2,6-二亚胺基吡啶类化合物的制备以及作为燃料电池氧还原电催化剂的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
过渡金属—N4大环化合物(如钴卟啉、铁卟啉、铁酞菁等)因其特殊的共轭结构是当前研究较多且极具应用前景的一类非贵金属氧还原催化剂。催化剂一般都要经过高温热处理提高活性,催化活性中心的结构特征一直是有机大环化合物催化剂研究中倍受关注的课题,实验证明在高温条件下大环化合物本身已经分解。所以,大环结构可能并非该类催化剂具备氧还原催化活性的必备条件。本文制备了新型的M-N3结构的环状化合物,进行表征;并首次将其负载到碳黑上,制备成氧还原电催化剂,采用电化学和物理测试手段对催化剂氧还原性能进行了分析,并对电池性能进行初试。
     合成了双亚胺基苯基吡啶化合物以及Fe,Co系列的金属配合物,利用了晶体XRD、UV-vis、IR进行表征;并测试了该类配合物在DMSO溶液中的循环伏安,结果表明,受配体取代基和中心金属离子的影响,Co系列的金属配合物的电化学性质效果最好。
     将金属亚胺基吡啶配合物负载到经过预处理的炭黑上,对其采取不同温度的热处理,制备了了电催化剂。利用循环伏安测试研究了催化剂结构、负载方法对催化剂性能影。结果表明,重结晶方法制备的CoBPML/BP催化剂的活性最好。与商业Pt/C催化剂相比,CoBPML/BP催化剂虽然电位值略低,但是电流值却能与之媲美,具有很好的模拟抗甲醇性能,说明新型催化剂还是一种很有希望的氧还原催化剂。
     研究了热处理对催化剂电化学性能的影响。利用循环伏安法研究了200~900℃热处理温度对催化性能的影响。研究表明热处理提高了CoBPML/BP的催化活性,低温热处理对催化剂的性能影响不大,高温热处理可提高催化剂稳定性;利用TG、TEM、BET、XRD、XPS等手段对催化剂表面进行分析,结果表明,热处理增大了催化剂N和C原子的表面浓度,Co3C(101)和Co(111)晶型的形成以及组分N1、O1s、CoⅢ和CoⅡ的结合能的降低,都有利于Co-Nx-C催化活性位.的形成。
     并利用旋转圆盘RDE和旋转环盘RRDE测试了新型催化剂的电子转移数和产生双氧水的百分比。发现催化剂的电子转移数3.0-4.0之间,试验还发现电极催化剂的厚度对试验产生H_2O_2%的检测有影响,催化剂层越薄,实验数据越准确。计算得催化反应产生的H_2O_2%为19%。以CoBPML/BP30%H_2O_2作为阴极催化剂的PEMFC测试结果表明,催化剂有较好的氧催化活性。
Transition metal-N4 macrocyclic compounds (such as cobalt-porphyrins, iron porphyrins, iron phthalocyanines, etc.) have been investigated widely as a class of effectively non-noble metal catalysts for electrocatalysts for ORR(oxygen reduction reaction). In general, the capability of the catalysts was improved with different temperature heat-treatment. The structural features of macro-cyclic compounds catalytic active site has been well-focused topic all the years. Lots of researches have investigated that macro-cyclic compounds were decomposed after pyrolysis. So the macro-cyclic structure of catalyst may not be the essential conditions for ORR. In this paper, we have synthesized and characterized a new type M-N3 compounds metal-2,6-bis(imino) pyridines, and prepared the carbon black supported M-N3 catalysts as novel kind of non-noble catalysts for ORR.
     We have prepared and characterized the bis(imino)pyridine compounds and metal-bis(imino)pyridine compounds. The Cyclic Voltammetry (CV) of metal-2,6-bis(imino)pyridyl in DMSO have been investigated. Catalysts with different substituted groups and different metals irons have been investigated. It is found that the most efficient catalyst is consist of Co and–OCH3 substituted groups, and the CoBPML Co-bis(imino)pyridines compound is most efficient.
     We prepared carbon Black supported metal bis(imino)pyridines compounds electrocatalysts. The effect of structures and different cabon supported methods on the electrocatalytic activities for oxygen reduction of CoBPML/BP were investigated by CV. Results reveal that CoBPML/BP catalyst prepared by re-crystallization is better efficient for ORR. And the potential value of CoBPML catalyst is lower than Pt/C catalyst, but the current value is higher. CoBPML/BP catalyst can work in menthol solution with a good performance.
     The effect of various heated-treating temperature from 200℃to 900℃on the electro catalytic activities for oxygen reduction of CoBPML/BP were investigated by CV. Studies have shown that heat treatment improved the CoBPML / BP catalytic activity and the stability, low-temperature heat treatment have little effect on the catalytic performance. The surface information of catalysts after pretreatment of BP support were investigated by TG、TEM、BET、XRD、XPS. It can be seen that heat-treatment lead to formation of Co3C(101) and Co(111) crystal type, and the binding energy reduction of N1, O1s, CoⅢand CoⅡcomponents. Above all these factors are in favor of the formation of Co-Nx-C active site.
     The catalytic activity for oxygen reduction was evaluated by ring disk electrode (RDE) and rotating ring disk electrode (RRDE) techniques. The number of electrons exchanged during ORR and the percentage of peroxide (H_2O_2%) produced by the reaction were evaluated for catalysts by RRDE measurements. It was found that the number of electron transfer between the number of 3.0-4.0 for ORR. It also showed that the thickness of catalyst on electrode influenced the experiment result, and the H_2O_2% was 19%. The zinc-air battery performance of single cell using CoBPML/BP as cathodic oxygen reduction catalyst was examined; the results show that the novel catalysts have excellent prospect.
引文
[1]唐致远,宋世栋,刘建华.质子交换膜燃料电池电极催化剂的研究进展.电源技术. 2003, 27(1):58-63.
    [2] Bett, J., Lundquist, J., Washington, E.. Platinum crystallit size considerations for electrocatalytic oxygeon reduction[J]. Electrochim Acta. 1973, 18:343-348.
    [3] Sattler, M.L., Ross, P.N.. Surface structure of Pt crystallites supported on carbon black[J]. Ultramicroscopy. 1986, 20 (1-2):21-28.
    [4]李文震,孙公权,严玉山.低温燃料电池担载型贵金属催化剂. 2005, 17(5):761-772.
    [5]唐致远,宋世栋,刘建华.质子交换膜燃料电池电极催化剂的研究进展.电池技术. 2003, 27(1):58-63.
    [6] Dikinson, A.J., Carrette, L. P. L., Collins, J.A.. Performance of Methanol Oxidation Catalysts with Varying Pt:Ru Ratio as a Function of Temperature[J]. Electrochimi Acta. 2002, 47:3733-3739.
    [7] Prater, K.. The renaissance of the solid polymer fuel cell [J]. J Power Sources. 1990, 29:239 -250.
    [8] Kozawa, A., Yeager, J.F.. The cathodic reduction mechanism of electrolytic managanese dioxide in alkaline electiclyte[J]. J Electrochem Soc. 1965, 112, 959-963.
    [9] Kozawa, A., Powers, R.A.. The managanese dioxide electrode in Alkaline electrolyte: The electro-proton mechanism for the discharge process from MnO2 to MnO5[J]. J Electrochem Soc. 1966, 113:870-878.
    [10] Kanungo, S.B.. Physicochemical properties of MnO2 and MnO2-CuO and their relationship with the catalytic activity for H2O2 decomposition and CO oxidation[J]. J Catal. 1979, 58:419-435.
    [11] Mao, L., Sotomura, T., Nakatsu, K.. Electrochemical characrerization of catalytic activities of managanese oxides to xygen reduction in alkaline aqueous solution[J]. J Electrochm Soc. 2002, 149:A504-A507.
    [12] Rao, K.V., Venkatesan, V.K., Udupa, H.V.K.. Electrolytic managanese dioxide as an oxygen electrode[J]. J Electrochm Soc. India, 1982, 31(2):33-39.
    [13]唐致远,宋世栋,刘建华.钙钛矿型双功能氧电极催化剂的研究进展.电源技术.2003,27(增刊):233.
    [14] Churl, K.L., Kathryn, A., Stridbel, F. R.. Thermal Treatment of La0.6Ca0.4CoO3 Perovskites for Bifunctional air Electrodes[J]. J Electrochm Soc.1997,144(11):3801-3806.
    [15] Tiwari,S.K., Koenig,J.F., Poillerat, G.. Active thin NiCo2O4 film prepared on nickel by spray pyrolysis for oxygen evolution [J]. J Appl Electrochem.1998, 28(1):114
    [16] Bursell, m., Pirjamali, M., Kiros, Y.. La0.6Ca0.4CoO3La0.1Ca0.9MnO and LaNiO3 as bifunctional oxygen electrodes[J]. Electrochim Acta. 2002,47(10):1651-1660.
    [17] Manoharan, R., Shukla, A.K.. Oxides supported carbon air-electrodes for alkaline solution power devices[J]. Elecrochim Acta.1985,309(2):205-209.
    [18] Faubert, G., Lalande, G., Cote, R.. Heat-treated ironand cobalt Tetraphenyl porphyrins adsorbed on carbon black :physicalcharacterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells[J]. Elect rochimica Acta. 1996, 41 (10) :1689-1701.
    [19] Seelger, W., Hamnett, A.. A Novel electrocatalysts for oxygen reduction[J]. Electrochimica Acta. 1992, 37:763-765.
    [20] Cote, R., Lalande, G., Fabuert, G.. Non-nobal metal-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells[J]. J New Mat Electrochem System. 1988, 1:7-16.
    [21] Gouepec, P., Savy, M.. Oxygen reduction electrocatalysis:aging of pyrolyzed cabalt macrocycles dspersed on an active carbon[J]. Electrochimica Acta.1999, 44:2653 -2661.
    [22] Bhugun, I., Fred, C., Anson.. Adsorption on graphite and catalytic reduction of O2 by the macrocyclic complex of cobalt with 2,3,9,10-tetraphenl- 1,4,8,11-tetraazacyclotetradeca- 1,3,8,10-tetranene[J]. Electroanalytical Chem. 1997, 430:155-161.
    [23] Ren, X., Wilson, M.S., Gottesfeld, S.. High performance direct methanol polymer electrolyte fuel cells[J]. J Ecectrochem Soc. 1996, 143:L12-L15.
    [24] Widelova, A.. Pyrolysis of iron and cobalt porphrins sublimated onto the surface of carbon blacks as a method to prepare catalysts for O2 reduction[J]. Electrochem Acta. 1993, 38:2493-2502.
    [25] Wang, H., RCOTé., Faubert, G.. Effect of the Pre-Treatment of Carbon Black Supports on the Activity of Fe-Based Electrocatalysts for the Reduction of Oxygen[J]. J Phys Chem B. 1999, 103:2042-2049.
    [26] Guo, J., Sun, G., Wang, Q.. Carbon nanofibers supported Pt-Ru electrocatalysts for direct methanol fuel cells[J]. Carbon. 2006, 44(1):152-157.
    [27] Wu, G.., Chen, Y.S., Xu, B.Q.. Remarkable support effect of SWNTs in Pt catalyst for methanol electro oxidation[J].Electrochemistry Communication, 2005,7(12):1237-1243.
    [28] Girsh, K.G., Rettker, M., Underhil, E.R.. Single wall carbon nanotube based proton exchange membrane assembly for hydrogen fuel cells[J]. Langmuir. 2005, 21(18):8487-8494.
    [29] Kim, Y.T., Mitani, T.. Surface thiolation of carbon nanotubes as supports: a promising route for the high dispersion of Pt nanoparticles for elect rocatalysts[J]. Journal of Catalyst. 2006, 238(2):394-401.
    [30] Lombardi, I., Bestetti, M., Mazzocchia, C.. Electochemical characterization of carbon nanotubes for hydrogen storage[J]. Electrochem Solid State Lett. 2004, 7(5):A115- A118.
    [31] Hu, C.G., Wang, W.L., Wang, S.X.. Investigation on electrochemical properties of carbon nanotubes[J]. Diamond Relat Mater. 2003, 12(8):1295-1299.
    [32] Zagal, J.H.. Metallophthalocyanines as catalysts in elect rochemical reactions[J]. Coord Chem Rev. 1992, 119:89-136.
    [33] Wang, J., Naser, N., Angnes, L.. Metal-dispersed carbon paste electrode[J]. Anal Chem. 1992, 64:1285-1288.
    [34] Hossain, M.S., Tryk, D., Yeager, E.. The electrochemistry of graphite and modified graphite surfaces: the reduction of O2[J]. Electrochim Acta. 1989,34:1733-1737.
    [35] Evans, J.F., Kuwana, T.. Introduction of functional groups onto carbon electrodes via treatment with radio-frequenc plasmas[J]. Anal Chem. 1979,51:358-365
    [36]黄成德,田建华,史晶石等.碳的热处理对PEMFC氧电极性能的影响[J].应用化学. 2001, 18(6):444-446.
    [37]黄思玉,赵杰,陈卫祥.空心PtCo/ CNTs催化剂的合成及其电催化性能[J].浙江大学学报. 2008, 42(7):1218-1222.
    [38] Lalande, G.., TéR, O., Guay, D.. Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells[J]. ElectrochimActa. 1997, 42:1379-1388.
    [39] TéR., O., Lalande, G., Faubert, G.. Non-noble metal-based catalysts for the reduction ofoxygen in polymer electrolyte fuel cells[J]. J New Mater Electrochem Syst. 1998, 1:7-16.
    [40] Wang, H., TéRO., Faubert, G.. Effect of the Pre-Treatment of Carbon Black Supports on the Activity of Fe-Based Electrocatalysts for the Reduction of Oxygen[J]. J Phys Chem B. 1999, 103:2042-2049.
    [41] Lalande, G.., Tamizhmani, G.. Infulence of loading on the activity and stability of heat-treated carbon-supported cobalt phthalocyanine electrocatalysts in solid polymer electrolyte fuel cells[J]. J Electrochem Soc. 1995, 142(4):1162-1168.
    [42] Ei, M.O., Coutanuceau, C., Belgair, E.M. Electrocatalytic reduction of dioxygen at macrocycle conducting polymer electrodes in aid media[J]. J Electroanal Chem. 1997, 426 (1-2):117-123.
    [43] Weng L, T., Bertrand, P., Lalande, G.. Surface characterization by time of flight SIMS of a catalyst for oxygen electroreduction: pyrolyzed cobalt phthalocyanine on carbon black[J]. Applied Surface Science. 1995, 84(1):9-21.
    [44] Rong, Z.J., Deryn, C.. Remarkably active catalysts for te electroreduction of O2 to H2O for use in an acidic electrolyte containing concentrated methanol[J]. J Electrochem Soc. 2002, 147(12):4605-4609.
    [45]沈永嘉.酞菁的合成与应用.[M](北京)化学工业出版社.2000.
    [46]钟文健,董新法,陈胜洲.一种新型非贵金属氧化电还原催化剂[J].电池. 2003, 33(3):245-248.
    [47] Alzeer, J., Roth, P.J., Luedtke, N.W.. An efficient two-step synthesis of metal-freephthalocyanines using a zinc(II) template[J]. Chem. Commun. 2009, 1970-1971.
    [48] Zhan, H.B., Wang, M,Q., Chen, W.Z.. The use of macrocyclic compounds as electrocatalysts in fuel cells[J]. Mater Lett. 2002, 55:97-103.
    [49] Randin, J.P.. Interpretation of the relative electrochemical activity of various metal phthalocyanines for the oxygen reduction reaction[J]. Electrochim Acta. 1974, 19:83-85.
    [50] Zagal, J.H., Bedioui, F., Dodelet, J.P.. N4-Macrocyclic metal complexes. New York. 2006, 41-82
    [51] Vander, P.A., Elzing, A., Barendrecht, E.. Redox potential and electro catalysis of O2 reduction on transition metal chelates[J]. J Electroanal Chem. 1987, 221:95-104.
    [52] Anderson, A.B., Sidik, R.A . Oxygen Electroreduction on FeII and FeIII Coordinated to N4Chelates. Reversible Potentials for the Intermediate Steps from Quantum Theory[J]. J Phys Chem B. 2004, 108:5031-5035.
    [53] Baranton, S., Coutanceau, C., Roux, C.. Oxygen reduction reaction in acid medium at iron pathalocyanine dispersed on high surface area carbon substrate: tolerance to methanol sability and kinetics[J]. J Electroanal Chem. 2005, 577:223-234
    [54] Ma, W.T., Wu, J.J., Shen, C.H.. Pan Nickel phthalocyanine-tetrasulfonic acid as a promoter of methanol electro-oxidation on Pt/C catalyst M[J]. J Appl Electrochem. 2008, 38:875-879.
    [55] Li, Z.P., Liu, B.H.. The use of macrocyclic compounds as electrocatalysts in fuel cells[J]. Appl Electrochem. 2009.
    [56] Yuhao, L., Ramana, R.. The electrochemical behavior of Cobalt phthalocyanine/platinum as methanol-resisant oxygen–reduction electrocataltsts for DMFC[J]. Eletrochimica Acta. 2007, 52(7):2562-2569.
    [57] McNeill, R., Siudak, R., Wardlaw, J.H.. Electronic Conduction in PolymersⅡChemical Structure of Polypyrrole[J]. Aust J Chem. 1963, 16:1056-1075.
    [58] Bolto, B.A., McNeill, R., Weiss, D.E.. Electronic Conduction in Polymers III. Electronic Properties of Polypyrrole[J]. Aust J Chem. 1963, 16:1090-1103.
    [59] Eofinger, S., VanOoji, W.J., Ridgway, T.H..[J]. J Appl Polym Soc. 1998, 61:1503-1515.
    [60] Liu, Y.C., Hwang, B.J., Hsu, W.C.. Improvement in anti-aging of metallized Nafion? hydrogen sensors modified by chemical vapor deposition of polypyrrole[J]. Sens Actuators B Chem. 2002, 87:304-308.
    [61] Xu, L., Chen, W., Mulchandani, A.. Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic[J]. Angew Chem Int Ed. 2005, 44:6009-6012
    [62] Bocchi, V., Gardini, G.P.. Chemical synthesis of conducting polypyrrole and some composites[J]. J Chem Soc Chem Commun. 1986, 2:148.
    [63] Rapi, S., Bocchi, V., Gardini, G.P.. Conducting polypyrrole by chemical synthesis in water [J]. Synth Met. 1988, 24:217-221.
    [64] Chao, T.H., March, J.. A study of polypyrrole synthesized with oxidative transition metal ions[J]. J Polym Sci. 1988, 26:743-753.
    [65] Castillo-Ortega, M.M., Inoue, M.B.. Inoue M Chemical synthesis of highly conducting polypyrrole by the use of copper(II) perchlorate as an oxidant[J]. Synth Met. 1989,28:C65-C70.
    [66] Toshima, N., Tayanagi, J.. Properties of chemically prepared polypyrrole with an aqueous solution containing Fe2(SO4)3, a sulfonic surfactant and a phenol derivative[J]. Chem Lett . 1990, 8:1369-1372.
    [67] Toshima, N., Ihata, O.. Catalytic synthesis of conductive polypyrrole using iron(III) catalyst and molecular oxygen[J]. Synth Met. 1996, 79:165-172.
    [68] Dias, H.V.R., Fianchini, M., Rajapakse, R.M.G.. Greener method for high-quality polypyrrole[J]. Polymer. 2006, 47(21):7349-7354.
    [69] Kim, H.S., Park, D.H., Lee, Y.B.. Doped and de-doped polypyrrole nanowires by using a BMIMPF6 ionic liquid[J]. Synth Met. 2007, 157:910-913.
    [70] Mokrane, S., Makhloufi, L., Hammache, H., et al.. Electropolymerization of polypyrrole, modified with germanium, on a passivated titanium electrode in aqueous nitrate solution: new results on catalytic reduction of protons and dissolved oxygen[J]. J Solid State Electrochem. 2001, 5:339-347.
    [71] Singh, R.N., Malviya, M.. Chartier P Electrochemical characterization of composite films of LaNiO3 and polypyrrole for electrocatalysis of O2 reduction[J]. J New Mater Electrochem Syst. 2007, 10(3):181-186.
    [72] Bashyam, R., Zelenay, P.. A class of non-precious metal composite catalysts for fuel cells[J]. Nature. 2006, 443:63-66.
    [73] Yuasa, M., Yamaguchi, A., Itsuki, H., Tanaka, K., et al.. Modifying Carbon Particles with Polypyrrole for Adsorption of Cobalt Ions as Electrocatalytic Site for Oxygen Reduction[J]. Chem Mater .2005, 17:4278-4281.
    [74] Qin, H.Y., Liu, Z.X., Yin, W.X., et al.. A cobalt polypyrrole composite catalyzed cathode for the direct borohydride fuel cell[J]. J Power Sources. 2008, 185:909-912.
    [75] Bashyam, R., Zelenay, P.. A class of non-precious metal composite catalysts for fuel cells[J]. Nature. 2006, 443:63-66.
    [76] Qin, H.Y., Liu, Z.X., Ye, L.Q., et al.. The use of polypyrrole modified carbon-supported cobalt hydroxide as cathode and anode catalysts for the direct borohydride fuel cell[J]. J Power Sources. 2009, 192:385-390.
    [77] Feng, C.H., Chan, P.H., Hsing, I.M.. Catalyzed microelectrode mediated byPolypyrrole/Nafion composite film for microfabricated fuel cell applications[J]. Electrochem Commun. 2007, 9:89-93
    [78] Song E.W., Shi, Chunnian., Fred, C., Anson.. Comparison of the Behavior of Several Cobalt Porphyrins as Electrocatalysts for the Reduction of O2 at Graphit Electrodes[J]. Langmuir. 1998, 14: 4315-4321.
    [79] Adler, A.D., Longo, F.R , Finarelli, J.D., et a1.. A simplified synthesis for meso-tetra pheny-porphine[J]. J Org Chem. 1967, 32(2):476-476.
    [80]郝晓伶,韩士田,刘彦钦.卟啉及金属卟啉配合物的化学研究进展[J].河北师范大学学报. 2009, 33(1):85-88.
    [81] G.lalander, R.C., TéOD, G.. Is nitrogen important in the formulation of Fe-based catalysts for oxygen reduction in solid polymer fuel cells[J]. Electrochim Acta. 1997, 42: 1379-1388.
    [82] Faubert, R.C., TéOD.Guay.,et al.. Activation and characterization of Fe-based catalysts for the reduction of oxygen in polymer electrolyte fuel cells[J]. Electrochim Acta. 1998, 43: 1969-1984.
    [83] Lefevre, M., Dodelet, J.P., Bertrand, P.. Molecula Oxygen Reduction in PEM Fuel Cells Evidence for the Simultaneous Presenc of Two Active Sites in Fe-Based Catalysts[J]. J Phys Chem B. 2002, 106(34):8705-8713.
    [84] Fourenier, J., Faubert, G., Tiloqun, J.Y., et al.. High performance, low Pt content catalysts for the elect roreduction of oxygen in polymer electrolyte fuel cell[J]. J Elect rochem Soc. 1997, 144(1) :145-154.
    [85] Jaouen, F., Marcotte, S., Dodelet, J.P., et al.. Oxygen Reduction Catalysts for Polymer Electrolyte Fuel Cells from the Pyrolysis of Iron Acetate Adsorbed on Various Carbon Supports[J]. J Phys Chem B. 2003, 107:1376-1386.
    [86]陶建中,王三虎,娄天军等.四(对-硝基)苯基卟啉合钴、锰、铁、锌配合物电化学和光谱.电化学性质的研究.化学研究与应用.1999,11(3):268-211.
    [87] Brink, F.V.D.. Netherlands Chemical Soc. 1980,9:253
    [88] Xie, X.Y., Ma Z.F., Wu, X., et al..Preparation and electrochemical characteristics of CoTMPP-TiO2NT/BP composite electrocatalyst for oxygen reduction reaction[J]. Electrochimica Acta.2007, 52(5):2091-2096.
    [89] Gouerec, P., Biloul, A.. Dioxygen reduction elect rocatalysis in acidic media: effect ofperipheral ligand substitution on cobalt tetraphenylporphyrin[J]. J Electroanal Chem. 1995, 398:67-75.
    [90] Bron, M., Fiechter, S., Hilgendorff, M., et al.. Catalysts for oxygen reducton from heat-treated Carbon: supported iron phenantroline complex[J]. J Appl Electrochem. 2002, 32:211-216.
    [91] Bron, M., Radnik, J., Fieber, E.M., et al.. EXAFSXPS and electrochemical studies on oxygen reduction catalysts obtained by heat–treatment of iron phenanathroline complex supported on high surface area carbon black[J]. J Electro Chem. 2002, 535:113-119.
    [92]李赏,周彦方,潘牧等. Co基非贵金属催化剂的制备及其氧还原电催化性能.科学通报. 2009, 54(7): 881-887 .
    [93] Jiang, J.H., Anthony, K.. Novel electrocatalyst for the oxygen reduction reaction in acidicmedia using electrochemically activated iron 2,6-bis(imino)-pyridylcomplexes[J]. Electrochimica Acta. 2002, 47:1967-1973.
    [94] Shi, C., Anson, F.C.. Electrocatalysis of the reduction of molecular oxygen to water by tetraruthenated cobalt meso-tetrakis(4-pyridyl)porphyrin adsorbed on graphite electrodes[J]. Inorg Chem. 1992, 31:5078- 5083.
    [95] Collman, J.P., Paul, S., Wagenknecht., et al.. Molecular Catalysts for Multielectron Redox Reactions of Small Molecules[J]. Angew Chem Int Engl. 1994, 33:1537-1554.
    [96] Thirsk, H.R.. Harrison in A Guide to the Study of Ekctrode Kinetics.Academic. New York. 1972.
    [97] Albery, W.J., Hitchman, M.L.. Ring-Disc Electrodes. Clarendon. Oxford. 1971.
    [98] Faubert, G.., Lanlande, G., Cote., et al.. Heat-treated iron and cobalt tetraphenylporphyrins adsorbed on carbon black:physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells[J]. Electrochimica Acta. 1996, 41(10):1689.
    [99]王爱琴,任奇志,刘双艳等.热处理温度对钴卟啉负载碳黑电催化剂的结构及还原性能的影响[J].高等学校化学学报. 2009, 30(4):752-756.
    [100] Yamanaka, I., Onizawa, T., Suzuki, H., et al.. Electrocatalysis of Heat-treated Mn-porphyrin/Carbon Cathode for Synthesis of H2O2 Acid Solutions by H2-O2 Fuel Cell Method [J]. Chem. Lett. 2006, 35:1330-1331.
    [101] Fabjan, C., Frithum, G., Hartl, H.. On the electrocatalysis of the oxygen reduction in acid electrolyte[J]. Ber Bunsenges Phys Chem. 1990, 94: 937.
    [102] Seeliger, W., Hamnett.. A Novel electrocatalysts for oxygen reduction[J]. Electrochim Acta. 1992, 37:763.
    [103] Bezerra, C.W.B., Zhang, L., Zhang, J.. A review of heat-treatment effects on activity and stability of PEM fuel cell catalysts for oxygen reduction reaction[J]. J Power Sources. 2007, 173:891-908.
    [104] Faubert , G., Lalande, G., COTE, R., et al.. Heat-treated iron and cobalt tetraphenyl porphyrins adsorbed on carbon black:physical characterization and catalytic properties of these materials for the reduction of oxygen in polymer electrolyte fuel cells[J]. Elect rochimica Acta. 1996 ,41(10):1689-1701.
    [105] Stamenkovic, V., Fowler, B., Simon, M.B., et al.. Catalysis at Bimetallic Electrochemical Interfaces. Newyork. 2007.
    [106] Gojkovic, S.Lj., Gupta, S., Sanvinell, R.F.. Heat-treated iron(III) tetramethoxyphenyl porphyrin chloride supported on high-area carbon as an electrocatalyst for oxygen reduction: Part II Kinetics of oxygen reduction[J]. J Electroanal Chem. 1999, 462:63-72.
    [107] Lefevre, M., Dodelet, J.P., Bertrand, P.. Molecular Oxygen Reduction in PEM Fuel Cells Evidence for the Simultaneous Presence of Two Active Sites in Fe-Based Catalysts[J]. J Phys Chem B. 2002, 106:8705-8713.
    [108] Lefevre, M., Dodelet, J.P., Bertrand, P.. Molecular oxygen reduction in PEM fuel cell conditions: Tof-SIMS analysis of Co-based electrocatalysts[J]. J Phys Chem. 2005, 109:16718-16724.
    [109] Ma, J.F., Wang, J., Liu, Y.N.. Iron phthalocyanine as a cathode catalyst for a direct borohydride fuel cell[J]. J Power Sources.2007 ,172:220-224.
    [1] Lalande, G., Faubert, G.., ROTé., et al.. Catalytic activity and stability of heat-treated iron phthalocyanines for the electroreduction of oxygen in polymer electrolyte fuel cells[J]. J Power Sources.1996, 61:227-237.
    [2] Lefevre, M.,Dodelet, J.P., Bertrand, P.. Molecular Oxygen Reduction in PEM Fuel Cells Evidence for the Simultaneous Presence of Two Active Sites in Fe-Based Catalysts [J]. J Phys Chem B. 2002, 106:8705-8713.
    [3] Jiang, J.H., Anthony, K.. Novel electrocatalyst for the oxygen reduction reaction in acidic media using electrochemically activated iron 2,6-bis(imino)-pyridylcomplexes[J]. Electrochimica Acta. 2002, 47:1967-1973.
    [4] Alyea, E.C., Merrell, P.H.. Terdentaten NNN Donor Ligangs Derived from 2,6-Diacetylpyidine[J]. SYN.REACT. INORG. METAL-ORG.CHEM. 1974,4(6):535-544.
    [5]钟霞,刘伟生.双Schif碱过渡金属配合物的合成、表征及催化乙烯聚合性质.兰州大学学报(自然科学版). 2007, 43(4):65-67.
    [6]谢先宇,任奇志,马紫峰.金属卟啉制备及其电化学研究.化工学报.2004,55(12):2086.
    [1] Medard, C., Lefevre, M., Dodelet, J.P., et al..Electrochim Acta. 2006, 51:3202–3213.
    [2] Bouwkamp-Wijnoltz, A.L., Visscher, W., VanVeen, J.A.R., et al.. Electrochim Acta. 1999, 45:379-386.
    [3] Li , Z.P., Liu, B.H. . The use of macrocyclic compounds as electrocatalysts in fuel cells[J]. Journal of Applied Electrochemistry. 2009, REVIEW ARTICLE
    [4]麻晓霞,任奇志,马紫峰等.金属卟啉类化合物电催化剂研究进展.化学世界.2005, 4:243-246.
    [5] Ma, Z.F., Xie, X,Y., Ma, X.X., et al.. Electrochemical characteristics and performance of CoTMPP/BP oxygen reduction electrocatalysts for PEM fuel cell[J]. Electrochem.Commun. 2006, 8:389-394.
    [6] Watanabe, M., Igarashi, H., Yosioka, K.. An experimental prediction of the preparation condition of Nafion coated catalyst layers for PEFCs[J]. Electrochimica Acta. 1995, 40 (3):329-334.
    [7]蒋淇忠,马紫峰,林维明.液相进样直接甲醇燃料电池性能初探[J].新能源. 2000, 22(7):5-7.
    [8]葛善海,衣宝廉,徐洪峰等.质子交换膜燃料电池的研究.电化学. 1998, 4 (3): 299-306.
    [9]蒋淇忠,马紫峰,刘振泰.液相进样直接甲醇燃料电池性能研究,高校化学工程学报. 2001, 15(1):46-51.
    [10] Bouwkamp-Wijnoltz, A.L., Visscher, W., VanVeer J.A.R.. The selectivity of oxygen reduction by pyrolysed iron porphyrin suppored on cabon[J]. Electrochem Acta. 1998,43(21-22): 3141-3152.
    [1]王爱琴,任奇志,刘双艳等.热处理对钴卟啉负载炭黑催化剂的结构及氧化还原性能的影响.高等学校化学学报. 2009, 4:752-756.
    [2] Zhang, H.J., Yuan, X.X., Ma, Z.F., ey al.. Pyrolyzed CoN4-chelate as an electrocatalyst for oxygen reduction reaction in acid media[J]. International journal of hydrogen energy. 2009,1-4.
    [3] Xie, X.Y., Ma, Z.F., Wu, X.. Preparation and electrochemical characteristics of CoTMPP-TiO2NT/BP Composite electrocatalyst for oxygen reduction reaction, Electrochimica Acta. 2006.
    [4] Ma, Z.F., Xie, X.Y., Ma X.X.. Electrochemical characteristics and performance of Co/TP oxygen reduction electrocatalysts for PEM Fuel Cell[J]. Electrochemistry Communications. 2006, (8):389-394.
    [5] Song, E.H.W., Shi, CN., Fred, C., et al.. Comparison of the Behavior of Several Cobalt Porphyrins as Electrocatalysts for the Reduction of O2 at Graphite Electrodes[J]. Langmuir. 1998, 14:4315-4321.
    [6] Bard, A.J., Faulkner, L.R.. Electrochemical Methods:Fundamentals and Applications[J]. Wiley.New York:Edition(2001).
    [7] Jimenez, M., Fierro, J.L.G.. X-ray Photoelectron Spectroscopic Study of Petroleum Fuel Cokes[J]. Surf.Interface Anal. 1996, 24:223-236.
    [8] Biloul, A., Gouérec, P., Savy, M., et al.. Oxygen electrocatalysis under fuel cell conditions: behavior of cobalt porphyrins and tetraazaannulene analogures[J]. J Appl Electrochem. 1996, 26:1139-1146.
    [9] Lefěvre, M., Dodelet, J.P.. Fe-based catalysts for the reduction of oxygen in polymer electrolyte membrane fuel cell conditions:determination of the amount of peroxide released during electroreduction and its influence on the stability of the catalysts[J]. Electrochim Acta. 2003, 48:2749-2760.
    [10]余睛春,王明华,胡鸣若.电极组分对质子交换膜燃料电池性能的影响.研究与设计.2004, 28(2):67-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700