MIMO-OFDM系统中差分空时编码技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于多天线阵列的多输入多输出(MIMO)和空时编码(STC)技术,充分利用无线信道特性,可以在不增加发送功率和频谱的条件下提高整个系统的容量和通信质量,已成为当前及未来无线通信关键技术的研究热点。另一方面,在宽带正交频分复用(OFDM)系统中, MIMO空时编码和频率分集技术的结合可以有效对抗频率选择性多径衰落,实现宽带系统中数据的鲁棒传输。然而,由于OFDM子载波数目的大量增加以及信道衰落条件的快速变化,进行准确信道估计的代价太大,很难采用相干检测完成译码。差分空时编码可以在接收端不知道信道状态信息的条件下获取系统的分集增益。但在现有的多种差分空时编码方案中,大量的冗余符号的存在,限制了传输码率的提高。本文从提高差分空时MIMO-OFDM系统的误码性能和容量两方面出发,研究了目前已有的各种差分空时频编码算法,比较各种方案的优缺点。在此基础上,提出了一种基于循环延迟分集的差分空时频编码新方法,以及一种适用于时间选择性快衰落信道的高码率高性能差分空时频编码结构。
     本文首先简要介绍了空时编码技术产生的背景、历史与发展现状,分析了准静态信道衰落条件下空时编码的设计准则,并在此基础上研究、
Multiple-input multiple-output(MIMO) based on multiple antenna array and space time coding(STC) techniques can take full advantage of the trait of wireless channel to improve the system capacity and quality of communications, without increasing the transmitting power and frequency usage, therefore, they has become one of the key technology hotpots of current and future wireless communications. On the other hand, in the broadband orthogonal frequency division multiplexing (OFDM) systems, combining MIMO space time coding and frequency diversity technique can effectively confront frequency-selective multi-path fading, thus realize robust data transmission in broadband channel. Nevertheless, due to the large increase of OFDM sub-carrier numbers and rapid change of channel fading status, the cost of channel estimation becomes so big that it is difficult to use coherent detection for decoding. Differential space time coding can obtain the diversity gain when channel state information is unknown at the receiver. However, among the existing
引文
[1] Gesbert D., Shafi M., Da-shan Shiu, etc., “From theory to practice: an overview of MIMO space-time coded wireless systems”, Selected Areas in Communications, IEEE Journal on Volume 21, Issue 3, April 2003, pp.281 – 302
    [2] Foschini G., “Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas”, Bell Labs Technical Journal, Autumn 1996, pp.41–59.
    [3] Tarokh V., Seshadri N., Calderbank A.R., “Space-time codes for high data rate wireless communication: performance criterion and code construction”, Information Theory, IEEE Transactions on ,Volume 44 , Issue 2 , March 1998, pp.744 – 765
    [4] Alamouti S. M, “A simple transmit diversity technique for wireless communications”, IEEE Journal Select. Areas Commun., vol.16, no.18, pp.1451-1458, Oct. 1998.
    [5] Tarokh V., Jafarkhani H., and Calderbank A., “Space-time block codes from orthogonal designs,” IEEE Transactions on Information Theory, vol. 45, pp. 1456–1467, June 1999.
    [6] Wang H. and Xia X. G., “Upper bounds of rates of space-time block codes from complex orthogonal designs,” in Proc. IEEE Int. Symp. Inform Theory, Lausanne, Switzerland, June 30–July 5, 2002, pp.303.
    [7] Vucetic Branka, Yuan Jinhong 著,王晓海等译,《空时编码技术》机械工业出版社
    [8] Telatar I. E., “Capacity of multiantenna Gaussian channels,” Eur. Trans.Commun., vol. 10, no. 6, pp. 585–595, 1999.
    [9] Foschini G. J. and Gans M. J., “On limits of wireless communications in a fading environment when using multiple antennas”, Wireless Personal Communications, vol. 6, pp. 311-335, 1998
    [10] Proakis J. G., Digital Communications, 4th Ed., McGraw-Hill, New York, 2001
    [11] Naguid A. F. and Calderbank R., “Space-time coding and signal processing for high data rate wireless communications”, IEEE Signal Processing Magazine, vol. 47, no.3, pp. 76-92, Mar. 2000
    [12] Simon M. K. and Alouini M.-S., Digital Communication over Fading Channels: A Unified Approach to Performance Analysis, John Wiley&Sons, 2000
    [13] Ma X., Giannakis G. B., “Full-Diversity Full-Rate complex-field space-time coding”, IEEE Transctions on Signal processing, vol.51, no.11, Nov. 2003.
    [14] 苏育才,姜翠波,张跃辉,《矩阵理论》,2003
    [15] Wolniansky P. W., Foschini G. J., etc, “V-BLAST: An architecture for realizing very high data rates over the rich-scattering wireless channel,” Proc. IEEE ISSSE-1998, Pisa, Italy, 30 September 1998
    [16] van Nee R., van Zelst A., Awater G., “Maximum likelihood decoding in a space division multiplexing system”, Vehicular Technology Conference Proceedings, 2000. IEEE 51st, Volume 1, 15-18, May 2000, pp.6-10
    [17] Tirkkonen O. et al., “Minimal nonorthogonal rate 1 space-time block code for 3+ Tx antennas,” in Proc. IEEE 6th ISSSTA. Newark, NJ, Sept. 6–8, 2000, pp. 429–432
    [18] Zheng F.-C. and Burr A. G., “A robust nonorthogonal space-time block code for four transmit antennas,” in Proc. IEEE Vehicular Technology Conf. 2003-S, Korea, pp. 301–305
    [19] Jafarkhani H., “A quasi-orthogonal space-time block code,” IEEE Trans. Commun., vol. 49, pp. 1–4, Jan. 2001
    [20] Zheng, F.-C. and Burr, A.G., “Space-time block coding for four transmit antennas over time-selective fading channels: orthogonal or non-orthogonal design? ”, Vehicular Technology Conference Proceedings, 2003. IEEE 58st , Volume 1, 6-9 Oct. 2003, pp.513-517
    [21] Tarokh V. and Jafarkhani H., “A differential detection scheme for transmit diversity”, IEEE Journal on Selected Areas in Communications, vol.18, no. 7, pp. 1169–1174, July 2000.
    [22] Jafarkani H. and Tarokh V., “Multiple Transmit Antenna Differental Detection from Generalized Orthogonal Designs”, IEEE Trans on Information Theory, vol.47, no.9, pp.2626-2630, 2001.
    [23] Huges B. L., “Differential space-time modulation”, IEEE Transactions on Information Theory, vol.46, no.7, pp.2567-2578, 2000.
    [24] Hochwald B.M. and Sweldens W., “Differential unitary space-time modulation”, IEEE Trans. Communi., vol.48, no.12, Dec. 2000.
    [25] Hochwald B M, Marzetta T L. “Unitary Space-time Modulation for Multi-Antenna Communication in Rayleigh Flat Fading[J]”,IEEE Trans on Information Theory,1999,46(3), pp.543-564
    [26] Tarokh V., Naguib A., Seshadri N., et al., “Space-time codes for high data rate wireless communication: performance criteria in the presence of channel estimation errors, mobility, and multiple paths”, IEEE Trans. Communi., vol.47, no.2, pp.199-207, Feb. 1999.
    [27] Liu Z., Xin Y. and Giannakis G. B., “Space-time-frequency coded OFDM over frequency-selective fading channels”, IEEE Transctions on Signal processing, vol.50, no.10, pp.2465–2476, Oct. 2002.
    [28] Diggavi S., Al-Dhahir N., Stamoulis A., et al., “Differential space-time coding for frequency-selective channels”, IEEE Communications Letters, vol.6, pp.253–255, June 2002.
    [29] Su W., Liu K.J.R., “Differential space-frequency modulation for MIMO-OFDM systems via a "smooth" logical channel”, in Proc. IEEE GLOBECOM '04, 2004, vol.2, pp.913 – 917.
    [30] Bauch G.., “Multistream differential modulation for cyclic delay diversity in OFDM”, in Communications, 2004 IEEE International Conference, June 2004, 6, pp.3207 – 3211.
    [31] Bauch G., “Differential Space-time-frequency Transmit diversity in OFDM”, in Proc. of International Symposium on Wireless Personal Multimedia Communications (WPMC), Yokosuka, Japan, October 19-22, 2003.
    [32] B?lcskei H. and Borgmann M., “Code design for non-coherent MIMO–OFDM systems,” in Proc. Allerton Conf. Communication, Control, and Computing, Monticello, IL, Oct. 2002, pp. 237–246.
    [33] Wang J. and Yao K., “Differential unitary space–time–frequency coding for MIMO OFDM systems,” in Proc. 36th Asilomar Conf. Signals, Systems and Computers, Pacific Grove, CA, Nov. 2002, pp. 1867–1871.
    [34] Ma Q., Tepedelenlio?glu C., and Liu Z., “Differential space–time–frequency coded OFDM with maximum diversity,” in Proc. 37th Conf. Information Sciences and Systems, Baltimore, MD, Mar. 12–14, 2003.
    [35] Li H., “Differential space–time modulation with full spatio-spectral diversity and arbitrary number of transmit antennas in ISI channels,” in Proc. IEEE Int. Conf. Acoustic, Speech, and Signal Processing, Hong Kong, China, Apr. 6–10, 2003, vol. 4, pp. IV-37–IV-40.
    [36] Ma Q., Tepedelenlio?glu C., and Liu Z., “Differential space-time-frequency coded OFDM with maximum multipath diversity”, Wireless Communications, IEEE Transactions on, Sept. 2005, Volume 4, Issue 5, pp.2232- 2243
    [37] Agrawal D., Tarokh V., Naguib A., etc., “Space-time coded OFDM high data-rate wireless communication over wideband channels,” in Proc. Veh. Technol. Conf., Ottawa, ON, Canada, May18–21, 1998, pp. 2232–2236.
    [38] B?lcskei H. and Paulraj A., “Space-frequency coded broadband OFDM systems,” in Proc. Of Wireless Commun. Networking Conf., Chicago, IL, Sept. 23–28, 2000, pp. 1–6.
    [39] B?lcskei H. and Paulraj A. J., “Space-frequency codes for broadband fading channels,” in Proc. IEEE Int. Symp. Inform. Theory,Washington, DC, June 2001.
    [40] Witrisal K, Kim Y H, Prasad R, et al. “Antenna diversity for OFDM using cyclic delays”, In Proc. SCVT-2001[A], Benelux: 2001.10, pp.13-17.
    [41] Huebner A, Schuehlein F, Bossert M, et al. “A Simple Space-Frequency Coding Scheme with Cyclic Delay Diversity for OFDM”, 5th European Personal Mobile Communications Conference, Glasgow. Scotland, 2003.4
    [42] 张红伟,罗汉文,刘兴钊. “基于循环延迟分集的空时频编码策略”, 上海交通大学学报, 2004, vol.38 no.11, pp. 1806-1809
    [43] Bauch G, Malik J. “Parameter optimization, interleaving and multiple access in OFDM with cyclic delay diversity”, IEEE Vehicular Technology Conference (VTC), 2004.
    [44] Bauch G., “Multistream differential modulation for cyclic delay diversity in OFDM”, Communications, 2004 IEEE International Conference, 2004, 6, pp.3207 – 3211
    [45] Viterbo E. and Boutros J., “A universal lattice code decoder for fading channels”, IEEE Trans. Inform. Theory, vol. 45, pp. 1639–1642, July 1999
    [46] Zhang Hongwei, Zhang Haibin, Luo Hanwen, etc. “Rate-Embedded Differential Space-Time Codes”, Vehicular Technology Conference, 2005. VTC-2005-Fall. 2005 IEEE 62nd, 28-25 Sept., 2005, vol. 1, pp. 292- 295.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700