绒山羊和绵羊Izumo1和CD9基因的克隆及其相互作用的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
哺乳动物受精是由一系列复杂有序的步骤组成的细胞相互作用过程,最终导致精卵质膜融合形成受精卵。尽管运用基因组学和蛋白质组学技术在精子和卵子上面各鉴定出若干与精卵融合有关的分子,但顶体反应后的精子与卵细胞膜上的受体结合从而引发精卵融合的分子机制尚不清楚。在这些精卵融合候选分子中,只有精子上的免疫球蛋白超家族(IgSF)新成员Izumo1和卵子上的四次跨膜蛋白超家族(TM4SF)成员CD9被基因敲除小鼠证明是精卵融合必需的分子。绵羊和绒山羊是重要的家畜,是羊肉、羊毛和羊绒的主要来源,然而未见关于其Izumo1和CD9的研究报道。由于这一信息对于了解绵羊和绒山羊的生殖和受精调节机制有重要的意义,本研究克隆了绵羊和绒山羊的Izumo1基因组DNA和cDNA以及CD9的cDNA,并且实现了在大肠杆菌中表达,然后制备并纯化了小鼠抗羊Izumo1的腹水多克隆抗体,用纯化的Izumo1抗体研究了Izumo1蛋白在睾丸和精子上的细胞定位。本文还制备了地高辛标记的绒山羊Izumo1 RNA探针,用RNA原位杂交技术检测了Izumo1在睾丸中的转录细胞定位。最后用双分子荧光互补(BiFC)技术初步研究了绒山羊Izumo1和CD9在人肝癌细胞内能否直接相互结合。
     本研究克隆的绵羊Izumo1基因长4600 bp,绒山羊Izumo1基因长4598 bp,二者同源性高达99.9%,并与牛、鼠和人Izumo1基因高度同源。将绵羊和绒山羊的Izumo1 DNA和cDNA序列对比分析后发现羊Izumo1有多种选择性剪接形式,其中完整的开放阅读框(ORF)长963 bp,由8个外显子剪接而成,编码320个氨基酸的肽链。该肽链在C端有1个跨膜结构域,胞外有免疫球蛋白样结构域。绒山羊Izumo1 cDNA具有del 69、del 182和del 217三种选择性剪接异构体;绵羊Izumo1 cDNA具有del 69和ins 30两种选择性剪接异构体。所有这4种选择性剪接均是典型的GT-AG内含子剪接,但由于肽链中间缺失或者C端截短,它们都部分或全部失去了免疫球蛋白样结构域。
     对羊Izumo1的氨基酸序列进行生物信息学分析显示其在结构上与小鼠Izumo1相似,N端有一个氨基酸1-22组成的信号肽、C末端有一个氨基酸302-319组成的跨膜区,中间有一个氨基酸161-252组成的免疫球蛋白结构域,并在其上有一个潜在的N-糖基化位点(N~(205))。对15种哺乳动物的Izumo1氨基酸序列进行比对分析,发现它们的序列同源性并不太高,尤其是在C末端。但也有一些极为保守的基序,如能形成二硫键桥的LDC和YRC基序、免疫球蛋白样结构域上游的CPNKCG基序、N-糖基化位点上游的GLTDYSFYRVW基序以及绝大部分半胱氨酸残基。这些保守特征可能与Izumo1的功能有关。用Izumo1 cDNA序列进行分子系统发生学研究的结果与形态学分类一致,确认绵羊和绒山羊聚为一支并与牛亲缘关系最近。
     绵羊和绒山羊CD9 cDNA克隆均得到1123 bp序列,包含一个681 bp的完整开放阅读框,编码226个氨基酸的肽链。该肽链具有典型的4次跨膜蛋白家族特征。一个N-糖基化位点(N~(50))、4个跨膜区、两个胞外环和一个被公认为4次跨膜蛋白家族标志的CCG基序。绵羊和绒山羊CD9氨基酸序列有99.1%相同,并与牛、鼠和人的CD9高度同源。本研究对26种动物的CD9氨基酸序列进行了比对分析,发现相同科属的动物CD9同源性很高,并且在小胞外环(SEL)上发现了一个前人没注意到的极为保守的LWLR基序。另外本实验还发现前人在小鼠CD9大胞外环(LEL)上鉴定为精卵融合关键的SFQ(173-175aa)基序只存在于小鼠和大鼠CD9中,别的动物的CD9上并没有这个基序;一直被称之为“糖蛋白”的CD9的N-糖基化位点在位置和序列上并不保守,有些动物的CD9甚至没有糖基化位点。这些结果为进一步研究CD9在精卵融合中的功能提供了新的线索。用CD9 cDNA序列进行分子系统发生学研究的结果与形态学分类一致,确认绵羊和绒山羊聚为一支并与牛亲缘关系最近。
     本实验在大肠杆菌中表达了绵羊CD9和绒山羊Izumo1重组蛋白,并成功地制作了小鼠抗羊Izumo1腹水多克隆抗体。用自制的抗体进行免疫组化研究显示绒山羊的Izumo1蛋白存在于睾丸精子发生过程中减数分裂各期细胞中,定位于单倍体圆形精细胞的细胞核内,随着精细胞变形,在长形精子中形成窄条状分布,最终转位至成熟精子头部的赤道环上。RNA原位杂交结果显示绒山羊Izumo1基因在初级精母细胞中转录。
     BiFC载体BiFC-VC155-CD9和BiFC-VN173-Izumo1共转染Hep-G2细胞后只观察到零星的荧光细胞,不能支持CD9与Izumo1结合的猜想。
Mammalian fertilization consists of an intricate cascade of cell-cell interactions that culminate in the fusion of sperm and egg membranes and formation of a zygote.A number of molecules with putative roles in sperm-oocyte fusion have recently been identified with genomic and proteomic techniques. However,the mechanisms by which acrosome-reacted spermatozoa bind to receptor molecules on the oocyte plasma membrane and the subsequent fusion with the oolemma remain unknown.It has been established in knockout mice that Izumol,a novel member of immunoglobulin superfamily(IgSF) located on the sperm,and CD9,a member of tetraspanin superfamily(TM4SF) located on the oocyte,are crucial for sperm-egg fusion.Sheep and goat are a major source of food,wool and cashmere,but little research on the sperm-egg fusion has been reported in these livestocks.Since the mechanisms of sperm-egg fusion are important for us to understand the regulatory aspects of caprine and ovine fertilization and reproduction,we cloned and characterized the Izumol and CD9 genes in sheep and chashmere goat,and expressed their recombinant proteins in E.coli.To demonstrate the expression pattern of Izumol in testis and its localization in sperms,we generated ascitic polyclonal antibodies against caprine and ovine Izumol proteins and synthesized DIG-tagged Izumol RNA probes in vitro.We also attempted to study the interactions between caprine Izumol and CD9 using BiFC assay in human Hep-G2 cells.
     Alignment of the cloned 4600 bp sequence of sheep Izumol gene with the 4598 bp of goat Izumol gene as well as other animals' Izumol gene revealed 99.9% identity between sheep and goat Izumol,and they both share high homology with their counterparts in cattle,mouse,rat and human.Extensive cDNA cloning captured a canonical open reading frame(ORF) of 963 bp which made of eight exons and three(del 69,del 182 and del 217) alternative splicing isoforms in goat and two(del 69 and ins 30) in sheep Izumol.Bioinformatics analysis showed that the canonical caprine and ovine Izumol cDNA both encode a peptide of 320amino acides(aa) which shares similar structure with their murine orthologue in a feature that there are a signal peptide at the N-terminus(1-22aa),a transmembrane domain at the C-terminus(302-319aa),and an extracellular immunoglobulin-like(Ig-like) region with a putative N-linked glycosylation site(N~(205)-N-S) in the middle (161-252aa).All of those isoforms are derived from alternative splicing at the typical GT-AG sites resulting in the Ig-like domain partially truncated or completely deleted.
     Alignment of Izumol protein sequences among 15mammalian species displayed several highly conserved regions,including LDC and YRC motifs with cysteine residues for potential disulfide bridge formation,CPNKCG motif upstream of the Ig-like domain,GLTDYSFYRVW motif upstream of the putative N-linked glycosylation site,and a number of scattered cysteine residues.These conservation features are very informative to pinpoint the key motifs related to Izumol function. The C-terminal regions,however,are more variable across species.The molecular phylogenetic tree constructed using Izumol cDNA sequences is consistent with their morphological taxonomy,for which sheep and goat are in the same cluster and are closely related to cattle.
     We also cloned CD9 cDNA of 1.1kb in length from sheep and cashmere goat. Both of them have an ORF of 681 bp encoding a predicted protein of 226 amino acids with a typical TM4SF structure.The deduced peptide consists of a putative N-linked glycosylation site(N-X-S/T)(N~(50)),four transmembrane domains,two extracellular domains and a CCG motif which is a hallmark of the TM4SF.The sheep and goat CD9 proteins share 99.1%identity and are highly homologous to their orthologues in cattle,mouse and human.Alignment of CD9 protein sequences among 26 mammalian species revealed extensive homologies within the same family and a highly conserved LWLR motif in the small extracellular loop(SEL) in all species.The SFQ(173-175) motif within the large extracellular loop(LEL), which was reported as a key motif for mediating sperm-egg fusion,is found only in mouse and rat.Although CD9 is generally annotated as a glycoprotein,we found that the N-linked glycosylation sites are missing in some species and are thus less conserved as expected.These results present new clues for CD9's function in sperm-egg fusion.Molecular phylogenetic analysis based on CD9 cDNA sequences indicated that goat and sheep are closely related to cattle,which is consistent with their morphological taxonomy.
     We expressed the recombinant sheep CD9 and goat Izumol proteins in E.coli and succeeded in generating ascitic polyclonal antibodies against the goat Izumol protein.Immunohistochemical analysis showed that Izumol proteins present in the meiotic male germ cells and are stored in the nucleus.Concomitant with spermatid maturation,Izumol proteins contract to a narrow area in elongated spermatids and finally concentrate in the equatorial segment of the mature sperm head where sperm-egg fusion is initiated.RNA in situ hybridization analysis with DIG-tagged anti-sense Izumol riboprobes indicated that the goat Izumol gene is mainly transcribed in the primary spermatocytes.
     Finally,we constructed BiFC expression vectors BiFC-VC155-CD9 and BiFC-VN173-Izumol and transiently cotransfected them into human hepatocellular line Hep-G2 to examine the binding ability of Izumol to CD9 in cytoplasm. However,that only a small number of fluorescent cells were observed was not conclusive for the binding activity between caprine CD9 and Izumol proteins.
引文
1. Primakoff P, Myles DG. Penetration, adhesion, and fusion in mammalian sperm-egg interaction. Science, 2002, 296 (5576): 2183-2185.
    2. Vjugina U, Evans JP. New insights into the molecular basis of mammalian sperm-egg membrane interactions. Frontiers in Bioscience, 2008,13: 462-476.
    3. Primakoff P, Hyatt H, Tredick-Kline J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol, 1987,104 (1): 141-149.
    4. Evans JP. The molecular basis of sperm-oocyte membrane interactions during mammalian fertilization. Hum Reprod Update. 2002,8 (4): 297-311.
    5. Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, Myles DG. Fertilization defects in sperm from mice lacking fertilin beta. Science 1998,281: 1857-1859.
    6. Shamsadin R, Adham IM, Nayemia K, Heinlein UA, Oberwinkler H, Engel W. Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod, 1999, 61: 1445-1451.
    7. Nishimura H, Cho C, Branciforte DR, Myles DG, Primakoff P. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol, 2001,233: 204-213.
    8. McLaughlin EA, Frayne J, Bloomerg G, Hall L. Do fertilin β and cyritestin play a major role in mammalian sperm-oolemma interactions? A critical re-evaluation of the use of peptide mimics in identifying specific oocyte recognition proteins. Mol Hum Reprod, 2001, 7 (4): 313-317.
    9. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E. Requirement of CD9 on the egg plasma membrane for fertilization. Science, 2000, 287 (5451): 321-324.
    10. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A. The gamete fusion process is defective in eggs of CD9-deficient mice. Nat Genet, 2000, 24 (3): 279-282.
    11. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C. Severely reduced female fertility in CD9-deficient mice. Science, 2000, 287 (5451): 319-321.
    12. Zhu GZ, Miller BJ, Boucheix C, Rubinstein E, Liu CC, Hynes RO, Myles DG, Primakoff P. Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development, 2002, 129: 1995-2002.
    13. Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature, 2005, 434 (7030): 234-238.
    14. Chen EH, Olson EN. Unveiling the mechanisms of cell-cell fusion. Science, 2005, 308: 369-373.
    15. Galletta BJ, Chakravarti M, Banerjee R, Abmayr SM. SNS: Adhesive properties, localization requirements and ectodomain dependence in S2 cells and embryonic myoblasts. Mech Dev. 2004,121 (12): 1455-1468.
    16. Primakoffa P, Myles DG: Cell-cell membrane fusion during mammalian fertilization. FEBS Letters. 2007, 581: 2174-2180.
    17. Turano C, Coppari S, Altieri F, Ferraro A. Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol. 2002,193 (2): 154-163.
    18. Ellerman DA, Myles DG, Primakoff P. A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Dev Cell 2006,10: 831-837.
    19. Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C. The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol. 2006,17 (2): 254-263.
    20. Nixon B, Aitken RJ, McLaughlin EA. New insights into the molecular mechanisms of sperm-egg interaction. Cell Mol Life Sci. 2007, 64: 1805-1823.
    21. Staley JP, Guthrie C. Mechanical devices of the spliceosome: motors, clocks, springs, and things. Cell, 1998, 92: 315-326.
    22. Reed R. Initial splice-site recognition and pairing during pre-mRNA splicing. Curr Opin Genet Dev, 1996, 6: 215-220.
    23. Graveley BR. Sorting out the complexity of SR protein functions. RNA, 2000, 6: 1197-1211.
    24. Schaal TD Maniatis T. Multiple distinct splicing enhancers in the protein-coding sequences of a constitutively spliced pre-mRNA. Mol Cell Biol. 1999,19, 261-273.
    25. Mayeda A, Screaton GR, Chandler SD, Fu XD, Krainer AR. Substrate specificities of SR proteins in constitutive splicing are determined by their RNA recognition motifs and composite pre-mRNA exonic elements. Mol Cell Biol. 1999,19: 1853-1863.
    26. Sun H, Chasin LA. Multiple splicing defects in an intronic false exon. Mol Cell Biol. 2000, 20: 6414-6425.
    27. Mironov AA, Fickett JW, Gelfand MS. Frequent alternative splicing of human genes. Genome Res, 1999, 9: 1288-1293.
    28. Brett D, Hanke J, Lehmann G, Haase S, Delbruck S, Krueger S, Reich J, Bork P. EST comparison indicates 38% of human mRNAs contain possible alternative splice forms. FEES Lett, 2000,474: 83-86.
    29. Johnson, JM., Castle J, Garrett-Engele P, Kan Z, Loerch PM, Armour CD, Santos R, Schadt EE, Stoughton R, Shoemaker DD. Genome-wide survey of human alternative pre-mRNA splicing with exon junction microarrays. Science, 2003,302: 2141-2144.
    30. Cartegni L, Chew SL, Krainer AR. Listening to silence and understanding nonsense: exonic mutations that affect splicing. Nature Rev Genet, 2002, 3: 285-298.
    31. Blencowe BJ. Exonic splicing enhancers: mechanism of action, diversity and role in human genetic diseases. Trends Biochem Sci, 2000,25: 106-110.
    32. Hastings ML, Krainer AR. Pre-mRNA splicing in the new millennium. Curr Opin Cell Biol, 2001, 13: 302-309.
    33. Smith CW, Valcarcel J. Alternative pre-mRNA splicing: the logic of combinatorial control. Trends Biochem Sci, 2000,25: 381-388.
    34. Perez-Canadillas JM, Varani G. Recent advances in RNA-protein recognition. Curr Opin Struct Biol, 2001, 11:53-58.
    35. Graveley BR, Hertel KJ, Maniatis T. SR proteins are 'locators' of the RNA splicing machinery. Curr Biol, 1999,9:R6-R7.
    36. Quelle DE, Zindy F, Ashmun RA, Sherr CJ. Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest. Cell, 1995,83: 993-1000.
    37. Black DL. Protein diversity from alternative splicing: a challenge for bioinformatics and post-genome biology. Cell, 2000,103: 367-370.
    38. Graveley BR. Alternative splicing: increasing diversity in the proteomic world. Trends Genet, 2001, 17: 100-107.
    39. Goldstrohm AC, Greenleaf AL, Garcia-Blanco MA. Co-transcriptional splicing of pre-messenger RNAs: considerations for the mechanism of alternative splicing. Gene, 2001,277: 31—47.
    40. Caceres JF, Kornblihtt AR. Alternative splicing: multiple control mechanisms and involvement in human disease. Trends Genet, 2002,18: 186-193.
    41. Gautheret D, Poirot O, Lopez F, Audic S, Claverie JM. Alternate polyadenylation in human mRNAs: a large-scale analysis by EST clustering. Genome Res, 1998, 8: 524-530.
    42. Keegan LP, Gallo A, O'Connell MA. The many roles of an RNA editor. Nature Rev Genet, 2001,2: 869-878.
    43. Banks RE, Dunn MJ, Hochstrasser DF, Sanchez JC, Blackstock W, Pappin DJ, Selby PJ. Proteomics: new perspectives, new biomedical opportunities. Lancet, 2000, 356: 1749-1756.
    44. Chang C, Chen PT, Chang GD, Huang CJ, Chen H. Functional characterization of the placental fusogenic membrane protein syncytin. Biol Reprod. 2004, 71 (6): 1956-1962.
    45. Marshall RD, Glycoproteins. Annu Rev Biochem.1972,41: 673-702.
    46. Meunier JC, Fournillier A, Choukhi A, Cahour A, Cocquerel L, Dubuisson J, Wychowski C, Analysis of the glycosylation sites of the hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex.Gen Virol, 1999, 80: 887-896.
    47. Goffard A, Callens N, Bartosch B, Wychowski C, Cosset FL, Montpellier-Pala C, Dubuisson J. Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. Virol, 2005,79: 8400-8409.
    48. Gavel Y, von Heijne G, Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng, 1990,3: 433-442.
    49. Inoue N, Ikawa M, Okabe M. Putative sperm fusion protein IZUMO and the role of N-glycosylation. Biochem Biophys Res Commun. 2008,377 (3): 910-914.
    50. Javadpour MM, Eilers M, Groesbeek M, Smith SO, Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J, 1999,77: 1609-1618.
    51. Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M, Wang X, Miyamoto K, Akutsu H, Kondo T, Takahashi Y, Ban T, Ito C, Toshimori K, Nakamura A, Ito M, Miyado M, Mekada E, Umezawa A. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA, 2008,105 (35):12921-12925.
    52. Cohen P. The regulation of protein function by multisite phosphorylation - a 25 year update. Trends Biochem Sci, 2000,25, 596-601.
    53. Thomas G, de Pablo F, Schlessinger J, Moscat J. The ins and outs of protein phosphorylation. Workshop report: control of signaling by protein phosphorylation. EMBO Rep. 2000,1 (1): 11-15.
    1. Toshimori K, Maekawa M, Ito C, Toyama Y, Suzuki-Toyota F, Saxena DK. The involvement of immunoglobulin superfamily proteins in spermatogenesis and sperm-egg interaction. Reproductive Medicine and Biology, 2006,5: 87-93.
    2. Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature, 2005, 434 (7030): 234-238.
    3. Inoue N, Ikawa M, Nakanishi T, Matsumoto M, Nomura M, Seya T, Okabe M. Disruption of mouse CD46 causes an accelerated spontaneous acrosome reaction in sperm. Mol Cell Biol. 2003, 23 (7): 2614-2622.
    4. Herrero MB, Mandal A, Digilio LC, Coonrod SA, Maier B, Herr JC. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm-egg binding and fertilization. Dev Biol, 2005, 284 (1): 126-142.
    5. Ellerman DA, Da Ros VG, Cohen DJ, Busso D, Morgenfeld MM, Cuasnicu PS. Expression and structure-function analysis of DE, a sperm cysteine-rich secretory protein that mediates gamete fusion. Biol Reprod, 2002, 67 (4): 1225-1231.
    6. Busso D, Goldweic NM, Hayashi M, Kasahara M, Cuasnicu PS. Evidence for the involvement of testicular protein CRISP2 in mouse sperm-egg fusion. Biol Reprod, 2007,76 (4): 701-708.
    7. Ellerman DA, Cohen DJ, Da Ros VG, Morgenfeld MM, Busso D, Cuasnicu PS. Sperm protein "DE" mediates gamete fusion through an evolutionarily conserved site of the CRISP family. Dev Biol, 2006, 297 (1): 228-237.
    8. Mizuki N, Sarapata DE, Garcia-Sanz JA, Kasahara M. The mouse male germ cell-specific gene Tpx-1: molecular structure, mode of expression in spermatogenesis, and sequence similarity to two non-mammalian genes. Mamm Genome. 1992,3 (5):274-280.
    9. Sivashanmugam P, Richardson RT, Hall S, Hamil KG, French FS, O'Rand MG Cloning and characterization of an androgen-dependent acidic epididymal glycoprotein/CRISP1-like protein from the monkey. J Androl, 1999,20 (3): 384-393.
    10. Mandal A, Klotz KL, Shetty J, Jayes FL, Wolkowicz MJ, Boiling LC, Coonrod SA, Black MB, Diekman AB, Haystead TA, Flickinger CJ, Herr JC. SLLP1, a unique, intra-acrosomal, non-bacteriolytic, c lysozyme-like protein of human spermatozoa. Biol Reprod. 2003, 68 (5): 1525-1537.
    11. Ellerman DA, Myles DG, Primakoff P. A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Dev Cell, 2006,10 (6): 831-837.
    12. Schultz R, Williams C. Developmental biology: sperm-egg fusion unscrambled. Nature. 2005, 434 (7030): 152-153.
    1. Boucheix C, Rubinstein E.Tetraspanins. Cell Mol Life Sci, 2001, 58: 1189-1205.
    
    2. Stipp CS, Kolesnikova TV, Hemler ME. Functional domains in tetraspanin proteins. Trends Biochem Sci, 2003,28:106-112.
    3. Hemler ME. Specific tetraspanin functions. J Cell Biol, 2001,155: 1103-1107.
    4. Levy S, Shoham T. The tetraspanin web modulates immune-signalling complexes. Nat Rev Immunol, 2005, 5: 136-48.
    5. Shaw AR, Domanska A, Mak A, Gilchrist A, Dobler K, Visser L, Poppema S, Fliegel L, Letarte M, Willett, BJ. Ectopic expression of human and feline CD9 in a human B cell line confers betal integrin-dependent motility on fibronectin and laminin substrates and enhanced tyrosine phosphorylation. J Biol Chem, 1995, 270: 24092-24099.
    6. Lagaudriere-Gesbert C, Le Naour F, Lebel-Binay S, Billard M, Lemichez E, Boquet P, Boucheix C, Conjeaud H, Rubinstein E. Functional analysis of four tetraspans, CD9, CD53, CD81, and CD82, suggests a common role in costimulation, cell adhesion, and migration: only CD9 upregulates HB-EGF activity. Cell Immunol, 1997,182: 105-112.
    7. Miyake M, Koyama M, Seno M, Ikeyama S. Identification of the motility-related protein (MRP-1), recognized by monoclonal antibody M31-15, which inhibits cell motility. J Exp Med, 1991,174: 1347-1354.
    8. Miyake M, Nakano K, Ieki Y, Adachi M, Huang CL, Itoi S, Koh T, Taki T. Motility related protein 1 (MRP-1/CD9) expression: inverse correlation with metastases in breast cancer. Cancer Res, 1995, 55: 4127-4131.
    9. Miyake M, Nakano K, Itoi SI, Koh T, Taki T. Motility-related protein-1 (MRP-1/CD9) reduction as a factor of poor prognosis in breast cancer. Cancer Res, 1996,56: 1244-1249.
    10. Mori M, Mimori K, Shiraishi T, Haraguchi M, Ueo H, Barnard GF, Akiyoshi T. Motility related protein 1 (MRP1/CD9) expression in colon cancer. Clin Cancer Res, 1998,4: 1507-1510.
    11. Huang CL, Ueno M, Liu D, Masuya D, Nakano J, Yokomise H, Nakagawa T, Miyake M. MRP-1/CD9 gene transduction regulates the actin cytoskeleton through the downregulation of WAVE2. Oncogene, 2006, 25: 6480-6488.
    12. Nojima Y, Hirose T, Tachibana K, Tanaka T, Shi L, Doshen J, Freeman GJ, Schlossman SF, Morimoto C. The 4F9 antigen is a member of the tetra spans transmembrane protein family and functions as an accessory molecule in T cell activation and adhesion. Cell Immunol, 1993,152: 249-260.
    13. Engering A, Pieters J. Association of distinct tetraspanins with MHC class II molecules at different subcellular locations in human immature dendritic cells. Int Immunol, 2001,13: 127-134.
    14. Huang CL, Kohno N, Ogawa E, Adachi M, Taki T, Miyake M. Correlation of reduction in MRP-1/CD9 and KAI1/CD82 expression with recurrences in breast cancer patients. Am J Pathol, 1998,153 (3): 973-983.
    15. Higashiyama M, Taki T, Ieki Y, Adachi M, Huang CL, Koh T, Kodama K, Doi O, Miyake M. Reduced motility related protein-1 (MRP-1/CD9) gene expression as a factor of poor prognosis in nonsmall cell lung cancer. Cancer Res, 1995, 55: 6040-6044.
    16. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C. Severely reduced female fertility in CD9-deficient mice. Science, 2000, 287: 319-321.
    17. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E. Requirement of CD9 on the egg plasma membrane for fertilization. Science, 2000, 287: 321-324.
    18. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A. The gamete fusion process is defective in eggs of Cd9-deficient mice. Nat Genet, 2000, 24: 279-282.
    19. Zhu GZ, Miller BJ, Boucheix C, Rubinstein E, Liu CC, Hynes RO, Myles DG, Primakoff P. Residues SFQ (173-175) in the large extracellular loop of CD9 are required for gamete fusion. Development, 2002, 129: 1995-2002.
    20. Ellerman DA, Ha C, Primakoff P, Myles DG, Dveksler GS. Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion. Mol Biol Cell, 2003,14: 5098-5103.
    21. Li YH, Hou Y, Ma W, Yuan JX, Zhang D, Sun QY, Wang WH. Localization of CD9 in pig oocytes and its effects on sperm-egg interaction. Reproduction, 2004,127: 1470-1626.
    22. Ziyyat A, Rubinstein E, Monier-Gavelle F, Barraud V, Kulski O, Prenant M, Boucheix C, Bomsel M, Wolf JP. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha 6 beta 1, which are involved in human and mouse gamete fusion. J Cell Sci, 2005,119: 416-424.
    23. Komorowski S, Baranowska B, Maleszewski M. CD9 protein appears on growing mouse oocytes at the time when they developthe ability to fuse with spermatozoa. Zygote, 2006,14: 119-123.
    24. Liu WM, Cao YJ, Yang YJ, Li J, Hu Z, Duan EK. Tetraspanin CD9 regulates invasion during mouse embryo implantation. J Mol Endocrinol, 2006,36: 121-130.
    25. Martin-Alonso JM, Hernando N, Ghosh S, Coca-Prados M. Molecular cloning of the bovine CD9 antigen from ocular ciliary epithelial cells. J Biochem (Tokyo), 1992,112: 63-67.
    26. Yubero N, Jimenez-Mary'n A, Yerle M, Morera L, Barbancho MJ, Llanes D, Garridoa JJ. Molecular cloning, expression pattern and chromosomal mapping of pig CD9 antigen. Cytogenet Genome Res, 2003, 101: 143-146.
    27. Boucheix C, Benoit P, Frachet P, Billard M, Worthington RE, Gagnon J, Uzan G. Molecular cloning of the CD9 antigen: a new family of cell surface proteins. J Biol Chem, 1991, 266: 117-122.
    28. Kobayashi T. Molecular cloning and characterization of chick CD9. Kurume MedJ, 2000,47: 151-157.
    29. Willett BJ, Neil JC. cDNA cloning and eukaryotic expression of feline CD9. Mol Immunol, 1995, 32: 417-423
    30. Mitamura T, Iwamoto R, Umata T, Yomo T,Urabe I, Tsuneoka M, Mekada E. The 27-kD Diphtheria toxin receptor-associated protein (DRAP27) from vero cells is the monkey homologue of human CD9 antigen: Expression of DRAP27 elevates the number of diphtheria toxin receptors on toxin-sensitive cells. J Cell Biol, 1992,118: 1389-1399.
    
    31. Zhu JJ, Yan KZ, Lu L, Peng C, Zhou C, Chen SW, Xie XJ, Dong ML, Xu AL, 2006: Molecular cloning and characterization of CD9 cDNA from cartilaginous fish, red stingray, Dasyatis akajei. Mol Immunol, 2006, 43: 1534-1540.
    32. Fujiki K, Gauley J, Bols N, Dixon B. Cloning and characterization of cDNA clones encoding CD9 from Atlantic salmon (Salmo salar) and rainbow trout (Oncorhynchus mykiss). Immunogenet, 2002, 54: 604-609.
    33. Rubinstein E, Billard M, Plaisance S, Prenant M, Boucheix C. Molecular cloning of the mouse equivalent of CD9 antigen. Thromb Res, 1993, 71: 377-383.
    34. Kaprielian Z, Cho, K O, Hadjiargyrou M, Patterson PH. CD9, a major platelet cell surface glycoprotein, is a ROCA antigen and is expressed in the nervous system. J Neurosci, 1995,15: 562-573.
    35. Uinuk-Ool T, Mayer WE, Sato A, Dongak R, Cooper MD, Klein J. Lamprey lymphocyte-like cells express homologs of genes involved in immunologically relevant activities of mammalian lymphocytes. Proc Natl Acad Sci USA, 2002,99: 14356-14361.
    36. Maecker HT, Todd SC, Levy S. The tetraspanin superfamily: molecular facilitators. FASEB J, 1997, 11: 428-42.
    37. Hemler ME. Integrin associated proteins. Curr Opin Cell Biol, 1998,10: 578-85.
    38. Funakoshi T, Tachibana I, Hoshida Y, Kimura H, Takeda Y, Kijima T, Nishino K, Goto H, Yoneda T, Kumagai T, Osaki T, Hayashi S, Aozasa K, Kawase I. Expression of tetraspanins in human lung cancer cells: frequent downregulation of CD9 and its contribution to cell motility in small cell lung cancer. Oncogene, 2003,22: 674-687.
    39. Chen W, Helenius J, Braakman I, Helenius A. Cotranslational folding and calnexin binding during glycoprotein synthesis. Proc Natl Acad Sci USA, 1995, 92: 6229-6233.
    40. Meunier JC, Fournillier A, Choukhi A, Cahour A, Cocquerel L, Dubuisson J, Wychowski C. Analysis of the glycosylation sites of the hepatitis C virus (HCV) glycoprotein E1 and the influence of E1 glycans on the formation of the HCV glycoprotein complex. J Gen Virol, 1999,80: 887-896.
    41. Goffard A, Callens N, Bartosch B, Wychowski C, Cosset FL, Montpellier-Pala C, Dubuisson J. Role of N-linked glycans in the functions of hepatitis C virus envelope glycoproteins. J Virol, 2005, 79: 8400-8409.
    42. Marshall RD. Glycoproteins. Annu Rev Biochem, 1972,41: 673-702.
    43. Gavel Y, von Heijne G. Sequence differences between glycosylated and non-glycosylated Asn-X-Thr/Ser acceptor sites: implications for protein engineering. Protein Eng, 1990, 3: 433-442.
    44. Berditchevski F. Complexes of tetraspanins with integrins: more than meets the eye. J Cell Sci, 2001, 114: 4143-4151.
    45. Zhou FX, Merianos HJ, Brunger AT, Engelman D. Polar residues drive association of polyleucine transmembrane helices. Proc Natl Acad Sci USA, 2001,98: 2250-2255.
    46. Zhou FX, Cocco MJ, Russ WP, Brunger AT, Engelman DM. Interhelical hydrogen bonding drives strong interactions in membrane proteins. Nat Struct Biol, 2000,7: 154—160.
    47. Senes A, Ubarretxena-Belandia I, Engelman, DM. The Ca-H...O hydrogen bond: A determinant of stability and specificity in transmembrane helix interactions. Proc Natl Acad Sci USA, 2001,98: 9056-9061.
    48. Javadpour MM, Eilers M, Groesbeek M, Smith SO. Helix packing in polytopic membrane proteins: role of glycine in transmembrane helix association. Biophys J, 1999, 77: 1609-1618.
    49. Charrin S, Manie S, Oualid M, Billard M, Boucheix C, Rubinstein E. Differential stability of tetraspanin/tetraspanin interactions: role of palmitoylation. FEBS Lett, 2002,516: 139-144.
    50. Yang X, Claas C, Kraeft SK, Chen LB, Wang Z, Kreidberg JA, Hemler ME. Palmitoylation of tetraspanin proteins: modulation of CD151 lateral interactions, subcellular distribution, and integrin-dependent cell morphology. Mol Biol Cell, 2002,13: 767-781.
    51. Berditchevski F, Odintsova E, Sawada S, Gilbert E. Expression of the pahnitoylation-deficient CD151 weakens the association of alpha 3 beta 1 integrin with the tetraspanin-enriched microdomains and affects integrin-dependent signaling. J Biol Chem, 2002, 277: 36991-37000.
    52. Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol, 2005, 6: 801-811.
    53. Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H. Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem, 2001,276:40055-40064.
    54. Kitadokoro K, Bordo D, Galli G, Petracca R, Falugi F, Abrignani S, Grandi G, Bolognesi M. CD81 extracellular domain 3D structure: insight into the tetraspanin superfamily structural motifs. EMBO J, 2001, 20:12-18.
    55. Cohen P. The regulation of protein function by multisite phosphorylation— a 25 year update. Trends Biochem Sci, 2000, 25: 596-601.
    56. Hunter T. Signaling - 2000 and beyond. Cell, 2000,100: 113-127.
    57. Pawson T, Nash P. Protein-protein interactions define specificity in signal transduction. Genes Dev, 2000,14: 1027-1047.
    58. Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2000,103: 211-225.
    1. Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature, 2005,434 (7030): 234-238.
    2. Alfieri JA, Martin AD, Takeda J, Kondoh G, Myles DG & Primakoff P. Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. JCellSci, 2003,116: 2149-2155.
    3. Waterhouse R, Ha C, Dveksler GS. Murine CD9 is the receptor for pregnancy-specific glycoprotein 17. J Exp Med, 2002,195 (2): 277-282.
    4. Hu CD, Chinenov Y, Kerppola TK. Visualization of interactions among bZIP and Rel family proteins in living cells using bimolecular fluorescence complementation. Mol Cell. 2002, 9 (4): 789-798.
    5. Hoff B, Kuck U. Use of bimolecular fluorescence complementation to demonstrate transcription factor interaction in nuclei of living cells from the filamentous fungus Acremonium chrysogenum. Curr Genet, 2005, 47 (2): 132-138.
    6. Hynes TR, Tang L, Mervine SM, Sabo JL, Yost EA, Devreotes PN, Berlot CH. Visualization of G protein Py dimers using bimolecular fluorescence complementation demonstrates roles for both β and γ in subcellular targeting. J Biol Chem, 2004,279 (29):30279-30286.
    7. Grinberg VA, Hu CD, Kerppola KT. Visualization of Myc/Max/Mad family dimers and the competition for dimerization in living cells. Mol Cell Biol, 2004, 24 (10): 4294-4308.
    8. Fang DY, Kerppola KY. Ubiquitin-mediated fluorescence complementation reveals that Jun ubiquitinated by Itch/AIP4 is localized to lysosomes. Proc Natl Acad Sci USA, 2004,101 (41): 14782-14787.
    9. Hemler ME. Specific tetraspanin functions. J Cell Biol, 2001,155: 1103-1107.
    10. Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M, Wang X, Miyamoto K, Akutsu H, Kondo T, Takahashi Y, Ban T, Ito C, Toshimori K, Nakamura A, Ito M, Miyado M, Mekada E, Umezawa A. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA, 2008,105 (35): 12921-12925.
    11. Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C. The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol. 2006,17 (2): 254-263.
    12. Nixon B, Aitken RJ, McLaughlin EA. New insights into the molecular mechanisms of sperm-egg interaction. Cell Mol Life Sci. 2007,64: 1805-1823.
    1. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development, 1995, 121: 1129-1137
    2. Visconti PE, Moore GD, Bailey JL, Leclerc P, Connors SA, Pan D, Olds-Clarke P, Kopf GS. Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development, 1995,121: 1139-1150.
    3. Aitken RJ, Paterson M, Fisher H, Buckingham DW, van Duin M. Redox regulation of tyrosine phosphorylation in human spermatozoa and its role in the control of human sperm function. J Cell Sci, 1995, 108 (Pt 5): 2017-2025.
    4. Galantino-Homer HL, Visconti PE, Kopf GS. Regulation of protein tyrosine phosphorylation during bovine sperm capacitation by a cyclic adenosine 3'5'-monophosphate- dependent pathway. Biol Reprod, 1997, 56 (3): 707-719.
    5. Pukazhenthi BS, Long JA, Wildt DE, Ottinger MA, Armstrong DL, Howard J. Regulation of sperm function by protein tyrosine phosphorylation in diverse wild felid species. J Androl, 1998,19: 675-685.
    6. Kalab P, Peknicova J, Geussova G, Moos J. Regulation of protein tyrosine phosphorylation in boar sperm through a cAMP-dependent pathway. Mol Reprod Dev, 1998, 51: 304-314.
    7. Mahony MC, Gwathmey T. Protein tyrosine phosphorylation during hyperactivated motility of cynomolgus monkey (Macaca fascicularis) spermatozoa. Biol Reprod, 1999, 60: 1239-1243.
    8. Lewis B, Aitken RJ. A redox-regulated tyrosine phosphorylation cascade in rat spermatozoa. J Androl, 2001, 22:611-622.
    9. Pommer AC, Rutllant J, Meyers SA. Phosphorylation of protein tyrosine residues in fresh and cryopre-served stallion spermatozoa under capacitating conditions. Biol Reprod, 2003,68: 1208-1214.
    10. Urner F, Sakkas D. Protein phosphorylation in mammalian spermatozoa. Reproduction, 2003, 125 (1): 17-26.
    11. Urner F, Leppens—Luisier G, Sakkas D. Protein tyrosine phosphorylation in sperm during gamete interaction in the mouse: the influence of glucose. Biol Reprod, 2001, 64 (5): 1350-1357.
    12. Carrera A, Moos J, Ning XP, Gerton GL, Tesarik J, Kopf GS, Moss SB. Regulation of protein tyrosine phosphorylation in human sperm by a calcium / calmodulin—dependent mechanism: identification of a kinase anchor proteins as major substrates for tyrosine phosphorylation. Dev Biol, 1996,180 (1): 284-296.
    13. Naaby-Hansen S, Mandal A, Wolkowicz MJ, Sen B, Westbrook VA, Sherry J, Coonrod SA, Klotz KL, Kim YH, Bush LA, Flickinger CJ, Herr JC. CABYR, a novel calcium binding tyrosine phosphorylation —regulated fibrous sheath protein involved in capacitation. Dev Biol, 2002,242 (2): 236-254.
    14. Ficarro S, Chertihin O, Westbrook VA, White F, Jayes F, Kalab P, Marto JA, Shabanowitz J, Herr JC, Hunt DF, Visconti PE. Phosphoproteome analysis of human sperm. Evidence of tyrosine phosphorylation of AKAP 3 and valosin containing protein/p97 during capacitation. J Biol Chem. 2003, 278 (13): 11579-11589.
    15. Asquith KL, Baleato RM, McLaughlin EA, Nixon B, Aitken RJ. Tyrosine phosphorylation activates surface chaperones facilitating sperm-zona recognition. J Cell Sci, 2004,117: 3645-3657.
    16. Naz RK, Ahmad K, Kumar R. Role of membrane phosphotyrosine proteins in human spermatozoal function. J Cell Sci, 1991,99 (Pt 1): 157-165.
    17. Liu DY, Clarke GN, Baker HW. Tyrosine phosphorylation on capacitated human sperm tail detected by immunofluorescence correlates strongly with sperm-zona pellucida (ZP) binding but not with the ZP-induced acrosome reaction. Hum Reprod, 2006, 21 (4): 1002-1008.
    18. Piehler E, Petrunkina AM, Ekhlasi-Hundrieser M, Topfer-Petersen E. Dynamic quantification of the tyrosine phosphorylation of the sperm surface proteins during capacitation. Cytometry A, 2006, 69 (10): 1062-1070.
    19. Flesch FM, Colenbrander B, van Golde LM, Gadella BM. Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochem Biophys Res Commun, 1999, 262 (3): 787-792.
    20. Flesch FM, Wijnand E, van de Lest CH, Colenbrander B, van Golde LM, Gadella BM. Capacitation dependent activation of tyrosine phosphorylation generates two sperm head plasmamembrane proteins with high primary binding affinity for the zona pellucida. Mol Reprod Dev, 2001,60 (1): 107-115.
    21. Ecroyd H, Jones RC, Aitken RJ. Tyrosine phosphorylation of HSP-90 during mammalian sperm capacitation. Biol Reprod, 2003, 69 (6): 1801-1807.
    22. Asquith KL, Harman AJ, McLaughlin EA, Nixon B, Aitken RJ. Localization and significance of molecular chaperones, heat shock protein 1, and tumor rejection antigen gp96 in the male reproductive tract and during capacitation and acrosome reaction. Biol Reprod, 2005, 72 (2): 328-337.
    23. Nixon B, Aitken RJ, McLaughlin EA. New insights into the molecular mechanisms of sperm-egg interaction. Cell Mol Life Sci, 2007, 64 (14): 1805-1823
    24. Bou Khalil M, Chakrabandhu K, Xu H, Weerachatyanukul W, Buhr M, Berger T, Carmona E, Vuong N, Kumarathasan P, Wong PT, Carrier D, Tanphaichitr N. Sperm capacitation induces an increase in lipid rafts having zona pellucida binding ability and containing sulfogalactosylglycerolipid. Dev Biol, 2006, 290 (1): 220-235.
    25. White D, Weerachatyanukul W, Gadella B, Kamolvarin N, Attar M, Tanphaichitr N. Role of sperm sulfogalactosylglycerolipid in mouse sperm-zona pellucida binding. Biol Reprod, 2000,63 (1): 147-155.
    26. Weerachatyanukul W, Rattanachaiyanont M, Carmona E, Furimsky A, Mai A, Shoushtarian A, Sirichotiyakul S, Ballakier H, Leader A, Tanphaichitr N. Sulfogalactosylglycerolipid is involved in human gamete interaction. Mol Reprod Dev, 2001, 60 (4): 569-578.
    27. Tantibhedhyangkul J, Weerachatyanukul W, Carmona E, Xu H, Anupriwan A, Michaud D, Tanphaichitr N. Role of sperm surface arylsulfatase A in mouse spermzona pellucida binding. Biol Reprod, 2002, 67 (1): 212-219.
    28. Carmona E, Weerachatyanukul W, Soboloff T, Fluharty AL, White D, Promdee L, Ekker M, Berger T, Buhr M, Tanphaichitr N. Arylsulfatase a is present on the pig sperm surface and is involved in sperm-zona pellucida binding. Dev Biol, 2002, 247 (1): 182-196.
    29. Carmona E, Weerachatyanukul W, Xu H, Fluharty A, Anupriwan A, Shoushtarian A, Chakrabandhu K, Tanphaichitr N. Binding of arylsulfatase A to mouse sperm inhibits gamete interaction and induces the acrosome reaction. Biol Reprod, 2002, 66 (6): 1820-1827.
    30. Tanphaichitr N, Haebe J, Leader A, Carmona E, Harris JD, da Silva SM, Antunes TT, Chakrabandhu K, Leveille MC. Towards a more precise assay of sperm function in egg binding. J Obstet Gynaecol Can. 2003, 25 (6): 461-470.
    31. Weerachatyanukul W, Xu H, Anupriwan A, Carmona E, Wade M, Hermo L, da Silva SM, Rippstein P, Sobhon P, Sretarugsa P, Tanphaichitr N. Acquisition of arylsulfatase A onto the mouse sperm surface during epididymal transit. Biol Reprod, 2003, 69 (4): 1183-1192.
    32. Attar M, Kates M, Bou Khalil M, Carrier D, Wong PT, Tanphaichitr N. A Fourier-transform infrared study of the interaction between germ-cell specific sulfogalactosylglycerolipid and dimyristoylglycerophosphor-choline. Chem Phys Lipids, 2000,106 (2): 101-114.
    33. Weerachatyanukul W, Probodh I, Kongmanas K, Tanphaichitr N, Johnston LJ. Visualizing the localization of sulfoglycolipids in lipid raft domains in model membranes and sperm membrane extracts. Biochim Biophys Acta, 2007,1768 (2): 299-310.
    34. Prasad SV, Skinner SM, Carino C, Wang N, Cartwright J, Dunbar BS. Structure and function of the proteins of the mammalian Zona pellucida. Cells Tissues Organs, 2000,166 (2): 148-164.
    35. Sinowatz F, Kolle S, Topfer-Petersen E. Biosynthesis and expression of zona pellucida glycoproteins in mammals. Cells Tissues Organs, 2001,168: 24-35.
    36. Bleil JD, Wassarman PM. Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte's zona pellucida. Dev Biol, 1980, 76 (1): 185-202.
    37. Lefievre L, Conner SJ, Salpekar A, Olufowobi O, Ashton P, Pavlovic B, Lenton W, Afhan M, Brewis IA, Monk M, Hughes DC, Barratt CL. Four zona pellucida glycoproteins are expressed in the human. Hum Reprod, 2004,19 (7): 1580-1586.
    38. Greve JM, Wassarman PM. Mouse egg extracellular coat is a matrix of interconnected filaments possessing a structural repeat. J Mol Biol, 1985,181 (2): 253-264.
    39. Wassarman PM, Mortillo S. Structure of the mouse egg extracellular coat, the zona pellucida. Int Rev Cytol, 1991,130:85-110.
    40. Tong ZB, Nelson LM, Dean J. Inhibition of zona pellucida gene expression by antisense oligonucleotides injected into mouse oocytes. J Biol Chem. 1995, 270 (2): 849-853.
    41. Liu C, Litscher ES, Mortillo S, Sakai Y, Kinloch RA, Stewart CL, Wassarman PM. Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice. Proc Natl Acad Sci USA, 1996,93 (11): 5431-5436.
    42. Bleil JD, Wassarman PM. Autoradiographic visualization of the mouse egg's sperm receptor bound to sperm. J Cell Biol, 1986,102 (4): 1363-1371.
    43. Vazquez MH, Phillips DM, Wassarman PM. Interaction of mouse sperm with purified sperm receptors covalently linked to silica beads. J Cell Sci, 1989,92 (Pt 4): 713-722.
    44. Bleil JD, Greve JM, Wassarman PM, Identification of a secondary sperm receptor in the mouse egg zona pellucida: role in maintenance of binding of acrosome-reacted sperm to eggs. Dev Biol, 1988, 128 (2): 376-385.
    45. Vieira A, Miller DJ. Gamete interaction: is it species-specific? Mol Reprod Dev, 2006, 73 (11): 1422-1429.
    46. McLeskey SB, Dowds C, Carballada R, White RR, Saling PM. Molecules involved in mammalian sperm-egg interaction. Int Rev Cytol, 1998,177: 57-113.
    
    47. Florman HM, Wassarman PM. O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity. Cell, 1985,41 (1): 313-324.
    48. Litscher ES, Juntunen K, Seppo A, Penttila L, Niemela R, Renkonen O, Wassarman PM. Oligosaccharide constructs with defined structures that inhibit binding of mouse sperm to unfertilized eggs in vitro. Biochemistry, 1995,34 (14): 4662-4669.
    49. Wassarman PM. Mammalian fertilization: molecular aspects of gamete adhesion, exocytosis, and fusion. Cell, 1999,96 (2): 175-183.
    50. Dell A, Chalabi S, Easton RL, Haslam SM, Sutton-Smith M, Patankar MS, Lattanzio F, Panico M, Morris HR, Clark GF. Murine and human zona pellucida 3 derived from mouse eggs express identical O-glycans. Proc Natl Acad Sci USA, 2003,100 (26): 15631-15636.
    51. Yurewicz EC, Sacco AG, Gupta SK, Xu N, Gage DA. Hetero-oligomerization-dependent binding of pig oocyte zona pellucida glycoproteins ZPB and ZPC to boar sperm membrane vesicles. J Biol Chem, 1998, 273 (13): 7488-7494.
    52. Yonezawa N, Fukui N, Kuno M, Shinoda M, Goko S, Mitsui S, Nakano M. Molecular cloning of bovine zona pellucida glycoproteins ZPA and ZPB and analysis for sperm-binding component of the zona. Eur J Biochem, 2001, 268 (12): 3587-3594.
    53. Govind CK, Gahlay GK, Choudhury S, Gupta SK. Purified and refolded recombinant bonnet monkey (Macaca radiata) zona pellucida glycoprotein-B expressed in Escherichia coli binds to spermatozoa. Biol Reprod, 2001, 64 (4): 1147-1152.
    54. Govind CK, Hasegawa A, Koyama K, Gupta SK. Delineation of a conserved B cell epitope on bonnet monkey (Macaca radiata) and human zona pellucida glycoprotein-B by monoclonal antibodies demonstrating inhibition of sperm-egg binding. Biol Reprod, 2000,62 (1): 67-75.
    55. Wassarman PM. Mouse gamete adhesion molecules. Biol Reprod, 1992,46 (2): 186-191.
    56. Topfer-Petersen E. Carbohydrate-based interactions on the route of a spermatozoon to fertilization. Hum Reprod Update, 1999,5 (4): 314-329.
    57. Shur BD, Bennett D. A specific defect in galactosyltransferase regulation on sperm bearing mutant alleles of the T/t locus. Dev Biol, 1979, 71 (2): 243-259.
    58. Shur BD, Hall NG A role for mouse sperm surface galactosyltransferase in sperm binding to the egg zona pellucida. J Cell Biol, 1982,95 (2 Pt 1): 574-579.
    59. Lopez LC, Bayna EM, Litoff D, Shaper NL, Shaper JH, Shur BD. Receptor function of mouse sperm surface galactosyltransferase during fertilization. J Cell Biol, 1985,101 (4): 1501-1510.
    60. Nixon B, Lu Q, Wassler MJ, Foote CI, Ensslin MA, Shur BD. Galactosyltransferase function during mammalian fertilization. Cells Tissues Organs, 2001,168 (1-2): 46-57.
    61. Cheng A, Le T, Palacios M, Bookbinder LH, Wassarman PM, Suzuki F, Bleil JD. Sperm-egg recognition in the mouse: characterization of sp56, a sperm protein having specific affinity for ZP3. J Cell Biol, 1994,125 (4): 867-878.
    62. Bookbinder LH, Cheng A, Bleil JD. Tissue- and species-specific expression of sp56, a mouse sperm fertilization protein. Science, 1995, 269 (5220): 86-89.
    63. Cohen N, Wassarman PM. Association of egg zona pellucida glycoprotein mZP3 with sperm protein sp56 during fertilization in mice. Int J Dev Biol, 2001,45 (3): 569-576.
    64. Cornwall GA, Tulsiani DR, Orgebin-Crist MC. Inhibition of the mouse sperm surface alpha-Dmannosidase inhibits sperm-egg binding in vitro. Biol Reprod, 1991,44 (5): 913-921.
    65. Gao Z, Garbers DL. Species diversity in the structure of zonadhesin, a sperm-specific membrane protein containing multiple cell adhesion molecule-like domains. J Biol Chem, 1998, 273 (6): 3415-3421.
    66. Topfer-Petersen E, Romero A, Varela PF, Ekhlasi-Hundrieser M, Dostalova Z, Sanz L, Calvete JJ. Sperm adhesins: a new protein family. Facts, hypotheses and perspectives. Andrologia, 1998,30: 217-224.
    67. Primakoff P, Hyatt H, Tredick-Kline J. Identification and purification of a sperm surface protein with a potential role in sperm-egg membrane fusion. J Cell Biol, 1987,104 (1): 141-149.
    68. Primakoff P, Myles DG. The ADAM gene family: surface proteins with adhesion and protease activity. Trends Genet. 2000,16 (2): 83-87.
    69. Iba K, Albrechtsen R, Gilpin B, Frohlich C, Loechel F, Zolkiewska A, Ishiguro K, Kojima T, Liu W, Langford JK, Sanderson RD, Brakebusch C, Fassler R, Wewer UM. The cysteine-rich domain of human ADAM 12 supports cell adhesion through syndecans and triggers signaling events that lead to betal integrin-dependent cell spreading. J Cell Biol, 2000,149 (5): 1143-1156.
    70. Cho C, Bunch DO, Faure JE, Goulding EH, Eddy EM, Primakoff P, Myles DG Fertilization defects in sperm from mice lacking fertilin β. Science, 1998, 281 (5384): 1857-1859.
    71. Shamsadin R, Adham IM, Nayernia K, Heinlein UA, Oberwinkler H, Engel W. Male mice deficient for germ-cell cyritestin are infertile. Biol Reprod, 1999, 61 (6): 1445-1451.
    72. Nishimura H, Cho C, Branciforte DR, Myles DG, Primakoff P. Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol, 2001, 233 (1): 204-213.
    73. Nishimura H, Kim E, Nakanishi T, Baba T. Possible function of the ADAMla/ADAM2 fertilin complex in the appearance of ADAM3 on the sperm surface. J Biol Chem, 2004, 279 (33): 34957-34962.
    74. Kim E, Yamashita M, Nakanishi T, Park KE, Kimura M, Kashiwabara S, Baba T. Mouse sperm lacking ADAM1b/ADAM2 fertilin can fuse with the egg plasma membrane and effect fertilization. J Biol Chem, 2006,281 (9): 5634-5639.
    75. Kim T, Oh J, Woo JM, Choi E, Im SH, Yoo YJ, Kim DH, Nishimura H, Cho C. Expression and relationship of male reproductive AD AMs in mouse. Biol Reprod, 2006, 74 (4): 744-750.
    76. Waters SI, White JM. Biochemical and molecular characterization of bovine fertilin alpha and beta (ADAM 1 and ADAM 2): a candidate sperm-egg binding/ fusion complex. Biol Reprod, 1997, 56 (5): 1245-1254.
    77. Cho C, Ge H, Branciforte D, Primakoff P, Myles DG. Analysis of mouse fertilin in wild-type and fertilin beta (?) sperm: evidence for C-terminal modification, alpha/beta dimerization, and lack of essential role of fertilin alpha in sperm-egg fusion. Dev Biol, 2000, 222 (2): 289-295.
    78. McLaughlin EA, Frayne J, Bloomerg G, Hall L. Do fertilin 6 and cyritestin play a major role in mammalian sperm-oolemma interactions? A critical re-evaluation of the use of peptide mimics in identifying specific oocyte recognition proteins. Mol Hum Reprod, 2001,7 (4): 313-317.
    79. Yuan R, Primakoff P, Myles DG A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion. J Cell Biol, 1997,137(1): 105-112.
    80. Kim E, Nishimura H, Baba T. Differential localization of ADAM1a and ADAM1b in the endoplasmic reticulum of testicular germ cells and on the surface of epididymal sperm. Biochem Biophys Res Commun, 2003,304 (2): 313-319.
    81. Jury JA, Frayne J, Hall L. The human fertilin alpha gene is non-functional: Implications for its proposed role in fertilization. Biochem J, 1997,321 (Pt 3): 577-581.
    82. Jury JA, Frayne J, Hall L. Sequence analysis of a variety of primate fertilin alpha genes: evidence for non-functional genes in the gorilla and man. Mol Reprod Dev, 1998,51 (1): 92-97.
    83. Perry AC, Gichuhi PM, Jones R, Hall L. Cloning and analysis of monkey fertilin reveals novel alpha subunit isoforms. Biochem J, 1995,307 (Pt 3): 843-850.
    84. Cameo MS, Blaquier JA. Androgen-controlled specific proteins in rat epididymis. J Endocrinol, 1976, 69 (1): 47-55.
    85. Sivashanmugam P, Richardson RT, Hall S, Hamil KG, French FS, O'Rand MG Cloning and characterization of an androgen-dependent acidic epididymal glycoprotein/CRISP1-like protein from the monkey. J Androl, 1999, 20 (3): 384-393.
    86. Kasahara M, Gutknecht J, Brew K, Spurr N, Goodfellow PN. Cloning and mapping of a testis-specific gene with sequence similarity to a sperm-coating glycoprotein gene. Genomics, 1989, 5 (3): 527-534.
    87. Mizuki N, Kasahara M. Mouse submandibular glands express an androgen-regulated transcript encoding an acidic epididymal glycoprotein-like molecule. Mol Cell Endocrinol, 1992, 89: 25-32.
    88. Haendler B, Kratzschmar J, Theuring F, Schleuning WD. Transcripts for cysteine-rich secretory protein-1 (CRISP-1; DE/AEG) and the novel related CRISP-3 are expressed under androgen control in the mouse salivary gland. Endocrinology, 1993,133 (1): 192-198.
    89. Kratzschmar J, Haendler B, Eberspaecher U, Roosterman D, Donner P, Schleuning WD. The human cysteine-rich secretory protein (CRISP) family. Primary structure and tissue distribution of CRISP-1, CRISP-2 and CRISP-3. Eur J Biochem, 1996, 236 (3): 827-836.
    90. Schambony A, Gentzel M, Wolfes H, Raida M, Neumann U, Topfer-Petersen E. Equine CRISP-3: primary structure and expression in the male genital tract. Biochim Biophys Acta, 1998,1387: 206-216.
    91. Cuasnicu PS, Gonzalez Echeverria F, Piazza AD, Cameo MS, Blaquier JA. Antibodies against epididymal glycoproteins block fertilizing ability in rat. J Reprod Fertil, 1984, 72 (2): 467-471.
    92. Rochwerger L, Cohen DJ, Cuasnicu PS. Mammalian sperm-egg fusion: the rat egg has complementary sites for a sperm protein that mediates gamete fusion. Dev Biol, 1992,153 (1): 83-90.
    93. Cohen DJ, Ellerman DA, Cuasnicu PS. Mammalian sperm-egg fusion: evidence that epididymal protein DE plays a role in mouse gamete fusion. Biol Reprod, 2000, 63 (2): 462-468.
    94. Ellerman DA, Brantua VS, Martinez SP, Cohen DJ, Conesa D, Cuasnicu PS. Potential contraceptive use of epididymal proteins: immunization of male rats with epididymal protein DE inhibits sperm fusion ability. Biol Reprod, 1998, 59 (5): 1029-1036.
    95. Ellerman DA, Da Ros VG, Cohen DJ, Busso D, Morgenfeld MM, Cuasnicu PS. Expression and structure-function analysis of DE, a sperm cysteine-rich secretory protein that mediates gamete fusion. Biol Reprod, 2002, 67 (4): 1225-1231.
    96. Ellerman DA, Cohen DJ, Da Ros VG, Morgenfeld MM, Busso D, Cuasnicu PS. Sperm protein "DE" mediates gamete fusion through an evolutionarily conserved site of the CRISP family. Dev Biol, 2006, 297 (1): 228-237.
    97. Busso D, Goldweic NM, Hayashi M, Kasahara M, Cuasnicu PS. Evidence for the involvement of testicular protein CRISP2 in mouse sperm-egg fusion. Biol Reprod, 2007, 76 (4): 701-708.
    98. Mandal A, Klotz KL, Shetty J, Jayes FL, Wolkowicz MJ, Boiling LC, Coonrod SA, Black MB, Diekman AB, Haystead TA, Flickinger CJ, Herr JC. SLLP1, A unique, intra-acrosomal, non-bacteriolytic, clysozyme-like protein of human spermatozoa. Biol Reprod, 2003, 68 (5): 1525-1537.
    99. Herrero MB, Mandal A, Digilio LC, Coonrod SA, Maier B, Herr JC. Mouse SLLP1, a sperm lysozyme-like protein involved in sperm-egg binding and fertilization. Dev Biol, 2005,284 (1): 126-142.
    100. Turano C, Coppari S, Altieri F, Ferraro A. Proteins of the PDI family: unpredicted non-ER locations and functions. J Cell Physiol, 2002,193 (2): 154-163.
    101. Stein KK, Go JC, Lane WS, Primakoff P, Myles DG Proteomic analysis of sperm regions that mediate sperm-egg interactions. Proteomics, 2006, 6 (12): 3533-3543.
    102. Ellerman DA, Myles DG, Primakoff P. A role for sperm surface protein disulfide isomerase activity in gamete fusion: evidence for the participation of ERp57. Dev Cell, 2006,10 (6): 831-837.
    103. Okabe M, Yagasaki M, Oda H, Matzno S, Kohama Y, Mimura T. Effect of a monoclonal anti-mouse sperm antibody (OBF13) on the interaction of mouse sperm with zona-free mouse and hamster eggs. J Reprod Immunol, 1988,13 (3): 211-219.
    104. Okabe M, Adachi T, Takada K, Oda H, Yagasaki M, Kohama Y, Mimura T. Capacitation-related changes in antigen distribution on mouse sperm heads and its relation to fertilization rate in vitro. J Reprod Immunol, 1987,11 (2): 91-100.
    105. Inoue N, Ikawa M, Isotani A, Okabe M. The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature, 2005, 434 (7030): 234-238.
    106. Inoue N, Ikawa M, Okabe M. Putative sperm fusion protein IZUMO and the role of N-glycosylation. Biochem Biophys Res Commun. 2008,377 (3): 910-914.
    107. Evans JP. The molecular basis of sperm-oocyte membrane interactions during mammalian fertilization. Hum Reprod Update, 2002, 8 (4): 297-311.
    108. Eto K, Huet C, Tarui T, Kupriyanov S, Liu HZ, Puzon-McLaughlin W, Zhang XP, Sheppard D, Engvall E, Takada Y. Functional classification of ADAMs based on a conserved motif for binding to integrin alpha 9beta l:implications for sperm-egg binding and other cell interactions. J Biol Chem, 2002, 277 (20): 17804-17810.
    109. Coonrod SA, Naaby-Hansen S, Shetty J, Shibahara H, Chen M, White JM, Herr JC. Treatment of mouse oocytes with PI-PLC releases 70-kDa (pI 5) and 35- to 45-kDa (pI 5.5) protein clusters from the egg surface and inhibits sperm-oolemma binding and fusion. Dev Biol, 1999, 207 (2): 334-349.
    110. Bigler D, Takahashi Y, Chen MS, Almeida EA, Osbourne L, White JM. Sequence-specific interaction between the disintegrin domain of mouse ADAM 2 (fertilin beta) and murine eggs. Role of the alpha (6) integrin subunit. J Biol Chem, 2000,275 (16): 11576-11584.
    111. Takahashi Y, Bigler D, Ito Y, White JM. Sequence-specific interaction between the disintegrin domain of mouse ADAM 3 and murine eggs: role of betal integrin-associated proteins CD9, CD81, and CD98. Mol Biol Cell, 2001,12 (4): 809-820.
    112. Nath D, Slocombe PM, Webster A, Stephens PE, Docherty AJ, Murphy G. Meltrin gamma(ADAM-9) mediates cellular adhesion through alpha(6)beta(1) integrin, leading to a marked induction of fibroblast cell motility. J Cell Sci, 2000,113 (Pt 12): 2319-2328.
    113. Nath D, Slocombe PM, Stephens PE, Warn A, Hutchinson GR, Yamada KM, Docherty AJ, Murphy G Interaction of metargidin (ADAM-15) with alphavbeta3 and alpha5betal integrals on differenthaemopoietic cells. J Cell Sci, 1999,112 (Pt 4): 579-587.
    114. Zhang XP, Kamata T, Yokoyama K, Puzon-McLaughlin W, Takada Y. Specific interaction of the recombinant disintegrin-like domain of MDC-15 (metargidin, ADAM-15) with integrin alphavbeta3. J Biol Chem, 1998, 273 (13): 7345-7350.
    115. Cal S, Freije JM, Lopez JM, Takada Y, Lopez-Otin C. ADAM 23/MDC3, a human disintegrin that promotes cell adhesion via interaction with the alphavbeta3 integrin through an RGD-independent mechanism. Mol Biol Cell, 2000,11 (4): 1457-1469.
    116. Zhou M, Graham R, Russell G, Croucher PI. MDC-9 (ADAM-9/Meltrin gamma) functions as an adhesion molecule by binding the alpha(v)beta(5) integrin. Biochem Biophys Res Commun, 2001,280 (2): 574-580.
    117. Bridges LC, Tani PH, Hanson KR, Roberts CM, Judkins MB, Bowditch RD. The lymphocyte metalloprotease MDC-L (ADAM 28) is a ligand for the integrin alpha4betal. J Biol Chem, 2002, 277 (5): 3784-3792.
    118. Zhu X, Evans JP. Analysis of the roles of RGD-binding integrins, α4/α9 integrins, α6 integrins, and CD9 in the interaction of the fertilin β (ADAM2) disintegrin domain with the mouse egg membrane. Biol Reprod, 2002,66(4): 1193-1202.
    119. Ziyyat A, Rubinstein E, Monier-Gavelle F, Barraud V, Kulski O, Prenant M, Boucheix C, Bomsel M, Wolf JP. CD9 controls the formation of clusters that contain tetraspanins and the integrin alpha6betal, which are involved in human and mouse gamete fusion. J Cell Sci, 2006,119 (Pt 3): 416-424.
    120. He ZY, Brakebusch C, Fassler R, Kreidberg JA, Primakoff P, Myles DG None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion. Dev Biol, 2003, 254 (2): 226-237.
    121. Sengoku K, Takuma N, Miyamoto T, Horikawa M, Ishikawa M. Integrins are not involved in the process of human sperm-oolemmal fusion. Hum Reprod, 2004,19 (3): 639-644.
    122. Almeida EA, Huovila AP, Sutherland AE, Stephens LE, Calarco PG, Shaw LM, Mercurio AM, Sonnenberg A, Primakoff P, Myles DG, White JM. Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell, 1995,81(7): 1095-1104.
    123. Coonrod S, Naaby-Hansen S, Shetty J, Herr J. PI-PLC releases a 25-40 kDa protein cluster from the hamster oolemma and affects the sperm penetration assay. Mol Hum Reprod, 1999, 5(11): 1027-1033.
    124. Alfieri JA, Martin AD, Takeda J, Kondoh G, Myles DG, Primakoff P. Infertility in female mice with an oocyte-specific knockout of GPI-anchored proteins. J Cell Sci, 2003,116 (Pt 11): 2149-2155.
    125. Hooper NM. Glycosyl-phosphatidylinositol anchored membrane enzymes. Clin Chim Acta, 1997, 266 (1): 3-12.
    126. Hooper NM. Determination of glycosylphosphatidylinositol membrane protein anchorage. Proteomics, 2001,1(6): 748-755.
    127. Boucheix C, Rubinstein E. Tetraspanins. Cell Mol Life Sci, 2001, 58 (9): 1189-1205.
    128. Seigneuret M, Delaguillaumie A, Lagaudriere-Gesbert C, Conjeaud H. Structure of the tetraspanin main extracellular domain. A partially conserved fold with a structurally variable domain insertion. J Biol Chem, 2001, 276 (43): 40055-40064.
    129. Hemler ME. Tetraspanin proteins mediate cellular penetration, invasion, and fusion events and define a novel type of membrane microdomain. Annu Rev Cell Dev Biol, 2003,19: 397-422.
    130. Hemler ME. Tetraspanin functions and associated microdomains. Nat Rev Mol Cell Biol, 2005, 6 (10): 801-811.
    131. Charrin S, Le Naour F, Oualid M, Billard M, Faure G, Hanash SM, Boucheix C, Rubinstein E. The major CD9 and CD81 molecular partner. Identification and characterization of the complexes. J Biol Chem, 2001, 276(17): 14329-14337.
    132. Charrin S, Le Naour F, Labas V, Billard M, Le Caer JP, Emile JF, Petit MA, Boucheix C, Rubinstein E. EWI-2 is a new component of the tetraspanin web in hepatocytes and lymphoid cells. Biochem J, 2003, 373 (Pt 2): 409-421.
    133. Chen H, Sampson NS. Mediation of sperm-egg fusion: evidence that mouse egg alpha6betal integrin is the receptor for sperm fertilinbeta. Chem Biol, 1999, 6(1): 1-10.
    134. Kaji K, Oda S, Shikano T, Ohnuki T, Uematsu Y, Sakagami J, Tada N, Miyazaki S, Kudo A. The gamete fusion process is defective in eggs of CD9-deficient mice. Nat Genet, 2000,24 (3): 279-282.
    135. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C. Severely reduced female fertility in CD9-deficient mice. Science, 2000,287 (5451): 319-321.
    136. Miyado K, Yamada G, Yamada S, Hasuwa H, Nakamura Y, Ryu F, Suzuki K, Kosai K, Inoue K, Ogura A, Okabe M, Mekada E. Requirement of CD9 on the egg plasma membrane for fertilization. Science, 2000, 287 (5451): 321-324.
    137. Kaji K, Oda S, Miyazaki S, Kudo A. Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev Biol, 2002,247 (2): 327-334.
    138. Zhu GZ, Miller BJ, Boucheix C, Rubinstein E, Liu CC, Hynes RO, Myles DG, Primakoff P. Residues SFQ (173-175) in the large extracellular loop of CD9are required for gamete fusion. Development, 2002,129 (8): 1995-2002.
    139. Rubinstein E, Ziyyat A, Prenant M, Wrobel E, Wolf JP, Levy S, Le Naour F, Boucheix C. Reduced fertility of female mice lacking CD81. Dev Biol, 2006,290 (2): 351-358
    140. Higginbottom A, Takahashi Y, Boiling L, Coonrod SA, White JM, Partridge LJ, Monk PN. Structural requirements for the inhibitory action of the CD9 large extracellular domain in sperm/oocyte binding and fusion. Biochem Biophys Res Commun, 2003,311 (1): 208-214.
    141. Higginbottom A, Quinn ER, Kuo CC, Flint M, Wilson LH, Bianchi E, Nicosia A, Monk PN, McKeating JA, Levy S. Identification of amino acid residues in CD81 critical for interaction with hepatitis C virus envelope glycoprotein E2. J Virol, 2000, 74 (8): 3642-3649.
    142. Runge KE, Evans JE, He ZY, Gupta S, McDonald KL, Stahlberg H, Primakoff P, Myles DG. Oocyte CD9 is enriched on the microvillar membrane and required for normal microvillar shape and distribution. Dev Biol, 2007, 304(1): 317-325.
    143. Singethan K, Muller N, Schubert S, Luttge D, Krementsov DN, Khurana SR, Krohne G, Schneider-Schaulies S, Thali M, Schneider-Schaulies J. CD9 clustering and formation of microvilli zippers between contacting cells regulates virus-induced cell fusion. Traffic, 2008,9 (6): 924-935.
    144. Miyado K, Yoshida K, Yamagata K, Sakakibara K, Okabe M, Wang X, Miyamoto K, Akutsu H, Kondo T, Takahashi Y, Ban T, Ito C, Toshimori K, Nakamura A, Ito M, Miyado M, Mekada E, Umezawa A. The fusing ability of sperm is bestowed by CD9-containing vesicles released from eggs in mice. Proc Natl Acad Sci USA, 2008,105 (35): 12921-12925.
    145. Ellerman DA, Ha C, Primakoff P, Myles DG, Dveksler GS. Direct binding of the ligand PSG17 to CD9 requires a CD9 site essential for sperm-egg fusion. Mol Biol Cell, 2003,14 (12): 5098-5103.
    146. Wright MD, Geary SM, Fitter S, Moseley GW, Lau LM, Sheng KC, Apostolopoulos V, Stanley EG, Jackson DE, Ashman LK. Characterization of mice lacking the tetraspanin superfamily member CD151. Mol Cell Biol, 2004, 24 (13): 5978-5988.
    147. Hao Z, Wolkowicz MJ, Shetty J, Klotz K, Boiling L, Sen B, Westbrook VA, Coonrod S, Flickinger CJ, Herr JC. SAMP32, a testis-specific, isoantigenic sperm acrosomal membrane-associated protein. Biol Reprod, 2002, 66 (3): 735-744.
    148. Shetty J, Wolkowicz MJ, Digilio LC, Klotz KL, Jayes FL, Diekman AB, Westbrook VA, Farris EM, Hao Z, Coonrod SA, Flickinger CJ, Herr JC. SAMP14, a novel, acrosomal membrane-associated, glycosylphosphatidylinositol-anchored member of the Ly-6/urokinase-type plasminogen activator receptor superfamily with a role in sperm-egg interaction. J Biol Chem, 2003, 278 (33): 30506-30515.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700