无线中继网络中协作分集技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多输入多输出(MIMO)技术能够充分利用空间资源来对抗无线信道的衰落,从而在不增加系统带宽和发送功率的情况下,可以提高了通信系统的可靠性和频谱利用率。然而在一些实际的应用场景,比如蜂窝系统的上行链路,无线自组织网络和无线传感器网络,移动终端或者网络节点受到自身体积,复杂度和功耗的限制,很难直接应用MIMO技术。于是,一种新的空间分集技术—协作分集技术应运而生。它的基本思想是参与协作通信的多个终端或者节点通过组成一种虚拟的MIMO系统来彼此共享链路资源从而获得空间分集增益。协作分集技术突破了传统MIMO技术对移动终端设备的限制,为其走向实用化提供了新思路。
     本论文在研究了现有分集技术和MIMO技术的基础上,提出了下述几种协作传输方案:
     1.差分协作传输方案
     首先,提出了一种采用正交幅度调制(QAM)的差分空时协作传输(DSTCT)方案。虽然在差分解调过程中需要估计信道功率(CP)和功率归一化系数(NPF),但与传统采用PSK调制的DSTCT方案相比,所提方案具有更高的信噪比(SNR)增益。仿真结果显示,在时变衰落信道下当调制阶数大于8时,DSTCT-QAM方案可以获得比DSTCT-PSK方案更优的误符号率(SER)性能。尤其是当调制阶数为64时,DSTCT- QAM方案可以获得5.35dB的SNR增益。虽然随着多普勒频率的增加,DSTCT-QAM方案的SNR增益随之下降,但只要CP的估计范围选择得合适,仍然可以获得更好的性能。
     其次,为了克服协作传输中的载波频率偏移,提出了一种采用QAM调制的双差分协作传输(DDCT)方案。推导了闭合的SER近似表达式, SER上界以及高SNR下的渐进近似。基于SER的渐进近似,推导了最佳功率分配(OPA)策略在高SNR下的近似解。仿真结果显示,该OPA策略在实际中等的SNR环境下仍然有效。同时比较了DDCT方案分别采用QAM调制和PSK调制的SER。仿真结果显示,当调制阶数大于8时,DDCT-QAM方案可以获得比DDCT-PSK方案更优的SER性能。尤其是当调制阶数为64时,DDCT-QAM可以获得4.5dB的SNR增益。
     2.差分中继选择方案
     研究了一种联合差分调制和中继选择(DM-RS)的多中继协作传输方案。该方案包含一个源节点, N_R个采用检测转发(DetF)协议的中继节点和一个目的节点。首先讨论了采用PSK调制的DM-RS方案,简称为DPSK-RS-DetF方案。利用中继链路的SNR近似,推导了DPSK-RS-DetF方案中断概率的闭合表达式以及高SNR下的渐进近似。该近似表达式证明DPSK-RS-DetF方案可获得的分集增益阶数为N_R+ 1。同时推导了所提方案闭合的SER近似表达式以及表达形式更简单的SER上界。最后,仿真结果验证了推导的理论结果。
     其次,将QAM调制应用到DM-RS方案中,提出了DQAM-RS-DetF方案。由于在差分QAM解调过程中需要估计CP和NPF,因此在不使用训练符号的前提下,提出了一种CP的估计方法和两种NPF的估计方法。同时分析了CP和NPF估计方法的均方误差(MSE),并在时变衰落信道下比较了这两种NPF估计方法的性能。另外,在假设目的端已知CP的前提下,推导了所提方案闭合的SER近似表达式。同时比较了DQAM-RS-DetF方案和DPSK-RS-DetF方案的SER性能。仿真结果显示,在时变衰落信道下当调制阶数大于8时,DQAM-RS-DetF方案可以获得比DPSK-RS-DetF方案更优的SER性能。
     3.准正交空时协作传输方案
     首先,提出了一种在MIMO中继系统中采用准正交空时分组码(QOSTBC)的协作传输方案。与传统采用正交空时分组码(OSTBC)的方案相比,所提方案可以在相同的译码复杂度下获得更高的频谱效率。其次,提出了一种基于1比特信道状态信息(CSI)反馈的自适应译码转发(ADF)协议。根据反馈的CSI,ADF协议可实现在译码转发(DF)协作传输和直接传输之间自适应地选择。再次,分析了所提方案的中断概率性能,推导了中断概率上界的闭合表达式。理论分析结果证明,所提方案可以获得全分集增益且比DF协作传输和直接传输的分集增益都高。最后,仿真结果验证了推导的理论结果。
     4. MIMO中继系统的发送天线选择(TAS)方案
     首先研究了MIMO放大转发(AF)中继系统中三种TAS方案在独立同分布(IID) Nakagami-m衰落信道下的中断概率性能,推导了中断概率闭合的渐近下界,比较了这三种方案的分集增益;其次研究了MIMO DF中继系统中三种TAS方案在IID Nakagami-m衰落信道下的中断概率性能,推导了中断概率闭合的渐近近似,比较了这三种方案的分集增益阶数。上述推导的理论结果可以应用于具有任意发送和接收天线数目的MIMO中继系统以及具有任意衰落参数( m≥0.5)的IID Nakagami-m衰落信道。
Multiple input multiple output (MIMO) technology can take full advantage of spatial resources to combat wireless channel fading, therefore it can improve the reliability and frequency spectrum utilization of communication systems without additional system bandwidth and transmit power. However, owing to the limitation of mobile terminals or network nodes with regard to the size, complexity and power consumption, MIMO technology hardly can be applied in some practical situations, such as the uplink of cellular system, wireless ad hoc networks and wireless sensor networks. Hence, a new spatial diversity technology, cooperative diversity technology, has been proposed. The basic idea is that multi terminals or nodes compose a virtual MIMO system and share the link resources with each other to obtain spatial diversity gain. Cooperative diversity technology has broken the restriction of the traditional MIMO technology on mobile terminal devices and provided a new method for its utilization in engineering practice.
     Motivated by the previous studies on the diversity technology and MIMO technology, we propose the following cooperative transmission schemes in this dissertation.
     1.Differential cooperative transmission scheme
     A differential space-time cooperative transmission (DSTCT) scheme using quadrature amplitude modulation (QAM) has been presented. Although it is required to estimate the channel power (CP) and normalized power factor (NPF) in the differential demodulation, the proposed scheme has the advantage of signal-to-noise ratio (SNR) gain compared with the conventional DSTCT scheme using PSK modulation. Simulation results show that when the modulation order is larger than 8 in time-varying fading channels, the DSTCT-QAM scheme has better symbol error rate (SER) performance than that of the DSTCT-PSK scheme. Specially, when the modulation order is 64, the DSTCT-QAM scheme obtains a 5.35 dB SNR gain. Although the SNR gain decreases as the Doppler frequency increases, the DSTCT-QAM scheme still can achieve a better performance than the DSTCT-PSK scheme, provided the CP estimation interval is selected suitably.
     In addition, a double differential cooperative transmission (DDCT) scheme using QAM modulation has been proposed to overcome carrier frequency offset in cooperative transmission. A closed-form SER approximation formulation, an SER upper bound as well as an asymptotic approximation at high SNR have been derived. Based on the asymptotic approximation, an approximate solution of optimum power allocation (OPA) at high SNR has been derived. The simulation results show that the approximate solution of the OPA also provides a good solution to a realistic moderate SNR scenario. Moreover, the SER of the DDCT scheme with QAM modulation and that with PSK modulation have been compared. Simulation results show that the DDCT- QAM scheme has better SER performance than that of the DDCT-PSK scheme, when the modulation order is larger than 8. Specially, when the modulation order equals 64, the DDCT-QAM scheme obtains a 4.5dB SNR gain.
     2.Differential modulation and relay selection scheme
     The performance of a multi-relay cooperative communication scheme with differential modulation and relay-selection (DM-RS) has been studied. The scheme consists of a source, N_R relays, and a destination, where the best relay is selected to forward the source node’s signal with detect-and-forward (DetF) protocol. The performance of the DM-RS scheme with PSK modulation (which can be called the DPSK-RS-DetF scheme) has been investigated first. In particular, a closed-form outage probability and an approximation at large SNR have been derived using the SNR approximation of the equivalent relay link. The outage probability approximation shows that the scheme can achieve a full diversity order of N_R+ 1. Furthermore, a closed-form SER approximation and an upper bound have been derived. Simulation results confirm the presented analytical results.
     In addition, a cooperative communication scheme using QAM modulation in the DM-RS scheme has been proposed, which can be named as the DQAM-RS-DetF scheme. Since the CP and NPF are required in the differential demodulation, one CP estimation method and two NPF estimation methods have been developed forgoing training symbols. In addition, the mean square error (MSE) of the estimation methods have been investigated, and the performances of the two NPF estimation methods have been compared in time-varying fading channels. Moreover, assuming the CP knowledge at the destination, a closed form SER approximation of the DQAM-RS-DetF scheme has been derived. Simulations results show that when the modulation order is larger than 8 in time-varying channels, the DQAM-RS-DetF scheme has better SER performance than that of the DPSK-RS-DetF scheme.
     3.Quasi-orthogonal space-time coded cooperative transmission scheme
     A cooperative transmission scheme using quasi-orthogonal space-time block codes (QOSTBC) for MIMO relay networks has been proposed. Comparing with the conventional cooperative transmission scheme using orthogonal space-time block codes (OSTBC), the proposed scheme can achieve higher bandwidth efficiency with the same decoding complexity. Moreover, an adaptive decode-and-forward (ADF) relaying protocol has been proposed based on one-bit channel state information (CSI) feedback. According to the CSI feedback, a better transmission mode can be selected adaptively between the direct transmission and decode-and-forward (DF) cooperative transmission. In addition, the outage performance of the proposed scheme has been investigated and a closed-form upper bound on the outage probability has been derived. The analytical results show that the proposed scheme can achieve a full diversity order, which is higher than that of the direct and DF cooperative transmissions. Simulation results verify the obtained analytical results.
     4.Transmit antenna selection (TAS) schemes in MIMO relaying system
     The outage performances of three TAS schemes in amplify-and-forward (AF) MIMO relaying over independent and identically distributed (IID) Nakagami-m fading channels are investigated. In particular, asymptotic lower bounds on the outage probabilities of the schemes are derived and the obtained diversity orders are compared. Moreover, the outage performances of three TAS schemes in DF MIMO relaying over IID Nakagami-m fading channels are investigated. In particular, the asymptotic outage probabilities of the schemes are derived and the obtained diversity orders are compared. Both of the presented expressions are general for the three TAS schemes with an arbitrary antenna configuration and a fading environment with arbitrary values of severity parameters m≥0.5. Simulation results confirm the presented analytical results.
引文
[1]李建东,杨家玮.个人通信[M],北京:人民邮电出版社, 2002.
    [2] Ojanpera T, Prasad R. An overview of air interfaces multiple access for IMT-2000/ UMTS [J]. IEEE Commun. Mag., 1998, 36(9): 82-86, 91-95.
    [3] Chuang J, Sollenberger N. Beyond 3G: Wideband wireless data access based on OFDM and dynamic packet assignment [J]. IEEE Commun. Mag., 2000, 38(7): 78-87.
    [4] Berezdivin R, Bremig R, Topp R. Next-generation wireless communications concepts and technologies [J]. IEEE Commun. Mag., 2002, 40(3): 108-116.
    [5] Sendonaris A, Erkip E, Aazhang, B. Increasing uplink capacity via user cooperation diversity [C]// Proc. IEEE ISIT, 1998: 156.
    [6] Van Der Meulen E C. Three-terminal communication channels [J]. Adv. Appl. Probab., 1971, 3: 120-154.
    [7] Cover T, Gamal A E. Capacity theorems for the relay channel [J]. IEEE Trans. Inform. Theory, 1979, 25(5): 572-584.
    [8] Sendonaris A, Erkip E, Aazhang, B. User cooperation diversity-Part I: system description [J]. IEEE Trans. Commun., 2003, 51(11): 1927-1938.
    [9] Sendonaris A, Erkip E, Aazhang, B. User cooperation diversity-Part II: implementation aspects and performance analysis [J]. IEEE Trans. Commun., 2003, 51(11): 1939-1948.
    [10] Laneman J N, Wornell G W, Tse D N C. An efficient protocol for realizing cooperative diversity in wireless networks [C]// Proc. IEEE ISIT, 2001: 294-294.
    [11] Laneman J N, Tse D N C, Wornell G W. Cooperative diversity in wireless networks: efficient protocols and outage behavior [J]. IEEE Trans. Inform. Theory, 2004, 50(12): 3062-3080.
    [12] Laneman J N, Wornell G W. Distributed space-time-coded protocols for exploiting cooperative diversity in wireless networks [J]. IEEE Trans. Inform. Theory, 2003, 50(12): 2415-2425.
    [13] Nabar R U, B(o|¨)lcskei H, Kneubühler F W. Fading relay channels: performance limits and space-time signal design [J]. IEEE J. Sel. Areas Commun., 2004, 22(6): 1099-1109.
    [14] Hunter T E, Nosratinia A. Cooperation diversity through coding [C]// Proc. IEEE ISIT, 2002: 220.
    [15] Nosratinia A, Hunter T E, Hedayat A. Cooperative Communication in Wireless Networks [J]. IEEE Commun. Mag., 2004, 42(10): 74-80.
    [16] Hunter T E, Nosratinia A. Diversity through coded cooperation [J]. IEEE Trans. Wireless Commun., 2006, 5(2): 283-289.
    [17] Hunter T E, Hedayat A, Nosratinia A. Outage analysis of coded cooperation [J]. IEEE Trans.Inform. Theory, 2006, 52(2): 375-391.
    [18] Moualeu J M M, Xu H, Takawira F. Double repeat-punctured turbo coded cooperative diversity scheme [C]// Proc. WCNC, 2008: 1044-1049.
    [19] Moualeu J M M, Xu H, Takawira F. Turbo codes in coded cooperation using the forced symbol method [C]// Proc. WCNC, 2009: 1-6.
    [20] Van Khuong H, Le-Ngoc T. A cooperative turbo coding scheme for wireless fading channels [J]. IET Commun., 2009, 3(10): 1606-1615.
    [21] Chakrabarti A, De Baynast A, Sabharwal A, Aazhang B. Low density parity check codes for the relay channel [J]. IEEE J. Sel. Areas Commun., 2007, 25(2): 280-291.
    [22] Chakrabarti A, Erkip E, Sabharwal A, Aazhang B. Code designs for cooperative communication [J]. IEEE Signal Process. Mag., 2007, 24(5): 16-26.
    [23] Murugan A D, Gopala P K, Gamal H E. Correlated sources over wireless channels: cooperative source-channel coding [J]. IEEE J. Sel. Areas Commun., 2004, 22(6): 988-998.
    [24] Shutoy H Y, Gunduz D, Erkip E, Wang Y. Cooperative source and channel coding for wireless multimedia communications [J]. IEEE J. Sel. Top. Signal Process., 2007, 1(2): 295-307.
    [25] Gunduz D, Erkip E. Source and channel coding for cooperative relaying [J]. IEEE Trans. Inform. Theory, 2007, 53(10): 3454-3475.
    [26] Yu M, Li J, Blum R. S. User cooperation through network coding [C]// Proc. IEEE ICC, 2007: 4064-4069.
    [27] Xiao L, Fuja T, Kliewer J, Costello D. A network coding approach to cooperative diversity [J]. IEEE Trans. Inform. Theory, 2007, 53(10): 3714-3722.
    [28] Han Z, Zhang X, Poor H V. Cooperative transmission protocols with high spectral efficiency and high diversity order using multiuser detection and network coding [C]// Proc. IEEE ICC, 2007: 4232 - 4236.
    [29] Zhang J, Zhang Q. Cooperative network coding-aware routing for multi-rate wireless networks [C]// Proc. IEEE INFOCOM, 2009: 181-189.
    [30] Han Z, Zhang X, Poor H V. High performance cooperative transmission protocols based on multiuser detection and network coding [J]. IEEE Trans. Wireless Commun., 2009, 8(5): 2352-2361.
    [31] Scutari G, Barbarossa S. Distributed space-time coding for regenerative relay networks [J]. IEEE Trans. Wireless Commun., 2005, 4(5): 2387- 2399.
    [32] Stefanov A, Erkip E. Cooperative space-time coding for wireless networks [J]. IEEE Trans. Commun., 2005, 53(11): 1804- 1809.
    [33] Yiu S, Schober R, Lampe L. Distributed space-time block coding [J]. IEEE Trans. Commun.,2006, 54(7): 1195-1206.
    [34] Jing Y, Jafarkhani H. Using orthogonal and quasi-orthogonal designs in wireless relay networks [J]. IEEE Trans. Inform. Theory, 2007, 53(11): 4106-4118.
    [35] Canpolat O, Uysal M, Fareed M M. Analysis and design of distributed sSpace-time trellis codes with amplify-and-forward relaying [J]. IEEE Trans. Veh. Technol., 2007, 56(4): 1649-1660.
    [36] Yiu S, Schober R, Lampe L. Decentralized distributed space-time trellis coding [J]. IEEE Trans. Wireless Commun., 2007, 6(11): 3985-3993.
    [37] Yuan J, Chen Z, Li Y, Chu L. Distributed space-time trellis codes for a cooperative system [J]. IEEE Trans. Wireless Commun., 2009, 8 (10): 4897-4905.
    [38] Jayaweera S K. V-BLAST-Based Virtual MIMO for distributed wireless sensor networks [J]. IEEE Trans. Commun., 2007, 55(10): 1867-1872.
    [39] Fan Y, Wang C, Thompson J, Poor H V. Recovering multiplexing loss through successive relaying using repetition coding [J]. IEEE Trans. Wireless Commun., 2007, 6(12): 4484-4493.
    [40] Ding Y, Zhang J K, Wong K M. The amplify-and-forward half-duplex cooperative system: pairwise error probability and precoder design [J]. IEEE Trans. Signal Process., 2007, 55(2): 605-617.
    [41] Yi Z, Kim I M. Joint optimization of relay-precoders and decoders with partial channel side information in cooperative networks [J]. IEEE J. Sel. Areas Commun., 2007, 25(2): 447-458.
    [42] Tseng F S, Wu W R, Wu J Y. Joint source/relay precoder design in nonregenerative cooperative systems using an MMSE criterion [J]. IEEE Trans. Wireless Commun., 2009, 8(10): 4928-4933.
    [43] Ding Z, Chin W H, Leung K K. Distributed beamforming and power allocation for cooperative networks [J]. IEEE Trans. Wireless Commun., 2008, 7(5): 1817-1822.
    [44] Mudumbai R, Brown D R, Madhow U, Poor H V. Distributed transmit beamforming: challenges and recent progress [J]. IEEE Commun. Mag., 2009, 47(2): 102-110.
    [45] Zhao Q, Li H. Performance of differential modulation with wireless relays in Rayleigh fading channels [J]. IEEE Commun. Lett., 2005, 9(4): 343-345.
    [46] Tarasak P, Minn H, Bhargava V K. Differential modulation for two-user cooperative diversity systems [J]. IEEE J. Sel. Areas Commun., 2005, 23(9): 1891-1900.
    [47] Maham B, Lahouti F. Cooperative communication using distributed differential space-time codes [C]// Proc. IEEE WiCOM 2006: 1-5.
    [48] Wang G, Zhang Y, Amin M. Differential distributed space-time modulation for cooperative networks [J]. IEEE Trans. Wireless Commun. 2006, 5(11): 3097-3108.
    [49] Himsoon T, Siriwongpairat W P, Su W, Liu K J R. Differential modulations for multinode cooperative cmmunications [J]. IEEE Trans. Signal Process., 2008, 56(7): 2941-2956.
    [50] Cho W, Yang L. Optimum resource alocation for relay networks with differential mdulation. IEEE Trans. Commun [J]. 2008, 56(4): 531-534.
    [51] Himsoon T, Su W, Liu K J R. Differential transmission for amplify-and-forward cooperative communications [J]. IEEE Signal Process. Lett., 2005, 12(9): 597-600.
    [52] Li H, Zhao Q. Distributed modulation for cooperative wireless communications [J]. IEEE Signal Process. Mag., 2006, 23(5): 30-36.
    [53]高洋,葛建华.一种非恒定幅度调制的差分空时协作方案[J].华中科技大学学报(自然科学版), 2009, 37(7): 22-26.
    [54] Bhatnagar M R, Hj(?)rungnes A, Song L. Amplify-and-forward cooperative communications using double-differential modulation over nakagami-m channels [C]// Proc. IEEE WCNC, 2008: 350-355.
    [55] Bhatnagar M R, Hj(?)rungnes A, Song L. Amplify based double-differential modulation for cooperative communications [C]// Proc. IEEE COMSNETS, 2009: 1-6.
    [56] Bhatnagar M R, Hj(?)rungnes A, Song L. Cooperative communications over flat fading channels with carrier offsets: a double-differential modulation approach [J]. EURASIP J. Adv. Signal Process., 2008, Article ID 531786, 11 pages.
    [57] Bhatnagar M R, Hj(?)rungnes A. Double differential modulation for decode-and-forward cooperative communications [C]// Proc. IEEE ICSPC, 2007: 45-48.
    [58] Bhatnagar M R, Hj(?)rungnes A, Song L, Bose R. Double-differential decode-and-forward cooperative communications over nakagami-m channels with carrier offsets [C]// Proc. IEEE Sarnoff Symp., 2008: 1-5.
    [59] Li X. Space-time coded multi-transmission among distributed transmitters without perfect synchronization [J]. IEEE Signal Process. Lett., 2004, 11(12): 948-951.
    [60] Shang Y, Xia X G. Shift-full-rank matrices and applications in space-time trellis codes for relay networks with asynchronous cooperative diversity [J]. IEEE Trans. Inform. Theory, 2006, 52(7): 3153-3167.
    [61] Li Y, Xia X G. A family of distributed space-time trellis codes with asynchronous cooperative diversity [J]. IEEE Trans. Commun., 2007, 55(4): 790-800.
    [62] Damen M O, Hammons A R. Delay-tolerant distributed TAST codes for cooperative diversity [J]. IEEE Trans. Inform. Theory, 2007, 53(10): 3755-3773.
    [63] Shang Y, Xia X G. Space-time trellis codes with asynchronous full diversity up to fractional symbol delays [J]. IEEE Trans. Wireless Commun., 2008, 7(7): 2473-2479.
    [64] Papadopoulos H, Sundberg C E W. Space-time codes for MIMO systems with non-collocatedtransmit antennas [J]. IEEE J. Sel. Areas Commun., 2008, 26(6): 927-937.
    [65] Lu H F. Constructions of DMT optimal vector codes for asynchronous cooperative networks using decode-and-forward porotocols [J]. IEEE Trans. Wireless Commun., 2010, 9(7): 2392-2400.
    [66] Li Z, Xia X G. A Simple Alamouti space-time transmission scheme for asynchronous cooperative systems [J]. IEEE Signal Process. Lett., 2007, 14(11): 804-807.
    [67] Rajan G S, Rajan B S. OFDM based distributed space time coding for asynchronous relay networks [C]// Proc. IEEE ICC, 2008: 1118-1122.
    [68] Lu H. Diversity-multiplexing tradeoff optimal codes for OFDM-based asynchronous cooperative networks [C]// Proc. IEEE ISIT, 2008: 1701-1705.
    [69] Torbatian M, Damen M O. DMT analysis of asynchronous OFDM decode-and-forward cooperative networks [C]// Proc. IEEE GLOBECOM, 2009: 1-6.
    [70] Li Z, Xia X G, Lee M H. A simple orthogonal space-time coding scheme for asynchronous cooperative systems for frequency selective fading channels [J]. IEEE Trans. Commun., 2010, 58(8): 2219-2224.
    [71] Wang H, Xia X G, Yin Q. A distributed space-frequency coding for cooperative communication systems with multiple carrier frequency offsets [C]// Proc. IEEE GLOBECOM 2008: 1-5.
    [72] Wang H, Xia X G, Yin Q. Distributed space-frequency codes for cooperative communication systems with multiple carrier frequency offsets [J]. IEEE Trans. Wireless Commun., 2009, 8(2): 1045-1055.
    [73] Tian F, Ching P C, Xia X G. A simple ICI mitigation method for a space-frequency coded cooperative communication system with multiple CFOS [C]// Proc. IEEE ICASSP, 2008: 3253-3256.
    [74] Tian F, Xia X G, Ching P C, Ma W K. Signal detection in a space-frequency coded cooperative communication system with multiple carrier frequency offsets by exploiting specific properties of the code structure [J]. IEEE Trans. Veh. Technol., 2009, 58(7): 3396-3409.
    [75] H?st-Madsen A, Zhang J. Capacity bounds and power allocation in wireless relay channel [J]. IEEE Trans. on Inform. Theory, 2005, 51(6): 2020-2040.
    [76] Serbetli S, Yener A. Power allocation strategies for relay assisted communications [C]// WICAT Workshop on Cooperative Communications, 2005.
    [77] Zhang Q, Zhang J, Shao C, Wang Y, Zhang P, Hu R. Power allocation for regenerative relay channel with Rayleigh fading [C]// Proc. IEEE VTC 2004-Spring, 2004: 1167-1171.
    [78] Zhang J, Zhang Q, Shao C, Wang Y, Zhang P, Zhang Z. Adaptive optimal transmit powerallocation for two-hop non-regenerative wireless relaying system [C]// Proc. IEEE VTC 2004-Spring, 2004: 1213-1217.
    [79] Liang Y, Veeravalli V V. Resource allocation for wireless relay channels [C]// Proc. IEEE ACSSC, 2004: 1902-1906.
    [80] Maric I, Yates R D. Bandwidth and power allocation for cooperative strategies in Gaussian relay networks [C]// Proc. IEEE ACSSC, 2004: 1907-1911.
    [81] Luo J, Blum R S, Cimini L J, Greenstein L J, Haimovich A M. Decode-and-forward cooperative diversity with power allocation in wireless networks [J]. IEEE Trans. Wireless Commun., 2007, 6(3): 793-799.
    [82] Seddik K G, Sadek A K, Su W F, Liu K J R. Outage analysis and optimal power allocation for multi-node relay networks [J]. IEEE Signal Process. Lett., 2007, 14(6): pp. 377-380.
    [83] Hasna M O, Alouini M S. Optimal power allocation for relayed transmissions over Rayleigh fading channels [J]. IEEE Trans. Wireless Commun., 2004, 3(6): 1999-2004.
    [84] Zhao Y, Adve R, Lim T J. Improving amplify-and-forward relay networks: Optimal power allocation versus selection [J]. IEEE Trans. Wireless Commun., 2007, 6,(8): 3114-3123.
    [85] Annavajjala R, Cosman P C, Milstein L B. Statistical channel knowledge based optimum power allocation for Relaying protocols in the high SNR regime [J]. IEEE J. Sel. Areas Commun., 2007, 25(2): 292-305.
    [86] Su W F, Sadek A K, Liu K J R. Cooperative communication protocols in wireless networks: performance analysis and optimum power allocation [J]. Wireless Personal Commun., 2007, 44(2): 181-217.
    [87] Li J, Ge J H, Qi L J, Wang Y. BER performance analysis and optimum power allocation for a cooperative diversity system based on quadrature signaling [C]// Proc. IET ICWMMN, 2008: 276-279.
    [88] Li J, Ge J H, Qi L J, Wang Y. Cooperative transmit diversity in wireless networks: performance analysis and optimum power allocation [C]// Proc. IEEE ICCS, 2008: 1630-1634.
    [89]李靖,葛建华,王勇,祁丽娟.一种正交调制协作系统的功率分配方法[J].西安交通大学学报, 2009, 43(2): 81-85.
    [90] Yao Y, Cai X, Giannakis G B. On energy efficiency and optimum resource allocation of relay transmissions in the low-power regime [J]. IEEE Trans. Wireless Commun., 2005, 4(6): 2917-2927.
    [91] Li Y H, Vucetic B, Zhou Z D, Dohler M. Distributed adaptive power allocation for wireless relay networks [J]. IEEE Trans. Wireless Commun., 2007, 6(3): 948-958.
    [92] Yang N, Tian H, Chen S S, and Zhang P. An adaptive frame resource allocation strategy forTDMA-based cooperative transmission [J]. IEEE Commun. Lett., 2007, 11(5): 417-419.
    [93] Larsson E G, Cao Y. Collaborative transmit diversity with adaptive radio resource and power allocation [J]. IEEE Commun. Lett., 2005, 9(6): 511-513.
    [94] Gui B, Cimini L J. Bit Loading Algorithms for Cooperative OFDM Systems [J]. EURASIP J. Wireless Commun. and Networking, 2008, Article ID 476797, 9 pages.
    [95] Ma Y, Yi N, Tafazolli R. Bit and power loading for OFDM-based three-node relaying communications [J]. IEEE Trans. Signal Process., 2008, 56(7): 3236-3247.
    [96] Li G, Liu H. Resource allocation for OFDMA relay networks with fairness constraints [J]. IEEE J. Sel. Areas Commun., 2006, 24(11): 2061-2069.
    [97] Ng T C Y, Wei Y. Joint optimization of relay strategies and resource allocationsin cooperative cellular networks [J]. IEEE J. Sel. Areas Commun., 2007, 25(2): 328-339.
    [98] Bae C S, Cho D H. Fairness-aware adaptive resource allocation scheme in multihop OFDMA systems [J]. IEEE Commun. Lett., 2007, 11(2): 134-136.
    [99] Dohler M, Gkelias A, Aghvami H. A resource allocation strategy for distributed MIMO multi-hop communication systems [J]. IEEE Commun. Lett., 2004, 8(2): 99-101.
    [100] Yu G D, Zhang Z Y, Chen Y, Chen S, Qiu P L.Power allocation for non-regenerative OFDM relaying channels [C]// Proc. IEEE Wicom, 2005: 185-188.
    [101] Hammerstrom I, Wittneben A. On the optimal power allocation for nonregenerative OFDM relay links [C]// Proc. IEEE ICC, 2006: 4463-4468.
    [102] Ibrahim A S, Sadek A K, Su W F, Liu K J Ray. Cooperative communications with relay-selection: when to cooperate and whom to cooperative with? [J]. IEEE Trans. Wireless Commun., 2008, 7(7): 2814-2827.
    [103] Bletsas A, Khisti A, Reed D P, Lippman A. A simple cooperative diversity method based on network path selection [J]. IEEE J. Select. Areas Commun., 2006, 24(3): 659-672.
    [104] Bletsas A, Shin H, Win M Z. Cooperative communications with outage-optimal opportunistic relaying [J]. IEEE Trans. Wireless Commun., 2007, 6(9): 3450-3460.
    [105] Beres E, Adve R. Selection cooperation in multi-source cooperative networks [J]. IEEE Trans. Wireless Commun., 2008, 7(1): 118-127.
    [106] Zhou Z, Zhou S, Cui J H, and Cui S. Energy-efficient cooperative communication based on power control and selective single-relay in wireless sensor networks [J]. IEEE Trans. Wireless Commun., 2008, 7 (8): 3066-3078.
    [107] Madan R, Mehta N, Molisch A, Zhang J. Energy-efficient cooperative relaying over fading channels with simple relay selection [J]. IEEE Trans. Wireless Commun., 2008, 7(8): 3013-3025.
    [108] Xu F, Lau F C M, Zhou Q F, Yue D W. Outage performance of cooperative communicationsystems using opportunistic relaying and selection combining receiver [J]. IEEE Signal Process. Lett., 2009, 16(2): 113-116.
    [109] Nosratinia A, Hunter T E. Grouping and partner selection in cooperative wireless networks [J]. IEEE J. Sel. Areas Commun., 2007, 25(2): 369-378.
    [110] Lo K, Vishwanath S, Heath R W. Relay subset selection in wireless networks using partial decode-and-forward transmission [J]. IEEE Trans. Veh. Technol., 2009, 58(2): 692-704.
    [111] Ng T C Y, Yu W. Joint optimization of relay strategies and resource allocations in cooperative cellular networks [J]. IEEE J. Sel. Areas Commun., 2007, 25(2): 328-339.
    [112] Simic L, Berber S M, Sowerby K W. Partner Choice and Power Allocation for Energy Efficient Cooperation in Wireless Sensor Networks [C]// Proc. IEEE ICC, 2008: 4255-4260.
    [113] Le L, Hossain E. Cross-layer optimization frameworks for multihop wireless networks using cooperative diversity [J]. IEEE Trans. Wireless Commun., 2008, 7(7): 2592-2602.
    [114] Krikidis I. Distributed truncated ARQ protocol for cooperative diversity networks [J]. IET Commun., 2007, 1(6): 1212-1217.
    [115] Dai L, Letaief K B. Cross-layer design for combining cooperative diversity with truncated ARQ in ad-hoc wireless networks [C]// Proc. IEEE GLOBECOM, 2005: 3175-3179.
    [116] Valenti M C, Zhao B. Hybrid-ARQ based intra-cluster geographic relaying [C]// Proc. IEEE MILCOM, 2004: 805-811.
    [117] Zhao B, Valenti M C. Practical relay networks: a generalization of hybrid-ARQ [J]. IEEE J. Sel. Areas Commun., 2005, 23(1): 7-18.
    [118] Yuan Y, He Z, Chen M. Virtual MIMO-based cross-layer design for wireless sensor networks [J]. IEEE Trans. Veh. Technol., 2006, 55(3): 856-864.
    [119] Dianati M, Ling X, Naik K, Shen X. A node-cooperative ARQ scheme for wireless ad hoc networks [J]. IEEE Trans. Veh. Technol., 2006, 55(3): 1032-1044.
    [120] Shankar N S, Chou C T, Ghosh M. Cooperative communication MAC (CMAC)-a new MAC protocol for next generation wireless LANs [C]// Proc. IEEE WIRLES, 2005: 1-6.
    [121] Azgin A, Altunbasak Y, AlRegib G. Cooperative MAC and routing protocols for wireless Ad-hoc networks [C]// Proc. IEEE GlOBECOM, 2005: 2854-2859.
    [122] Cerutti I, Fumagalli A, Gupta P. Delay model of single-relay cooperative ARQ protocols in slotted radio networks with non-instantaneous feedback and poisson frame arrives [C]// Proc. IEEE INFOCOM, 2007: 2276-2280.
    [123] Liu P, Tao Z, Lin Z, Erkip E, Panwar S. Cooperative wireless communications: a cross-layer approach [J]. IEEE Wireless Commun., 2006, 13(4): 84-92.
    [124] Khandani A E, Abounadi J, Modiano E, Zheng L. Cooperative routing in wireless networks [C]// Proc. Allerton Conf. on Commun., Control, and Compu., 2003: 1270-1279.
    [125] Yang Z G, Liu J H, Host-Madsen A. Cooperative routing and power allocation in ad-hoc networks [C]// Proc. IEEE GlOBECOM, 2005: 2730-2734.
    [126] Buchegger S, Boudec J Y L. Cooperative routing in mobile ad hoc networks: current efforts against malice and selfishness [C]// Proc. Mobile Internet Workshop, 2002.
    [127] Xie F, Tian H, Zhang P, Yang N. Cooperative routing strategies in ad hoc networks [C]// Proc. IEEE VTC 2005-Spring, 2005: 2509-2512.
    [128] Li F, Wu K, Lippman A. Energy-efficient cooperative muting in multi-hop wireless ad hoc networks [C]// Proc. IEEE IPCCC, 2006: 215-222.
    [129] Ibrahim A S, Han Z, Liu K J R. Distributed energy-efficient cooperative routing in wireless networks [C]// Proc. IEEE GLOBECOM, 2007: 4413-4418.
    [130] Wang B, Zhan J, H(?)st M A. On the capacity of MIMO relay channels [J]. IEEE Trans. Inform. Theory, 2005, 51(1): 29-43.
    [131] B(o|¨)lcskei H, Nabar R U, Oyman (O|¨), Paulmj A J. Capacity scaling laws in MLMO relay networks [J]. IEEE Trans. Wireless Commun., 2006, 5(6): 1433-1444.
    [132] Tang X, Hua Y. Optimal design of non-regenerative MIMO wireless relays [J]. IEEE Trans. Wireless Commun., 2007, 6(4): 1398-1407.
    [133] Fan Y, Thompson J. MIMO Configurations for Relay Channels: Theory and Practice [J]. IEEE Trans. Wireless Commun., 2007, 6(5): 1774-1786.
    [134] Song Y, Shin H, Hong E K. MIMO cooperative diversity with scalar-gain amplify-and- forward relaying [J]. IEEE Trans. Commun., 2009, 57(7): 1932-1938.
    [135] Muhaidat H, Uysal M. Cooperative diversity with multiple-antenna nodes in fading relay channels [J]. IEEE Trans. Wireless Commun., 2008, 7(8): 3036-3046.
    [136] Chalise B K, Vandendorpe L. Outage probability analysis of a MIMO relay channel with orthogonal space-time block codes [J]. IEEE Commun. Lett., 2008, 12(4), 280-282.
    [137] Yang Q, Kwak K S, Fu F. Outage performance of cooperative relay using STBC systems. Wireless Personal Commun., 2009, 52(4): 789-797.
    [138] Chen S, Wang W, Zhang X, Zhang X, Peng M, Li Y. Ergodic and outage capacity analysis of amplify-and-forward MIMO relay with OSTBCs. Proc. IEEE WCNC, 2010: 1-6.
    [139] Abdaoui A, Ikki S S, Ahmed M H, Chatelet E. On the performance analysis of a MIMO-relaying scheme with space-time block codes [J]. IEEE Trans. Veh. Technol., 2010, 59(7): 3604-3609.
    [140] Chen J, Yu X, Kuo C C J. V-BLAST receiver for MIMO relay networks with imperfect CSI [C]// Proc. IEEE GLOBECOM, 2007: 571-575.
    [141] Chen J, Yu X, Kuo C C J. V-BLAST receiver and performance in MIMO relay networks with imperfect CSI [C]// Proc. ICC 2008: 4436-4440.
    [142] Khoshnevis B, Yu W, Adve R. Grassmannian beamforming for MIMO amplify-and-forward relaying [J]. IEEE J. Sel. Areas Commun.2008, 26(8): 1397-1407.
    [143] Chen X, Song S H, Letaief K B. Transmit and cooperative beamforming in multi-relay systems [C]// Proc. IEEE ICC, 2010: 1-5.
    [144] Rong Y, Gao F. Optimal beamforming for non-regenerative MIMO relays with direct link [J]. IEEE Commun. Lett., 2009, 13(12): 926-928.
    [145] Rong Y. Optimal joint source and relay beamforming for MIMO relays with direct link [J]. IEEE Commun. Lett., 2010,14(5): 390-392.
    [146] Havary-Nassab V, Shahbazpanahi S, Grami A. Joint Receive-transmit beamforming for multi-antenna relaying schemes [J]. IEEE Trans. on Signal Process., 2010, 58(9): 4966-4972.
    [147] Peters S W, Heath R W. Nonregenerative MIMO relaying with optimal transmit antenna selection [J]. IEEE Signal Process. Lett., 2008, 15, pp. 421-424.
    [148] Cao L, Zhang X, Wang Y, Yang D. Transmit antenna selection strategy in amplify-and- forward MIMO relaying [C]// Proc. IEEE WCNC, 2009: 1-4.
    [149] Chen S, Wang W, Zhang X, Zhao D. Performance of amplify-and-forward MIMO relay channels with transmit antenna selection and maximal-ratio [C]// Proc. IEEE WCNC, 2009: 1-6.
    [150] Cao L, Yang H, Zhang X, Yang D. Diversity order of decode-and-forward MIMO relaying with transmit antenna selection [J]. J. China Univ. Posts Telecommun., 2009, 16(5): 1-7.
    [151] Lee I H, Kim D. Outage probability of multi-hop MIMO relaying with transmit antenna selection and ideal relay gain over Rayleigh fading channels [J]. IEEE Trans. Commun., 2009, 57(2): 357-360.
    [152] Gao Y, Ge J H. Outage probability analysis of transmit antenna selection in amplify-and- forward MIMO relaying over Nakagami-m fading channels [J]. IET Electronics Lett., 2010, 46(15): 1090-1092.
    [153] Jakes W C. Microwave mobile communications [M]. Piscataway: IEEE Press, 1993.
    [154] Gibson J D. The mobile communications handbook [M]. Piscataway: IEEE Press, 1999.
    [155] Pottie G J. System design choices in personal communications [M]. IEEE Personal Commun. Mag., 1995, 2(5): 50-67.
    [156] Sundberg C E W, Seshadri N. Digital cellular systems for North America [C]// Proc. IEEE GLOBECOM, 1990: 533-537.
    [157] Balaban P, Salz J. Dual diversity combining and equalization in digital cellular mobile radio [J]. IEEE Trans. Veh. Technol., 1994, 40(2): 342-54.
    [158] Winters J, Salz J, Gitlin R D. The impact of antenna diversity on the capacity of wireless communication systems [J]. IEEE Trans. Commun., 1994, 42(2/3/4): 1740-1751.
    [159] Telatar E. Capacity of Multi-antenna Gaussian channels [J]. Euro. Trans. Telecommun., 1999, 10(6): 585–595.
    [160] Foschini G J, Gans M J. On limits of wireless communications in a fading enviroment when using multiple antennas [J]. Wireless Personal Commun., 1998, 6(3): 311-335.
    [161] Foschini G J, Mueller R K. The capacity of linear channels with additive Gaussian noise [J]. Bell Syst. Tech. J., 1970: 81-94.
    [162] Vucetic B, Yuan J. Space-time coding [M], Chichester, UK: Wiley, 2003.
    [163] Lee W C Y. Mobile communications: theory and applications [M]. New York: McGrow-Hill, 1982.
    [164] Foschini G J, Gans M J. On Limits of Wireless Communications in a Fading Environment When Using Multiple Antennas [J]. Wireless Personal Commun., 1998, 6(3): 311-335.
    [165] Alamouti S M. A simple transmit diversity technique for wireless communications [J]. IEEE J. Select. Areas Commun., 1998, 16(10): 1451–1458.
    [166] Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: performance criterion and code construction [J]. IEEE Trans. Inform. Theory, 1998, 44(2): 744-765.
    [167] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block codes from orthogonal designs [J]. IEEE Trans. Inform. Theory, 1999, 45(5): 1456-1467.
    [168] Tarokh V, Jafarkhani H, Calderbank A R. Space-time block coding for wireless communications: performance results [J]. IEEE J. Select. Areas Commun., 1999, 17(3): 451-460.
    [169] Jafarkhani H. A quasi-orthogonal space-time block code [C]// Proc. IEEE WCNC, 2000: 42-45.
    [170] Jafarkhani H. A quasi-orthogonal space-time block code [J]. IEEE Trans. Commun., 2001, 49(1): 1-4.
    [171] Sharma N. and Papadias, C. B. Improved quasi-orthogonal codes through constellation rotation [J]. IEEE Trans. Communications, 2003, 51(3): 332-335.
    [172] Su W, Xia X. Signal constellations for quasi-orthogonal space-time block codes with full diversity [J]. IEEE Trans. Inform. Theory, 2004, 50(10): 2331-2347.
    [173] Yuen C, Guan Y, Tjhung T. Quasi-orthogonal STBC with minimum decoding complexity [J]. IEEE Trans. Wireless Commun., 2005, 4(5), 2089-2094.
    [174] Azzam L, Ayanoglu E. Maximum likelihood detection of quasi-orthogonal space-time block codes analysis and simplification [C]// Proc. IEEE ICC, 2008: 3948-3954.
    [175] Wittneben A. A new bandwidth efficient transmit antenna modulation diversity scheme for linear digital modulation [C]// Proc. IEEE ICC, 1993: 1630–1634.
    [176] Foschini G. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas [J]. Bell Labs Tech. J., Autumn, 1996: 41-59.
    [177] Tarokh V and Jafarkhani H. A differential detection scheme for transmit diversity [J]. IEEE J. Select. Areas Commun., 2000, 18 (7): 1169-1174.
    [178] Jafarkhani H, Tarokh V. Multiple transmit antenna differential detection from generalized orthogonal designs [J]. IEEE Trans. Inform. Theory, 2001, 47(6): 2626-2631.
    [179] Hughes B L. Differential space-time modulation [J]. IEEE Trans. Inform. Theory, 2000, 46(7): 2567-2578.
    [180] Hochwald B M, Marzetta T L. Unitary space-time modulation for multipleantenna communications in Rayleigh flat fading [J]. IEEE Trans. Inform. Theory, 2000, 46(2): 543-564.
    [181] Zhou S, Giannakis G B. Optimal transmitter eigen-beamforming and space-time block coding based on channel mean feedback [J]. IEEE Trans. Signal Process., 2002, 50 (10), 2599-2613.
    [182] Jongren G, Skoglund M. Quantized feedback information in orthogonal space-time block coding [J]. IEEE Trans. Inform. Theory, 2004, 50(10): 2473- 2486.
    [183] Jongren G, Skoglund M, Ottersten B. Combining beamforming and orthogonal space-time block coding [J]. IEEE Trans. Inform. Theory, 2002, 48(3): 611-627.
    [184] Liu L, Jafarkhani H. Application of quasi-orthogonal space-time block codes in beamforming [J]. IEEE Trans. Signal Process., 2005, 53(1): 54- 63.
    [185] Molisch A F, Win M Z. MIMO systems with antenna selection [J]. IEEE Micro. Mag., 2004, 5(1): 46- 56.
    [186] Jensen M A, Wallace J W. Antenna selection for MIMO systems based on information theoretic considerations [C]// Proc. IEEE Antennas and Propagation Society Int. Symp., 2003: 515-518.
    [187] Gorokhov A. Antenna selection algorithms for mea transmission systems [C]// Proc. IEEE ICASSP, 2002: 2857-2860.
    [188] Gore D, Gorokhov A, Paulraj A. Joint MMSE versus VBLAST and antenna selection [C]// Proc. IEEE ACSSC, 2002: 505-509.
    [189] Gharavi-Alkhansari M, Gershman A B. Fast antenna subset selection in wireless mimo systems [C]// Proc. IEEE ICASSP, 2003: 57-60.
    [190] Proakis J G. Digital Communications, 4th ed [M]. New York: McGraw-Hill, 1995.
    [191] Zheng Y R, Xiao C. Improved models for the generation of multiple uncorrelated Rayleigh fading waveforms [J]. IEEE Commun. Lett., 2002, 6(6): 256-258.
    [192] Simon M K, Alouini M S. Digital communication over generalized fading channels: Aunified approach to performance Analysis [M]. New York: Wiley, 2000.
    [193]马振华,运筹学与最优化理论卷[M].北京:清华大学出版社, 1998.
    [194] Zhao Y, Adve R, and Lim T J. Improving amplify-and-forward relay networks: Optimal power allocation versus selection [J]. IEEE Trans. Wireless Commun., 2007, 6(8): 3114-3123.
    [195] Benjillali M, Szczecinski L. A simple detect-and-forward scheme in fading channels [J]. IEEE Commun. Lett., 2009, 13(5): 309-311.
    [196] Beres E, Adve R. On selection cooperation in distributed networks [C]// Proc. CISS, 2006: 1056-1061.
    [197] Y Li, Vucetic B, Chen Z, Yuan J. An improved relay selection scheme with hybrid relaying protocols [C]// Proc. IEEE GLOBECOM, 2007: 3704-3708.
    [198] Zhu Y, Kam P Y, Xin Y. Differential modulation for decode-and-forward multiple relay systems [J]. IEEE Trans. Commun., 2010, 58(1): 189-199.
    [199] Yuan J, Y Li, Chu L. Differential modulation and relay selection with detect-and-forward cooperative relaying [J]. IEEE Trans. Veh. Technol., 2010, 59(1): 261-268.
    [200] Wang T, Cano A, Giannakis G B, Laneman N. High-performance cooperative demodulation with decode-and-forward relays [J]. IEEE Trans. Commun., 2007, 55(7): 1427-1438.
    [201] David H A. Order Statistics [M]. Hoboken, NJ: Wiley, 1970.
    [202] Jing Y, Hassibi B. Distributed space-time coding in wireless relay networks [J]. IEEE Trans. Wireless Commun., 2006, 5(12): 3524-3536.
    [203] Jing Y, Jafarkhani H. Using orthogonal and quasi-orthogonal designs in wireless relay networks [J]. IEEE Trans. Inform. Theory, 2007, 53(11): 4106-4118.
    [204] Maham B, Hj(?)rungnes A, Abreu G. Distributed GABBA space-time codes in amplify-and- forward relay networks [J]. IEEE Trans. Wireless Commun., 2009, 8(4), 2036-2045.
    [205] Telatar E. Capacity of multiantenna gaussian channels. Euro. Trans. Telecommun., 1999, 10(6), 585-596.
    [206] Abdaoui A, Ikki S S, Ahmed M H, Chatelet E. On the performance analysis of a MIMO-relaying scheme with space-time block codes [J]. IEEE Trans. Veh. Technol., 2010, 59(7): 3604-3609.
    [207] Yang L, Zhang Q T. Performance analysis of MIMO relay wireless networks with orthogonal STBC [J]. IEEE Trans. Veh. Technol., 2010, 59 (7): 3668-3674.
    [208] Dharmawansa P, McKay M R, Mallik R K. Analytical performance of amplify-and-forward MIMO relaying with orthogonal space-time block codes [J]. IEEE Trans. Commun., 2010, 58(7): 2147-2158.
    [209] Jafarkhani H. Space-time coding: theory and practice [M]. Cambridge, U.K.: CambridgeUniv. Press, 2005.
    [210] Lee H, Cho J, Kim J, Lee I. An efficient decoding algorithm for STBC with multi-dimensional rotated constellations [C]// Proc. IEEE ICC. 2006: 5558-5563.
    [211] Goldsmith A. Wireless communications [M], Cambridge, U.K.: Cambridge Univ. Press, 2004.
    [212] Lei X, Fan P. Comment on outage probability analysis of a MIMO relay channel with orthogonal space-time block codes [J]. IEEE Commun. Lett., 2008, 12(10): 720-721.
    [213] Yuksel M, Erkip E. Multiple-antenna cooperative wireless systems: a diversity-multiplexing tradeoff perspective [J]. IEEE Trans. Inform. Theory, 2007, 53(10): 3371-3393.
    [214] Fan Y, Thompson J. MIMO configurations for relay channels: theory and practice [J]. IEEE Trans. Wireless Commun., 2007, 6(5): 1774?1786.
    [215] Munoz-Medina O, Vidal J, Agustin A. Linear transceiver design in nonregenerative relays with channel state information [J]. IEEE Trans. Signal Process., 2007, 55(6): 2593-2604.
    [216] Molish A F, Win M Z. Choi Y S, Winters J H. Capacity of MIMO systems with antenna selection [J]. IEEE Trans. Wireless Commun., 2005, 4(4): 1759-1772.
    [217] Chen Z, Chi Z, Li Y, Vucetic B. Error performance of maximal ratio combining with transmit antenna selection in flat Nakagami-m fading channels [J]. IEEE Trans. Wireless Commun., 2009, 8(1): 424-431.
    [218] Gradshteyn I S, Ryzhik I M. Table of Integrals, Series and Products, 7th ed [M]. San Diego: Academic Press, 2007.
    [219] Ikki S, Ahmed M H. Performance analysis of cooperative diversity wireless networks over Nakagami-m fading channel [J]. IEEE Commun. Lett., 2007, 11, (4): 334-336.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700