, in: Proceedings of International Symposium on Microwave, Antenna, Propagation, and EMC Technologies For Wireless Communications. Xi'an, China:2007.1251~1254.
    [86]K. Mabrouk, F.R. de Sousa, B. Huyart, G. Neveux. Architectural solution for second-order intermodulation intercept point improvement in direct down-conversion receivers. IET Microwaves, Antennas & Propagation,2010,4(9): 1377~1386.
    [87]Nyah C. Temaneh. Monte-Carlo Technique Estimation of a Probability of Intermodulation Interference in a Cellular Wireless Communication Network, in: Proceedings of International Conference on Computational Technologies in Electrical and Electronics Engineering (SIBIRCON). Windhoek, Namibia:2010. 329~334.
    [88]于潞,唐金元,王思臣.航空超短波通信的互调干扰分析.科技信息,2011,28(7):507-508.
    [89]胡小雅.航空甚高频通信互调干扰分析及通信可靠性研究.科技创新导报,2010,7(36):26-27.
    [90]杨秀.浅谈无线通信系统克服三阶互调干扰措施的演变.移动通信,2011,39(8):48-50.
    [91]常疆,孟维晓,谭学治. TETRA数字集群系统的线性化功率放大技术.移动通信,2003,31(7):90-92.
    [92]孙智博.无线通信系统中排除三阶互调干扰频率的方法.陕西师范大学学报(自然科学版),2003,31(专辑):98-100.
    [93]陈文德.无三阶互调频率组数目的界与序列的相关函数.科学通报,1988,39(20):1521-1525.
    [94]孙建军.无三阶互调干扰波道组的确定及应用.中国无线电管理,1996,7(5):25-26.
    [95]宋文武,丁志尧,张凯,石听阳.短波通信系统阻塞干扰控制方法研究.装备环境工程,2010,7(2):68-70.
    [96]张勇.雷达在阻塞干扰下的无源测距及其仿真.现代雷达,2006,28(8):77-79.
    [97]韩福丽,潘武,姚彦.跳频接收机中抗阻塞干扰的仿真及定量分析.计算机与网络,1999,25(1):20-23.
    [98]杨志敏,李式巨,王彦波,于淼.阻塞干扰下跳频通信系统差错控制.浙江大学学报(工学版),2008,42(3):481-484.
    [99]Chris Eggen, Bruce Howe, Brian Dushaw. A MATLAB GUI for Ocean Acoustic Propagation, in:Proceedings of OCEANS'02 MTS. Washington, USA:2002. 1415~1421.
    [100]T. Hopp, G. F. Schwarzenberg, M. Zapf, N.V. Ruiter. A MATLAB GUI for the analysis and exploration of signal and image data of an Ultrasound Computer Tomograph, in:Proceedings of International Conference on Advances in Computer-Human Interaction. Karlsruhe, Germany:2008.53~58.
    [101]S. S. Murthy, G Bhuvaneswari, Rajesh Kr. Ahuja, Sarsing Gao. Analysis of Self Excited Induction Generator Using MATLAB GUI Methodology, in:Proceedings of International Conference on Power Electronics, Drives and Energy Systems (PEDES). New Delhi, India:2010.1-6.
    [102]Jingxiu Lee, Weijuan Zhang. Development of Visual Circuit Calculation Software Based on MATLAB GUI. in:Proceedings of International Conference on Education Technology and Computer (ICETC). Luoyang, China:2010.113~115.
    [103]Bo Jin, Zhengbing Zhang. Software-Platform of General Circuit Analysis Based on MATLAB GUI. in:Proceedings of International Conference on Electrical and Control Engineering (ICECE). Jingzhou, China:2011.387~390.
    [104]Zhang Ying, Liu Chang-wen, Li Zhi-jun, Gao Ji-dong, Li Meng-liang, Liu Di. A Data Analysis System Based on MATLAB GUI for Portable Emission Measurement, in:Proceedings of International Conference on Electric Information and Control Engineering (ICEICE). Tianjin, China:2011.4705-4709.
    [105]王巧花,叶平,黄民.基于MATLAB的图形用户界面(GUI)设计.煤矿机械,2005,26(3):60-62.
    [106]王正林,刘明.精通MATLAB 7.第一版.北京:电子工业出版社,2006.364- 378.
    [107]刘敏,张小飞,徐大专.多用户MIMO-OFDM系统中基于延时信道状态信息的自适应传输方案.通信学报,2008,29(5):19-25.
    [108]束永安,洪佩琳,覃振权.无线网状网中基于干扰模型的多信道分配策略.电子学报,2008,36(7):1256-1260.
    [109]高翟,朱光喜,李彦淳,Markus Hidell分数频率复用的帧结构和性能分析.计算机科学,2010,37(12):53-56.
    [110]Assaad M. Optimal fractional frequency reuse (FFR) in multicellular OFDMA system, in:Proceedings of Vehicular Technology Conference (VTC). Gif-sur-Yvette, France:2008.1-5.
    [111]Hayato Ishii, Akiyo Yoshimoto, Takeshi Hattori, Takeo Ohseki, Toshinori Suzuki. Throughput of Cooperative MIMO Communications with FFR. in:Proceedings of TENCON. Tokyo, Japan:2009.1-6.
    [112]Xu Fangmin. Fractional Frequency Reuse (FFR) and FFR-Based Scheduling in OFDMA Systems, in:Proceedings of International Conference on Multimedia Technology (ICMT). Hangzhou, China:2010.1-4.
    [113]Ronald Y. Chang, Zhifeng Tao, Jinyun Zhang, C.-C. Jay Kuo. A Graph Approach to Dynamic Fractional Frequency Reuse (FFR) in Multi-Cell OFDMA Networks, in: Proceedings of International Conference on Communications (ICC). Los Angeles, USA:2009.1-6.
    [114]Naveed UL Hassan, Mohamad Assaad. Optimal Fractional Frequency Reuse (FFR) and Resource Allocation in Multiuser OFDMA System, in:Proceedings of International Conference on Information and Communication Technologies (ICICT). Gif-sur-Yvette, France:2009.88~92.
    [115]Li-Chun Wang, Chu-Jung Yeh.3-Cell Network MIMO Architectures with Sectorization and Fractional Frequency Reuse. IEEE J. on Selected Areas in Communications,2011,29(6):1185~1199.
    [116]Thomas David Novlan, Radha Krishna Ganti, Arunabha Ghosh, Jeffrey G. Andrews. Analytical Evaluation of Fractional Frequency Reuse for OFDMA Cellular Networks. IEEE Trans, on Wireless Communications,2011,10(12):4294~4305.
    [117]Ju Yong Lee, Sueng Jae Bae, Young Min Kwon and Min Young Chung. Interference Analysis for Femtocell Deployment in OFDMA Systems Based on Fractional Frequency Reuse. IEEE Communications Letters,2011,15(4):425~427.
    [118]Poongup Lee, Taeyoung Lee, Jangkeun Jeong, Jitae Shin. Interference Management in LTE Femtocell Systems Using Fractional Frequency Reuse, in:Proceedings of International Conference on Advanced Communication Technology (ICACT). Suwon, South Korea:2010.1047~1051.
    [119]Yijie Chen, Wenbo Wang, Tao Li, Xing Zhang, Mugen Peng. Fractional Frequency Reuse in Mobile WiMAX. in:Proceedings of International Conference on Communications and Networking. Beijing, China:2008.276~280.
    [120]Giuliano R., Loreti P., Mazzenga F., Santella G. Fractional frequency reuse planning for WiMAX over frequency selective channels, in:Proceedings of International Wireless Communications and Mobile Computing Conference (IWCMC). Rome, Italy:2008.666~671.
    [121]Fang Lintang, Zhang Xiaolin. Optimal fractional frequency reuse in OFDMA based wireless networks, in:Proceedings of International Conference on Wireless Communications, Networking and Mobile Computing (WiCOM). Beijing, China: 2008.1~4.
    [122]Luo Haiyan, Zhang Zhaoyang, Jia Huiling, Yu Guanding, Li Shiju. Performance comparison of IEEE 802.16e and IEEE 802.20 systems under different frequency reuse schemes, in:Proceedings of Vehicular Technology Conference (VTC). London, UK:2008.1-5.
    [123]Stolyar A. L., Viswanathan H. Self-organizing dynamic fractional frequency reuse in OFDMA systems, in:Proceedings of Conference on Computer Communications (INFOCOM). New Jersey, USA:2008.691~699.
    [124]Zhou Yuefeng, Zein N. Simulation study of fractional frequency reuse for mobile WiMAX. in:Proceedings of Vehicular Technology Conference (VTC). London, UK: 2008.2592~2595.
    [125]Fujii H., Yoshino H.. Theoretical capacity and outage rate of OFDMA cellular system with fractional frequency reuse, in:Proceedings of Vehicular Technology Conference (VTC). London, UK:2008.1676~1680.
    [126]IEEE 802.16 Broadband Wireless Access Working Group. IEEE 802.16m evaluation methodology document.2008:78~79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700