三维小波可伸缩视频编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着异构网络的逐渐融合以及不同终端设备的不断涌现,视频流在互联网上的应用日益广泛。人们对视频编码提出了更高的要求,即能够动态地根据用户的要求、网络的特性和设备的处理能力提供不同分辨率、帧率和码率的视频。可伸缩视频编码正是针对上述需求而提出的新的视频编码方法。基于运动补偿时域滤波(MCTF)和嵌入式熵编码技术的三维小波视频编码因其能够灵活地实现空域、时域以及质量可伸缩而成为近年来视频编码领域的热点研究内容之一。本文的研究内容正是围绕三维小波可伸缩视频编码展开的。具体地,本论文主要进行了以下几个方面的研究:
     第一,本文研究了在支持空间可伸缩的条件下如何平衡过完备子带内运动补偿时域滤波(OIBMCTF)方案在低分辨率下解码的不匹配误差和高分辨率下的编码效率。针对这一现有OIBMCTF编码方案所面临的挑战,本文首先对OIBMCTF在低分辨率下解码时不匹配误差的产生和传递进行了理论分析并建立了相应的误差传递模型。在此基础上,本文提出了基于帧的误差减少方案――分辨率层间leaky预测方案和基于宏块的误差减少方案――基于模式的运动补偿时域滤波方案。实验结果显示两种方案都能够有效地减少OIBMCTF在低分辨率下解码的不匹配误差,而且在高分辨率下的编码效率损失相对较小。这两个方案已经正式被MPEG小波视频编码特别小组(Vidwav Group)所采纳作为三维小波视频编码参考软件中子带内运动补偿时域滤波(IBMCTF)方案的基准方法,供所有的MPEG成员使用。
     第二,本文研究了如何在IBMCTF方案中进行有效的运动预测和编码,提出了一种有效的模式自适应运动预测和编码算法。具体地说,在进行运动矢量预测时,我们充分考虑了空间小波子带间以及每个子带内的运动相关性,引入了三种高频子带宏块运动预测模式,并通过率失真优化模式选择准则自适应地选择最有效的运动预测模式。在对运动信息进行编码时,引入了基于上下文自适应的算术编码框架,并设计了相应的运动预测模式、运动对齐模式和宏块划分模式的概率模型,以进一步提高IBMCTF方案运动信息的编码效率。实验表明,同子带独立的运动预测和编码算法相比,所提的模式自适应运动预测和编码算法对于CIF格式的foreman序列在不同码率下有0.4-0.6dB编码效率的提高,对于4CIF格式的city和soccer序列在不同的码率下平均有0.5-0.7dB编码效率的提高。
     第三,本文研究了如何将人眼视觉特性同三维小波可伸缩视频编码方案结合以去除视频信号中的视觉冗余,提高视频编码的主观质量。针对“T+2D”编码方案,提出了一种感知自适应MCTF技术。针对“2D+T”编码方案,提出了一种子带内感知自适应预处理技术。在“T+2D”编码方案中,我们在MCTF过程中引入空时视觉掩盖模型来指导MCTF中的运动估计和预测过程以去除视频序列中存在的空间和时间视觉冗余。在“2D+T”编码方案中,我们首先建立了一个局部自适应的小波域JND(Just noticeable distortion)模型。然后在每个空间子带进行MCTF之前插入一个基于该JND模型的自适应预处理模块来去除空间子带内的视觉冗余系数。实验表明,所提的感知自适应MCTF技术和感知自适应预处理算法能够有效地改善解码序列的主观质量。
To reliably deliver video to varying clients over heterogeneous networks using available system resources, particularly in scenarios with unknown system resources and network conditions in advance, the coded bit-stream should provide the temporal, spatial, SNR and complexity etc. scalabilities to meet the requirements of the clients with diverse display resolutions, bandwidths, computational capability and memory capabilities. With the property of natural scalability of three-dimensional wavelet transform, spatial scalability and temporal/frame-rate scalability can be easily supported. Moreover, with the bit-plane coding of the subband coefficients, quality/SNR scalability is also enabled. Recently three-dimensional wavelet scalable video coding schemes with motion compensated temporal filtering (MCTF) has attracted more and more researchers. The research of this thesis also focuses on the three-dimensional wavelet scalable video coding schemes. The content of this thesis is introduced as follows:
     Firstly, we investigate how to make a good trade-off between the low-resolution mismatch error and the full-resolution coding performance in the overcomplete in-band MCTF (OIBMCTF) schemes. Aiming at the big challenge of OIBMCTF schemes, we first analyze the mismatch error propagation along the lifting structure when the low-resolution video is decoded and give the propagation model of this mismatch error. Then based on our analysis we propose two schemes to reduce the mismatch error. One is a frame-based mismatch error reduction scheme ----Cross-resolution leaky prediction scheme. The other is macroblock-based mismatch error reduction scheme----Mode-based MCTF scheme. Experimental results show that the proposed schemes can dramatically reduce the mismatch error for low resolution, while the performance loss is marginal for high resolution. These two schemes have been formally accepted by MPEG wavelet video coding ad-hoc group as the baseline schemes of IBMCTF of the reference software of three-dimensional wavelet video coding and can be used by MPEG members.
     Secondly,how to do motion prediction and coding efficiently in IBMCTF schemes is investigated. An efficient mode-adaptive motion prediction and coding algorithm is proposed. In our scheme, three motion prediction and coding modes are introduced to exploit the subband motion correlation at different resolution as well as the spatial motion correlation in the high frequency subband. By the rate-distortion optimized mode selection engine, the proposed scheme can adaptively decide the most efficient mode. When coding the motion information, we use context-based adaptive binary algorithm coding and design the corresponding probability models for motion prediction modes, motion alignment modes and macroblock partition modes to further improve coding efficiency. The experimental results show that the proposed scheme can improve the coding efficiency about 0.4-0.6db for CIF foreman sequence and 0.5-0.7dB for 4CIF soccer and city sequences at different bitrates, compared with subband-independent motion prediction method.
     Finally, we investigate how to combine the characteristics of human visual system with three-dimensional wavelet video coding schemes to improve the visual quality of decoded sequences. Aiming at“T+2D”scheme, we propose a perceptually-adaptive motion compensated temporal filtering (MCTF) method. Aiming at“2D+T”scheme, we propose a perceptually-adaptive in-band preprocessing scheme. In“T+2D”scheme, a spatio-temporal masking model in image domain is incorporated into the lifting structure of MCTF. The model is used to guide the motion search and the prediction step in MCTF so as to remove the visual redundancy in the video sequence. In“2D+T”scheme, a locally adaptive wavelet domain JND profile is first built which is then incorporated into a preprocessor of the in-band MCTF to remove the visually redundant coefficients before performing the MCTF of each spatial band. Experimental results show that the proposed schemes can efficiently enhance the visual quality of decoded video at different bit rates.
引文
[1] ISO-IEC 11172-2,“Information technology– coding of moving pictures and associated audio for digital storage media at up to about 1.5 Mbit/s– Part2: video,”1992.
    [2] ISO/IEC 13818-2,“Information technology—Generic coding of moving pictures and associated audio information—video,”1994.
    [3] ISO/IEC 14496-2: 2001,“Generic coding of audio-visual objects– part 2: visual,”2nd Edition, 2001.
    [4] ITU-T,“Video codec for audiovisual services at px64 kbit/s,”ITU-T Rec. H.261, 1989.
    [5] ITU-T,“Video coding for low bit-rate communication,”ITU-T Rec. H.263, 1995.
    [6] T. Wiegand and G. Sullivan,“Draft ITU-T recommendation and final draft international Standard of Joint Video Specification (ITU-T Rec. H.264 | ISO/IEC 14496-10 AVC),”Joint Video Team of ISO/IEC and ITU-T the 7th Meeting, JVT-G050, Pattaya, Thailand, March, 2003.
    [7] Final draft of information technology--Advanced coding of audio and video--Part 2: Video. AVS Working Group Doc., Shanghai, China, Sept. 2005, N1214.
    [8] Y. Wang, J. Ostermann, Y.-Q. Zhang, Vide processing and communication, Prentice Hall, 2002
    [9] W. Li,“Overview of fine granularity scalability in MPEG-4 video standard,”IEEE Trans on Circuits and Systems for Video Technology, Vol. 11, No. 3, pp. 301-317, May 2001.
    [10]钟玉琢、王琪、贺玉文.基于对象的多媒体数据压缩编码国际标准——MPEG-4及其校验模型.科学出版社. ISBN 7-03-008775-5/TP.1430,2000年10月
    [11] W. Li.“Bitplane coding of DCT coefficients for fine granularity scalability,”ISO/IEC JTC1/SC29/WG11, MPEG98/M3989, October, 1998
    [12] W. Li.“Fine granularity scalability in MPEG-4 for streaming video,”ISCAS Geneva, Switzerland, pp. 299-302, 2000.
    [13] H. M. Radha, M. van der Schaar and Y. Chen. The MPEG-4 Fine-Grained Scalable Video Coding Method for Multimedia Streaming Over IP. IEEE Trans. on Multimedia, vol. 1, no. 3, pp. 53-68, 2001.
    [14] F. Wu, S. Li and Y.-Q. Zhang. A Framework for Efficient Progressive Fine Granularity Scalable Video Coding. IEEE Trans. Circuits and Systems for Video Technology, special issue on streaming video, vol. 3, no. 11, pp. 332-344, 2001.
    [15] F. Wu, S. P. Li, and Y. Q. Zhang. DCT-Prediction Based Progressive Fine Granularity Scalable Coding. Proc. International Conference on Image Processing, Vancouver, pp. 566-569, 2000.
    [16] S. Li, F. Wu, and Y.-Q. Zhang. Experimental Results with Progressive Fine Granularity Scalable (PFGS) Coding. 51st MPEG Meeting, MPEG2000/m5742, Noordwijkerhout, Netherlands. Mar. 2000
    [17] F. Wu, S. Li, and Y.-Q. Zhang. Progressive Fine Granularity Scalable (PFGS) Video Using Advance-Predicted Bitplane Coding (APBIC). Proc. The IEEE International Symposium on Circuits and Systems, Sydney, pp. 97-100, 2001.
    [18]吴枫,李世鹏和张亚勤.渐进、精细的可伸缩性视频编码.计算机学报. 2000, 12(23)
    [19] H. Huang, C. Wang, T. Chiang. A Robust Fine Granularity Scalability Using Trellis-Based Predictive Leak. IEEE trans. Circuits and Systems for Video Technology, vol. 6, no. 12, pp.372-385, 2002.
    [20] R. Kalluri, M. Schaar. Single-Loop Motion-Compensated Based Fine-Granular Scalability (MC-FGS) with Cross-Checked Results. ISO/IEC JTC1/SC29/WG11, m6831, Pisa. January 2001
    [21]孙晓艳,高文,吴枫,李世鹏和张亚勤.基于宏块的渐进、精细可伸缩的视频编码.软件学报, vol. 13, no. 11, pp. 2134-2141, 2002.
    [22] X. Sun, F. Wu, S. Li, W. Gao and Y.-Q. Zhang. Macroblock-based Progressive Fine Granularity Scalable Video Coding,Proc. IEEE International Conference on Multimedia & Expo, Tokyo, Japan, pp. 461-464, Aug. 2001.
    [23] W. Peng, Y. Chen.“Mode-Adaptive Fine Granularity Scalability,”Proc. IEEE International Conference on Image Processing, Greece, pp. 993-996, 2001.
    [24] ISO/IEC JTC1/SC29/WG1/N1420, Verification model ad-hoc. JPEG 2000 Verification Model 5.0, Oct. 1999.
    [25] ISO/IEC JTC 1/SC 29/WG1-2000. JPEG 2000 Part I Final Committee Draft 2000.
    [26]张旭东,卢国栋,冯健,图像编码基础和小波压缩技术-原理、算法和标准,清华大学出版社,北京, 2004.
    [27] ISO/IEC JTC 1/SC 29/WG1-2001. Motion JPEG2000 Final Committee Draft 1.0. 2001.
    [28] G. Karlsson and M. Vetterli,“Subband coding of video signals for packet switched networks,”Proc. SPIE, Visual Communication Image Processing,vol.845, pp. 446-456, 1987
    [29] D. Taubman and A. Zakhor,“Multi-rate 3-d subband coding of video,”IEEE Trans. Image Proc., vol. 3, pp. 572–588, September 1994
    [30] Wang A., Xiong Z., Chou P. A., Mehrotra S., 3D wavelet coding of video with global motion compensation. Data Compression Conference (DCC'99), Snowbird, UT, Mar. 1999.
    [31] T. Kronander,“Motion compensated 3-dimensional wave-form image coding,”Proc. International Conf. on Accoustics Speech and Signal Proc., ICASSP 1989, Glasgow, UK, vol. 3, pp. 1921-1924, May 1989
    [32] T. Kronander,“New results on 3-dimensional motion-compensated subband coding, Proc. Picture Coding Symposium, PCS 1990, Cambridge MA, USA, pp. 8-10
    [33] J. Ohm, Three-dimensional subband coding with motion compensation, IEEE Trans. Image Processing, vol. 3, pp. 559–571, Sept. 1994.
    [34] J. Ohm,“Advances in Scalable Video Coding,”Proceedings of IEEE, Vol. 93, No. 1, pp. 42-56, JANUARY 2005.
    [35] J. Ohm, M. van der Schaar and J. Woods,“Interframe wavelet coding---motion picture representation for universal scalability,”Signal Processing: Image Communication, vol. 19, pp. 877-908, Oct. 2004.
    [36] J. Ohm and K Rummler,“Variable-raster multiresolution video processing with motion compensation techniques,”IEEE International Conference on Image Processing, vol. I, pp. 759-762, 1997.
    [37] S. Hsiang, J. Woods and J. Ohm,“Invertible temporal subband/ wavelet filter banks with half-pixel-accurate motion compression,”IEEE Trans. Image Processing, vol. 13, pp.1018-1028, 2004.
    [38] B. Pesquet-Popescu, and V. Bottreau,“Three-dimensional lifting schemes for motion compensated video compression,”ICASSP, vol. 3, pp 1793–1796, Salt Lake City, 2001.
    [39] J. Xu, Z. Xiong, S. Li, Y.-Q. Zhang,“Three-dimensional embedded subband coding with optimal truncation (3D ESCOT),”Applied and Computational Harmonic Analysis, no.10, pp.290-315, 2001.
    [40] Luo L., Wu F., Li S., Zhuang Z., Advanced lifting-based Motion Threading (MTh) techniques for 3D wavelet video coding, Proceedings of the SPIE/IEEE Visual Communications and Image Processing (VCIP2003), Vol.5150, pp.707-718, Luhano, Switzerland, Jul.2003.
    [41]罗琳,“基于小波的高维图像视频媒体压缩,”中国科学技术大学博士学位论文,2003
    [42] Secker A. and Taubman D., Motion-compensated highly scalable video compression using an adaptive 3D wavelet transform based on lifting, Proc. of the IEEE Int. Conf. on Image Processing, pp. 1029-1032, Thessaloniki, Greece, Oct. 2001,
    [43] Sweldens W, The Lifting scheme: a new philosophy in biorthogonal wavelet construction, Proceedings of SPIE Conference on Wavelet Applications in Signal and Image Processing, 1995.
    [44] M.T. Orchard and G. J. Sullivan,“Overlapped block motion compensation: an estimation-theoretic approach,”IEEE Trans. Image Processing, vol.3, pp.693-699, Sep. 1994
    [45]“Ad hoc group on exploration of interframe wavelet technology in video,”ISO/IEC JTC1/SC29/WG11/ N4474, 58th MPEG Meeting, Pattaya, December 2001
    [46] M. Flierl and B. Girod,“Video coding with motion-compensated lifted wavelet transforms,”Signal processing: Image Communication, vol. 19, no. 7, pp 561-575, 2004.
    [47] Chen P. and Woods J., Bi-directional MC-EZBC with lifting implementation, IEEE Trans. Circuit and System for Video Technology,. IEEE Trans. Circuits and Systems for Video Technology, Vol.14(10), pp.1183-1194, December, 2004.
    [48] R. Xiong, F. Wu, S. Li, Z. Xiong, Y.-Q. Zhang,“Exploiting temporal correlation with adaptive block-size motion alignment for 3D wavelet coding”, SPIE on Visual Communications and Image Processing, vol. 5308, pp 144- 155, 2004.
    [49] J. Ohm,“Motion-compensated wavelet lifting filters with flexible adaptation,”Proc. Intl. Work-shop on Digital Communications, Capri, 2002.
    [50] D. Turaga, M. van der Schaar, and B. Pesquet-Popescu,“Complexity scalable motion compensated wavelet video encoding”, IEEE Trans. on Circuit and Systems for Video Technology, vol. 15, no. 6, pp 982-993, 2005.
    [51] D. Turaga, M. van der Schaar, Y. Andreopoulos, A. Munteanu, and P. Schelkens,“Unconstrained mo-tion compensated temporal filtering (UMCTF) for efficient and flexible interframe wavelet video coding”, Signal Processing: Image communication, vol. 20, no. 1, pp 1-19, 2005.
    [52] A. Secker and D. Taubman,“Highly scalable video compression with scalable motion coding,”IEEE Trans. on Image Processing, vol. 13, no. 8, pp 1029-1041, 2004.
    [53] Video and Test groups,“Call for proposals on scalable video coding technology”, ISO/IEC JTC1/SC29/WG11, N6193, Waikoloa, 2003
    [54] H. Schwarz, T. Hinz, H. Kirchhoffer, D. Marpe, and T. Wiegand,“Technical description of the HHI proposal for SVC CE1,”ISO/IEC JTC 1/SC29/WG11, doc. M11244, Palma de Mallorca, Spain, Oct. 2004
    [55] J. Reichel, M. Wien, and H. Schwarz, eds.,“Scalable Video Model 3.0,”ISO/IEC JTC 1/SC29/WG11, doc. N6716, Palma de Mallorca, Spain, Oct. 2004
    [56] Video group,“Exploration experiments on tools evaluation in wavelet video coding”, ISO/IEC JTC1/SC29/WG11, N6914, Hong Kong, 2005.
    [57] R. Xiong, X. Ji, D. Zhang, J. Xu, G.. Maria Trocan, V. Bottreau,“Vidwav Wavelet Video Coding Specifications,”ISO/IEC JTC1/SC29/WG11 73rd MPEG Meeting, MPEG2005/M12339, Poznań. July 2005.
    [58] R. Xiong, J. Xu, F. Wu, S. Li, and Y.-Q. Zhang,“Spatial scalability in 3D wavelet coding with spatial domain MCTF encoder”, PCS 2004, San Francisco, CA, USA, Dec. 2004.
    [59] http://ftp3.itu.ch/av-arch/jvt-site/
    [60] J. Reichel, H. Schwarz, M. Wien, eds.,“Joint scalable video model 7(JSVM 7),”Joint Video Team, doc. JVT-T202, Klagenfurt, Austria, July 2006
    [61] T. Wiegand, G. J. Sullivan, J. Reichel, H. Schwarz, and M. Wien, eds.,“Joint Draft 7,”Joint Video Team, Doc. JVT-T201, Klagenfurt, Austria, July 2006.
    [62] G. J. Sullivan and T. Wiegand,“Rate-distortion optimization for video compression,”IEEE Signal Processing Magazine, vol. 15, no. 6, pp. 74-90, Nov. 1998.
    [63] T. Wiegand, et al.,“Rate-constrained coder control and comparison of video coding standards,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 688-703, July 2003.
    [64] H. S. Malvar, A. Hallapuro, M. Karczewicz, and L. Kerofsky,“Low-complexity transform and quantization in H.264/AVC,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 598-603, July 2003.
    [65] M. Wien,“Variable block-size transforms for H.264/AVC,”IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no. 7, pp. 604-613, July 2003.
    [66] G. Van der Auwera, A. Munteanu, P. Schelkens et al,“Bottom-up motion compensated prediction in wavelet domain for spatially scalable video coding,”Electronic Letters, vol. 38, no. 21, pp.1251-1253, 2002.
    [67] X. Li, L. Kerofsky and S. Lei,“All-phase motion compensated prediction in the wavelet domain for high performance video coding,”Proc. IEEE Int. Conf. Image Processing, Thessaloniki, Greece, pp. 538-541, Oct. 2001.
    [68] X. Yang and K. Ramchandran,“Scalable wavelet video coding using aliasing-reduced hierarchical motion compensation,”IEEE Trans. on Image Processing, vol. 9, no. 5, 2000.
    [69] H. Park and H. Kim,“Motion estimation using low-band-shift method for wavelet-based moving picture coding,”IEEE Trans. on Image Processing, vol. 9, no. 4, pp.577-587, 2000.
    [70] X. Li,“New results of phase shifting in the wavelet space,”IEEE Signal Processing Letter, vol. 10, no. 7, pp. 293-295, 2003.
    [71] Y. Andreopoulos, A. Munteanu, G. Van der Auwera et al,“Complete-to- overcomplete discrete wavelet transforms: theory and applications,”IEEE Trans. on Signal Processing, vol. 53, no. 4, pp. 1398-1412, 2005.
    [72] Y. Andreopoulos, M. van der Schaar, A. Munteanu et al,“Complete-to- overcomplete discrete wavelet transforms for fully-scalable video coding with MCTF,”Proc. Visual Comunications and Image Processing, Lugano, Switzerland, vol. 5150, pp. 719-731, 2003.
    [73] Y. Andreopoulos, A. Munteanu, G. Van der Auwera et al,“A new method for complete-to-overcomplete discrete wavelet transforms,”IEEE Digital Signal Processing, Santorini, Greece, vol. 2, pp. 501-504, July 2002.
    [74] X. Li,“Scalable video compression via overcomplete motion compensated wavelet coding”Signal Processing: Image Communication, vol. 19, no. 7, pp. 637-651, 2004
    [75] .J. Ye, M. van der Schaar,“Fully Scalable 3-D Overcomplete Wavelet Video Coding using Adaptive Motion Compensated Temporal Filtering,”Proc. SPIE Video Communications and Image Processing, Lugano, vol. 5150, pp. 1169-1180, 2003.
    [76] Y. Andreopoulos, M. van der Schaar, A. Munteanu et al, "Fully scalable wavelet video coding using in-band motion compensated temporal filtering," Proc. IEEE Int. Conf. on Acoustics Speech and Signal Processing, Hong Kong, China, vol. 3, pp. 417-420, 2003.
    [77] Y. Andreopoulos, M. van der Schaar, A. Munteanu et al,“Open-loop, in-band, motion-compensated temporal filtering for objective full-scalability in wavelet video coding,”ISO/IEC JTC1/SC29/WG11, 62nd MPEG meeting, M9026, 2002.
    [78] Y. Andreopoulos, A. Munteanu, J. Barbarien et al,“In-band motion compensated temporal filtering,”Signal Processing: Image Communication, vol. 19, no. 7, pp. 653-673, 2004.
    [79] N. Mehrseresht, and D. Taubman,“Spatial scalability and compression efficiency within a flexible motion compensated 3D-DWT,”IEEE Int. Conf. on Image Processing, Singapore, vol. 2, pp. 1325-1328, 2004
    [80] M. van der Schaar and J.C. Ye,“Adaptive overcomplete wavelet video coding with spatial transcaling,”Proc. SPIE Video Communications and Image Processing, pp.489-500, 2003
    [81] N. Mehrseresht and D. Taubman,“A flexible structure for fully scalable motion-compensated 3D DWT with emphasis on the impact of spatial scalability”, IEEE Trans. on Image Processing, vol. 15, No. 3, pp.740-752, 2006
    [82] N. Mehrseresht, and D. Taubman,“An efficient content-adaptive MC 3D-DWT with enhanced spatial and temporal scalability,”IEEE Int. Conf. on Image Processing, Singapore, vol. 2, pp.1329-1332.
    [83] D. Taubman, D. Maestroni, R. Mathew1 and S. Tubero,“SVC Core Experiment 1, Description of UNSW Contribution,”ISO/IEC JTC1/SC29/WG11, 70nd MPEG meeting, M11441, 2004.
    [84] S. Han and B. Girod,“Robust and efficient scalable video coding with leaky prediction,”Proc. IEEE Int. Conf. on Image Processing, pp.41-44, 2002
    [85] F. Wu, S. Li, X. Sun et al,“Macroblock-based progressive fine granularity scalable video coding,”Int. Journal of Imaging Systems and Technology, vol. 13, no. 6, pp. 297-307, 2003.
    [86] Y-Q Zhang and S. Zafar,“Motion-compensated wavelet transform coding for color video compression,”IEEE Trans. on circuits and system for video technology, vol. 2, no. 3, pp. 285-296, 1992
    [87] S. Zafar and Y-Q Zhang,“Multiscale video representation using multiresolution motion compensation and wavelet decomposition,”IEEE Trans. on selected areas in communication, vol. 11, no. 1, pp. 24-35, 1993
    [88] J. Zan, M. Omair Ahmad and M. N. S. Swamy,“A multiresolution motion estimation technique with indexing,”IEEE Trans. on circuits and system for video technology, vol. 16, no. 2, pp. 157-165, 2006
    [89] J. Zan, M. Omair Ahmad and M. N. S. Swamy,“Comparison of wavelet for multiresolution motion estimation,”IEEE Trans. on circuits and system for video technology, vol. 16, no. 3, pp. 439-446, 2006
    [90] J. Zan, M. Omair Ahmad and M. N. S. Swamy,“New techniques for multi-resolution motion estimation,”IEEE Trans. on circuits and system for video technology, vol. 12, no. 9, pp. 793-802, 2002
    [91] J. Barbarien, Y. Andreopoulos, A. Munteanu, P. Schelkens and J. Cornelis,“Motion vector coding for in-band motion compensated temporal filtering,”Proc. IEEE International Conf. on Image Processing, vol. 2, pp. 783-786, Barcelona, 2003
    [92] J. Barbarien, Y. Andreopoulos, A. Munteanu, P. Schelkens and J. Cornelis, "Coding of motion vectors produced by wavelet-domain motion estimation," Proc. Picture Coding Symposium, PCS'03, Saint Malo, FR, vol. 1, pp. 193-197, April 2003.
    [93] D. Marpe, H. Schwarz and T. Wiegand,“Context-based adaptive binary arithmetic coding in the H.264/AVC video compression standard,”IEEE Trans. on circuits and system for video technology, vol. 13, no. 7, pp. 620-636, July 2003
    [94] X. Jin, X. Sun, F. Wu, G. Zhu, S. Li,“H.264 compatible spatially scalable video coding with in-band prediction”Proc. IEEE Int. Conf. Image Processing, Genova, vol. 1, pp. 489-492, 2005
    [95] R. Gallager and D. Van Voorhis,“Optimal source codes for geometrically distributed integer alphabets,”IEEE Trans. Inform. Theory, vol. 21, pp. 228–230, Mar. IT-1975.
    [96] X. K. Yang, W. S. Lin, Z. K. Lu, E. P. Ong and S. S. Yao,“Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile,”IEEE Trans. on Circurts and Systems for Video Technology, vol. 15, no. 6, pp. 742-752, 2005.
    [97] X. K. Yang, W. S. Lin, Z. K. Lu, E. P. Ong and S. S. Yao,“Perceptually-adaptive hybrid video encoding based on just-noticeable-distortion profile,”Proc. Visual Comunications and Image Processing, Lugano, Switzerland, vol. 5150, pp. 1448-1459, 2003.
    [98] B. Girod,“What’s wrong with mean-squared error?,”Digital Images and Human Vision, A. Watson, ed., MIT Press, 1993
    [99]余松煜,周源华,张瑞,“数字图像处理讲义,”2006.
    [100]阮秋琦,“数字图像处理学,”电子工业出版社,2003
    [101] H.R. Wu, K.R. Rao,“Digital video image quality and perceptual coding,”CRC press, Taylor& Francis Group, 2005
    [102] Stefan Winkler,“Digital Video Quality-Vision Models and Metrics,”John Wiley & Sons press, 2005.
    [103] D. H. Kelly,“Motion and vision. II. Stabilized spatio-temporal threshold surface,”Journal of the Optical Society of America, vol. 69, no. 10, pp. 1340–1349, 1979
    [104] D. H. Kelly,“Spatiotemporal variation of chromatic and achromatic contrast thresholds,”Journal of the Optical Society of America, vol. 73, no.6, pp. 742–750, 1983
    [105] X. K. Yang, W. S. Lin, Z.K. Lu, E. P. Ong and S.S. Yao,“Perceptually-adptive pre-processing for motion-compensated residue in video coding,”Proc. IEEE International Conf. on Acoustics, Speech and Signal Processing, Vol. 3, pp. 609-612, 2003
    [106] C. Chou and C. Chen,“A perceptually optimized 3-D subband codec for video communication over wireless channels,”IEEE Trans. on Circuits System and. Video Technology, vol. 6, no. 2, pp.143-156, 1992.
    [107] N. S. Jayant, J. D. Johnston, and R. J. Safranek,“Signal compression based on models of human perception”, Proc. IEEE, vol. 81, pp. 1385-1422, 1993.
    [108] X. K. Yang, W. S. Lin, Z.K. Lu, E. P. Ong and S.S. Yao,“Just noticeable distortion model and its applications in video coding,”Signal Processing: Image Communication, vol. 22, no.7, pp. 662-680, August 2005
    [109] ITU-R,“Methodology for the Subjective Assessment of the Quality of Television Pictures,”ITU-R Rec. BT. 500-9, Std. 1999.
    [110] A. J. Ahumada and H. A. Peterson,“Luminance-model-based dct quantization for color image compression,”Proc. SPIE Int. Conf. Human Vision, Visual Processing and Digital Display—III, pp.365–374, 1992
    [111] R. J. Safrenek and J. D. Johnson,“A perceptually tuned sub-band image coder with image dependent quantization and postquantization data compression,”Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, pp. 1945–1948, 1989
    [112] A. B. Watson,“DCT quantization matrices visually optimized for individual images,”Proc. SPIE Int. Conf. Human Vision, Visual Processing and Digital Display IV, vol. 1913, pp. 202–216, 1993
    [113] A. B. Watson, G. Y. Yang, J. A. Solomon, and J. Villasenor,“Visibility of wavelet quantization noise,”IEEE Trans. on Image Processing, vol. 6, no. 8, pp. 1164–1175, 1997.
    [114] I. S. H?ntsch and L. J. Karam,“Locally adaptive perceptual image coding,”IEEE Trans. on Image Processing, vol. 9, no. 9, pp. 1472–1483, 2000.
    [115] I. S. H?ntsch and L. J. Karam,“Adaptive image coding with perceptual distortion control,”IEEE Trans. on Image Processing, vol. 11, no. 3, pp. 213–222, 2002.
    [116] A. P. Bradley,“A wavelet visible difference predictor,”IEEE Trans. on Image Processing, vol. 8, no. 5, pp. 717–730, 1999.
    [117] J. Malo, J. Gutierrez, I. Epifanio, F. Ferri, and J. M. Artigas,“Percetual feedback in multigrid motion estimation using an improved DCT quantization,”IEEE Trans. on Image Processing, vol. 10, no. 10, pp. 1411–1427, 2001
    [118] T. D. Tran and R. Safranek,“A locally adaptive perceptual masking threshold for image coding,”Proc. IEEE Int. Conf. Acoustics, Speech, and Signal Processing, pp. 1882–1885, 1996.
    [119] H. Y. Tong and A. N. Venetsanopoulos,“A perceptual model for JPEG applications based on block classification, texture masking, and luminance masking,”Proc. IEEE Int. Conf. Image Processing, pp. 428–431, 1998,
    [120] C.-H. Chou and Y.-C. Li,“A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile,”IEEE Trans. on Circuits System and Video Technology, vol. 5, no. 6, pp. 467–476, 1995.
    [121] Y. J. Chiu and T. Berger,“A software-only videocodec using pixelwise conditional differential replenishment and perceptual enhancement,”IEEE Trans. on Circuits System and Video Technology, vol. 9, no. 4, pp. 438–450, 1999.
    [122] I. S. Hontsch and L. J. Karam,“Adaptive image coding with perceptual distortion control”, IEEE Trans. on Image Processing, vol. 11, no. 3, pp. 213-222, 2002.
    [123] S. Efstratiadis, A. Katsaggelos,“Adaptive iterative image restroation with reduced computational load,”Optical Engineering, vol. 29, no. 12, pp. 1458- 1468, 1990.
    [124] S. Voloshynovskiy, A. Herrigel, N. Baumg?rtner, and T. Pun:“A stochastic approach to content adaptive digital image watermarking, In International Workshop on Information Hiding”, Lecture Notes in Computer Science, vol. LNCS1768, Dresden, pp. 212-236, 1999.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700