AZ31轧制变形与AZ31/Al热轧复合工艺研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
热轧是生产变形镁合金板材的重要工艺,本文对热轧变形中电磁连铸AZ31镁合金的组织性能进行了研究;利用轧制复合工艺对AZ31和L2纯铝进行热轧复合,并成功制得AZ31/Al复合板。主要实验结果如下:(1)在AZ31热轧过程中,随着轧制变形量增加,孪晶面由粗大的透镜状向细小的板条状转变,且孪晶数量增加;动态再结晶的程度增大。
     (2)随着轧制温度升高动态再结晶更容易进行。在较高温度条件下,再结晶方式由孪生动态再结晶向沿着原始晶粒的晶界析出转变。温度对再结晶方式的影响源于镁合金变形机制随温度得改变。
     (3)研究了应变速率对动态再结晶的影响规律,结合Z=εexp(?)公式可得,随着变形温度T升高或应变速率降低,Z值变小,晶粒尺寸变大,当Z值减小到某一数值时,再结晶形核方式发生改变。
     (4)AZ31镁合金多道次轧制变形时,每道次变形量在30%、轧制温度在370℃时,轧制后板材表面质量最好。三道次轧制后,沿轧制方向的抗拉强度为280~290 MPa,延伸率为24%~29%,沿垂直于轧制方向的抗拉强度290~310 MPa,延伸率17%~22%。
     (5)随着轧制道次的增加,总变形量变大,形成了强烈的平行于轧制方向的(0002)基面织构。经过退火处理后,(0002)基面织构强度略有下降。
     (6)采用热轧变形制备AZ31/Al复合板时,要实现完全复合,轧制变形量要大于50%,变形温度为425℃时轧制复合后板材的质量较好。AZ31/Al轧制复合板退火处理的退火温度高于275℃时,复合面处生成脆性中间相对结合面产生不利影响;比较合理的退火温度为250℃,此时没有中间相生成。
Hot rolling has been widely applied to the manufacture of wrought magnesium alloy sheets. In this paper, microstructure and mechanical properties of electromagnetic continuous casting (EMCC) AZ31 magnesium alloy subjected to hot rolling were investigated, Furthermore, rolling compound was performed on AZ31 and L2 commercially pure (CP) Al to obtain AZ31/Al composite plate. The results are as the following.
     (1) During hot rolling process of AZ31, with increasing the deformation of hot rolling, twinning plane transformed from coarse lentoid to fine batten with twins increasing, and the extent of DRX was increased.
     (2) With increasing temperatures, DRX more easily occurred, and the nucleation sites of new grains changed from twinning to original grain boundaries. These behaviors could be due to the dependence of deformation mechanism of magnesium alloys on temperatures.
     (3) The influence of strain rate on DRX was also studied. According to the relationship of Z=εexp(?), as T increases or s decreases, Z becomes smaller and grain size decrease. When Z reaches to a certain critical value, the DRX mode varies.
     (4) Under the condition of 30%reduction per rolling pass with a temperature of 370℃, excellent surface quality was obtained. After three passes rolling process,tensile strength and elongation along rolling direction were 280~290 MPa and 24%-29%, respectively, normal to rolling direction the tensile strength and elongation were 290 to 310 MPa and 17%-22% respectively.
     (5) With increasing the deformation of hot rolling, strong texture (0002) parallel to rolling direction was observed. There is only slightly decrease in strength of texture (0002) after annealing.
     (6) The more than50%deformation of rolling compound and a minimum temperature of 425℃are required to produce good quality AZ31/Al sheets. Annealing temperature over 275℃resulted in hard brittle interephases in AZ31/Al compounding surface, and a better temperature was below 250℃.
引文
[1]刘正,王越,等.镁基轻质材料的研究与应用[J].材料研究学报,2000(05):449-456.
    [2]陈礼清,赵志江,等.从镁合金在汽车及通讯电子领域的应用看其发展趋势[J].世界有色金属,2004(07):12-20.
    [3]曾小勤,王渠东,等.镁合金应用新进展[J].铸造,1998(11):39-42.
    [4]陈振华.变形镁合金[M].北京:化学工业出版社,2005.
    [5]Mordike B L, Ebert T, et al. Magnesium:Properties -- applications -- potential [J]. Materials Science and Engineering A,2001,302(1):37-45.
    [6]李新林,王慧远,等.颗粒增强镁基复合材料的研究现状及发展趋势[J].材料科学与工艺,2001(02):219-224.
    [7]周海涛,曾小勤,等.稀土铈对AZ61变形镁合金组织和力学性能的影响[J].中国有色金属学报,2004(01):99-104.
    [8]彭志辉.超轻高比强度Mg-Li系合金[J].稀有金属与硬质合金,1995(04):53-56.
    [9]周海涛,马春江,等.变形镁合金材料的研究进展[J].材料导报,2003(11):16-18+55.
    [10]余琨,黎文献,等.变形镁合金的研究、开发及应用[J].中国有色金属学报,2003(02):277-288.
    [11]王渠东,丁文江,等.镁合金研究开发现状与展望[J].世界有色金属,2004(07):8-11.
    [12]Kaibyshev R, Galiev A, et al. On the possibility of producing a nanocrystalline structure in magnesium and magnesium alloys [J]. Nanostructured Materials,1995,6(5-8):621-624.
    [13]Wang Q, Y Wei, et al. High strain rate superplasticity of rolled AZ91 magnesium alloy [J]. Rare Metals,2008,27(1):46-49.
    [14]Tan J C, Tan M J, et al. Superplasticity in a rolled Mg-3Al-1Zn alloy by two-stage deformation method [J]. Scripta Materialia,2002,47(2):101-106.
    [15]Wei Y H, Wang Q D, et al. Superplasticity and grain boundary sliding in rolled AZ91 magnesium alloy at high strain rates [J]. Materials Science and Engineering A,2003,360(1-2):107-115.
    [16]Michael M A, Bake H. Magnesium and Magnesium Alloy [J]. ASM Internationa,1999.
    [17]StaroselskyL A, et al. A constitutive model for hcp materials deforming by slip and twinning: application to magnesium alloy AZ31B [J]. International Journal of Plasticity,2003,19(10):1843-1864.
    [18]Kubota K, Mabuchi M, et al. Processing and mechanical properties of fine-grained magnesium alloys [J]. Journal of Materials Science,1999,34(10):2255-2262.
    [19]陈振华,夏伟军,等.镁合金材料的塑性变形理论及其技术[J].化工进展,2004(02):127-135.
    [20]余永宁.金属学原理[J].北京:冶金工业出版社,2000.
    [21]Barnett M R. Twinning and the ductility of magnesium alloys Part Ⅰ:"Tension" twins [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,464(1-2):1-7.
    [22]Barnett M R. Twinning and the ductility of magnesium alloys Part Ⅱ. "Contraction" twins [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,464(1-2):8-16.
    [23]Chino Y, Kimura K, et al. Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy [J]. Materials Science and Engineering:A,2008,486(1-2):481-488.
    [24]J A del Valle, M T Perez-Prado, et al. Texture evolution during large-strain hot rolling of the Mg AZ61 alloy [J]. Materials Science and Engineering A,2003,355(1-2):68-78.
    [25]Koike J. Enhanced deformation mechanisms by anisotropic plasticity in polycrystalline Mg alloys at room temperature [J]. Metallurgical and Materials Transactions a-Physical Metallurgy and Materials Science,2005,36A(7):1689-1696.
    [26]Barnett M R, M D Nave, et al. Deformation microstructures and textures of some cold rolled Mg alloys [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2004,386(1-2):205-211.
    [27]张娅,马春江,等.变形镁合金的塑性变形机制与动态再结晶[J].轻合金加工技术,2003(07):35-39.
    [28]Ion S E, Humphreys F J, et al. DYNAMIC RECRYSTALLIZATION AND THE DEVELOPMENT OF MICROSTRUCTURE DURING THE HIGH-TEMPERATURE DEFORMATION OF MAGNESIUM [J]. Acta Metallurgica,1982,30(10):909-1919.
    [29]刘楚明,刘子娟,等.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006(01):1-12.
    [30]Galiyev A, K R, et al. Continuous dynamic recrystallization in magnesium alloy [J]. Mater Sci Forum,2003,419~422:521.
    [31]Galiyev A, Kaibyshev R, et al. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60 [J]. Acta Materialia,2001,49(7):1199-1207.
    [32]Yu K, Li W, et al. Plastic deformation behaviors of a Mg-Ce-Zn-Zr alloy [J]. Scripta Materialia,2003,48(9):1319-1323.
    [33]黄光杰,钱宝华,等.AZ31镁合金初始动态再结晶的临界条件研究[J].稀有金属材料与工程,2007(12):2080-2083.
    [34]Yin D L, Zhang K F, et al. Warm deformation behavior of hot-rolled AZ31 Mg alloy [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2005,392(1-2):320-325.
    [35]毛卫民,赵新兵,等.金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994.
    [36]H·J·麦克奎因,田村今男,等.金属热加工中的回复与再结晶[J].钢管技术,1982(01):22-35.
    [37]Ravi Kumar N V, Blandin J J, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical processing [J]. Materials Science and Engineering A,2003,359(1-2):150-157.
    [38]Sitdikov O, Kaibyshev R, et al. Dynamic recrystallization in pure magnesium [J]. Materials Transactions,2001,42(9):1928-1937.
    [39]Sitdikov O, Kaibyshev R, et al. Dynamic recrystallization based on twinning in coarse-grained Mg [J]. Materials Science Forum,2003,419-422:521-526.
    [40]H·J·麦克奎因,田村今男,等.金属热加工中的回复与再结晶(续一)[J].钢管技术,1982(02):43-56.
    [41]汪凌云,黄光胜,等.变形AZ31镁合金的晶粒细化[J].中国有色金属学报,2003(03):594-598.
    [42]孙建林.轧制工艺润滑原理技术与应用[M].北京:冶金工业出版社,2004.
    [43]V.B.金兹伯格著,马东清等译.板带轧制工艺学[M].北京:冶金工业出版社,1998.
    [44]余琨,黎文献,等.Mg-Al-Zn系变形镁合金轧制及热处理后的组织和性能[J].金属热处理,2002(05):8-11.
    [45]M T Perez-Prado, J A del Valle, et al. Achieving high strength in commercial Mg cast alloys through large strain rolling [J]. Materials Letters,2005,59(26):3299-3303.
    [46]汪凌云,黄光杰,等.镁合金板材轧制工艺及组织性能分析[J].稀有金属材料与工程,2007(05):910-914.
    [47]Vespa G, Mackenzie L W F, et al. The influence of the as-hot rolled microstructure on the elevated temperature mechanical properties of magnesium AZ31 sheet [J]. Materials Science and Engineering:A,2008,487(1-2):243-250.
    [48]Kim S-H, You B-S, et al. Texture and microstructure changes in asymmetrically hot rolled AZ31 magnesium alloy sheets [J]. Materials Letters,2005,59(29-30):3876-3880.
    [49]程永奇,陈振华,等.等径角轧制AZ31镁合金板材的组织与性能[J].中国有色金属学报,2005(09):1369-1375.
    [50]肯G克雷德著,温仲元译.金属基复合材料[M].北京:冶金工业出版社,1982.
    [51]李正华.复合板的发展方向[J].稀有金属材料与工程,1989(04):56-59.
    [52]许秀梅,张文志,等.非对称不锈钢/碳钢复合板可逆冷轧过程的数值模拟[J].钢铁研究学报,2004(03):35-39.
    [53]焦少阳,董建新,等.双金属热轧复合的界面结合影响因素及结合机理[J].材料导报,2009(01):59-62.
    [54]朱永伟,谢刚朝,等.层压金属复合材料的加工技术[J].矿冶工程,1998(02):68-72.
    [55]S H Wang, D K Matlock, et al. AN ANALYSIS OF THE CRITICAL CONDITIONS FOR DIFFUSION-INDUCED VOID FORMATION IN NI-CU LAMINATE COMPOSITES[J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,1993,167(1-2):139-145.
    [56]王祝堂.镁板材轧制工艺及性能[J].有色金属加工,2004(03):8-11.
    [57]Yoshimura S, Yoshihara S, Shirakashi T, et al. Electrochim [J]. Acta,1994,39:589.
    [58]M T Perez-Pradoet alO A Ruano. Texture evolution during annealing of magnesium AZ31 alloy[J]. Scripta Materialia,2002,46(2):149-155.
    [59]H Somekawa, H Watanabe, et al. Low temperature diffusion bonding in a superplastic AZ31 magnesium alloy[J]. Scripta Materialia,2003,48(9):1249-1254.
    [60]徐希军.Al/AZ31/Al叠层复合材料轧制复合工艺研究[D].南京:南京理工大学,2009.
    [61]张毅斌,王群骄,等.包铝镁板轧制复合机理的研究[J].材料开发与应用,2009(06):72-75.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700