苦瓜锌及其与钼硼不同配比的营养生理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1 苦瓜锌素营养生理
     1.1 锌对苦瓜叶片碳代谢及相关酶活性的影响
     试验结果表明:在土壤有效锌为0.45mg·kg~(-1)的低锌胁迫下,苦瓜叶片的蔗糖、可溶性糖、淀粉、Zn含量,蔗糖磷酸合成酶(SPS)、碳酸酐酶(CA)活性显著下降,而酸性转化酶(AI)、中性转化酶(NI)、淀粉酶活性显著提高。相关性统计结果表明,苦瓜叶片蔗糖、可溶性糖、淀粉、Zn含量,碳酸酐酶、淀粉酶、酸性转化酶、中性转化酶和蔗糖磷酸合成酶活性等各种生理生化指标呈显著和极显著的相关性。
     1.2 锌对苦瓜叶片多胺类化合物与活性氧代谢的影响
     结果表明:在土壤有效锌为0.45mg·kg~(-1)的低锌胁迫下,苦瓜叶片中丙二醛(MDA)含量和自动氧化速率(AOR)增加,多胺(PAs)、腐胺(Put)、亚精胺(Spd)、精胺(Spm)、抗坏血酸(ASA)的含量及超氧化物歧化酶(SOD)、过氧化物酶(POD)、过氧化氢酶(CAT)的活性都下降,因而施锌有利于苦瓜抗膜脂过氧化胁迫,延缓叶片衰老;叶片MDA含量与AOR呈极显著正相关,而与PAs、Put、ASA的含量以及SOD、POD、CAT的活性都呈显著和极显著负相关。
     1.3 锌对苦瓜叶片内源激素与氮代谢的影响
     结果表明:施锌可提高叶片吲哚乙酸(IAA)、赤霉素(GA_3)、蛋白质、核酸含量以及硝酸还原酶活性;降低色氨酸、游离氨基酸和NO_3~-含量以及RNase活性。试验结果同时表明,叶片蛋白质与核酸、硝酸还原酶呈极显著正相关,而与游离氨基酸、NO_3~-含量和RNase呈极显著负相关;色氨酸含量与IAA和GA_3含量;核酸含量与RNase活性呈极显著负相关。文后讨论了锌对IAA和氮素代谢的影响机理。
     1.4 锌对苦瓜产量和品质的影响
     试验结果表明,在土壤缺锌(有效锌0.45mg·kg~(-1))的条件下,每667m~2施用硫
    
    Stodies on 21 nc之inc and Kl心lyt月en让叭Zinc and Bomn Nu示tive Physio10gy ofBal,引旧1,ear
    酸锌2一3kg可显著提高苦瓜产量,增幅16.23%一17.18%。并可提高苦瓜vc、蛋
    白质、17种氨基酸含量,尤其是人体必需氨基酸含量,降低加3一含量,改善苦瓜
    品质。
    2苦瓜锌铝营养生理
     采用田间喷施试验、植株生理生化测定方法,研究了锌钥营养对苦瓜(株洲长
    白)产量、品质、氮和活性氧代谢的影响。结果表明:在土壤缺锌、缺铝的条件下,
    叶面喷施硫酸锌I,39·L一,配合铝酸钠1,29·L一,均可显著提高苦瓜产量,并可
    提高苦瓜蛋白质、Vc和17种氨基酸,尤其是人体必需氨基酸含量,降低N03一含
    量,改善苦瓜品质。这与锌钥提高了叶片蛋白质、核酸、多胺、腐胺、亚精胺、精
    胺、抗坏血酸、njI噪乙酸、赤霉素含量以及硝酸还原酶、超氧化物歧化酶、过氧化
    物酶、过氧化氢酶活性;降低了叶片游离氨基酸、N03一、脱落酸、丙二醛含量和氧
    自动氧化速率以及RNase活性,从而抑制膜脂过氧化有关。试验结果同时表明,苦
    瓜产量与叶片NR、PAs、Put、GA3、SOD、POD、CAT;叶片蛋白质与核酸含量;叶
    片助A含量与ABA、AOR呈极显著正相关;苦瓜产量与叶片翻A、ABA、AOR、RNase;
    叶片蛋白质与游离氨基酸和RNase;叶片核酸与RNase;叶片MDA含量与以s、Put、
    spd、SPIn、ASA、I从、眺、500、POD、CAT呈极显著负相关。文后讨论了锌铝营养
    对苦瓜产量品质和叶片氮、活性氧代谢的影响机理。
    3苦瓜锌硼营养生理
     采用田间肥料试验、植株生理生化测定方法,研究了锌硼营养对苦瓜(株洲长
    白)产量品质与叶片碳氮代谢、多胺、激素及衰老的影响。结果表明:在锌硼缺乏
    的土壤中每667扩施用硫酸锌1,Zkg配合硼砂1,Zkg均可提高苦瓜产量,并可提
    高苦瓜蛋白质、vc和17种氨基酸含量,尤其是人体必需氨基酸含量,降低N03-
    含量,改善苦瓜品质。这与锌硼提高了苦瓜叶片光合强度(P SR)、叶绿素、蔗糖、
    可溶性糖、淀粉、Zn、B、蛋白质、核酸、多胺、腐胺、亚精胺、精胺、抗坏血酸、
    
    福建农林大学博士学位论文
    苦瓜锌及其与钥硼不同配比的营养生理研究
    吼垛乙酸、赤霉素含量,以及碳酸配酶、硝酸还原酶活性、超氧化物歧化酶、过氧
    化物酶、过氧化氢酶的活性,降低游离氨基酸含量、脱落酸、丙二醛含量和RNase
    活性,从而抑制膜脂过氧化、促进植株生长有关。试验结果同时表明苦瓜产量与叶
    PSR、CA、NR、Zn、B、PAs、Put、Spd、S阳、挑、SOD、POD、CAT呈极显著正相
    CA
    与叶片玉OA、ABA含量和RNase活性呈极显著负相关。叶片Zn与叶绿素、PSR、
    ;CA与PSR、蔗糖、可溶性糖;蛋白质与核酸、NR含量;MDA与ABA含量呈极
    片关
    显著正相关,而姗A与PAs、Put、Spd、SPm、ASA、IAA、GA3、SOD、POD、CAT;蛋
    白质与FAA、RNase;核酸与RNase呈极显著负相关。文后讨论了锌硼营养对苦瓜
    碳氮代谢;多胺、内源激素代谢以及叶片老化的影响机理。
1 Zinc Nutritive Physiology of Balsam pear
    1.1 Effects of zinc on carbon metabolism and its enzymes activities in leaves of balsam pear
    The results showed that the control plants under low zinc (effective zinc content 0.45 mg-kg"1) exhibited a lower contents of sucrose, soluble sucrose ,starch and zinc, lower activities of carbonic anhydrase (CA) and sucrose phosphate synthase (SPS). However, the activities of amylase, acid invertase (AI) and neutral invertase (NI) in leaves were higher in CK than in other treatments. The statistic result showed that there was a significant correlation between physiological properties, such as sucrose, soluble sucrose , starch, zinc contents, CA, SPS, amylase, AI and NI activities in leaves of balsm pear.
    1.2 Effects of zinc levels on polyamines(PAs) and active oxygen metabolism in leaves of balsam pear
    
    
    The results showed that the control plants under low zinc (effective zinc content 0.45mg kg-1)exhibited an increasing of malondialdehyde (MDA) contents and autoxidation rate(AOR) in leaves and a decrease of polyamines (PAs), putrescine(Put), spermidine(Spd), spermine (Spm), ascorbic acid (ASA) contents , superoxide dismutase(SOD), peroxidase(POD) and catalase(CAT) activities. Application of Zn raised the ability of anti-oxidant of balsam pear leaves and postponed the senescence of plants. The results also showed that there was a very significant positive correlation between MDA and AOR, a significant and a very significant negative correlation with PAs, Put, ASA contents, SOD, POD, CAT activities.
    1.3 Effects of zinc levels on endogenous hormone and nitrogen metabolism in leaves of balsam pear
    The results showed that zinc application could increase IAA, GAs, protein, nuclear contents and NRase activity, but decrease tryptophane, nitric nitrogen (NOT), free ammonic acids contents (FAA) and RNase activity in leaves of plants. The results also showed that there was a significant positive correlation between protein contents and nuclear contents, NRase, but a significant negative correlation with NO3-, FAA and RNase, and a significant negative correlation between tryptophane contents and IAA, GA3, contents and RNase activity. The reason for the effect of zinc on IAA and nitrogen metabolism was discussed.
    1.4 Effects of zinc levels on yield and qualities
    
    
    The results showed that application of ZnS04 7H2O with doses of 2 and 3 kg in 667m2 in zinc deficient soil could significantly increase yields of balsam pear, i. e. 16. 23% to 17.18% . and the contents of 17 sorts of amino acids, especially the contents of essential amino acids for human body, and also raised the contents of protein, Vc, but decrease the NOs-N contents in balsam pear. So the vegetable qualilies were improved.
    2 Zinc and molybdenum nutritive physiology of balsam pear
    Effects of zinc and molydenum nutritions on yields and Quality , nitrogen and active oxygen metabolism in leaves of balsam pear (ZAuzhou Changbai) were studied by field trial and physiological determination. The results showed that application of ZnSO4 7MK1,3g L-1) and Za2Mo04 2H20 (1,2 g L-1) in leaves, with Zn, Mo deficient soil, could increase yields of balsam pear, and the contents of 17 sorts of amino acids, especially the contents of essential amino acids for human body, and also raised the contents of protein, Vc, but decrease the NOa-N contents in balsam pear. So the vegetable qualilies were improved. The reason was that Zn, Mo could increase protein, nuclear and PAs, Put, Spd, Spm, IAA, GAsand ASA contents and SOD, POD, CAT and NR activity, but decrease NOs, FAA.MDA, ABA contents , AOR and RNase activity in leaves, which inhibit membrane lipid peroxidation.. The results also showed that there was a significant positive correlation between yield and NR, PAs, Put, GA3, SOD, POD, CAT; protein contents and nuclear contents in leaves; MDA and AOR, ABA. but a significant negative correlation between yield and RNase, MDA ,ABA; protein contents and FAA, RNase ; nuclear contents and RNase ; MDA and PAs, Put, Spd, Spm, IAA, GAa, ASA, SOD, POD
引文
丁以珊,张承谦.锌浓度对芹菜含锌量及叶部结构的影响[J].北京师范学院学报(自科版),1991,12(4):58-63
    万新建,陈学军.我国苦瓜的研究现状及展望[J].江西农业学报.2002,14(3):46-50
    文涛,熊庆娥,曾伟光.脐橙果实发育过程中有机酸合成代谢酶活性的变化[J].园艺学报,2001,28(2):161-163
    方益华.高硼胁迫对油菜光合作用的影响研究[J].植物营养与肥料学报,2001,7(1): 109-112
    尹钧,Pall JG.土壤硼毒对小麦生长的影响[J].华北农学报,2002,17(4):77-81
    尹路明.多胺与激动素对稀脉浮萍离体叶状体衰老的影响[J].植物学报,1994,36(7): 522-527
    中国科学院上海植物生理研究所编.现代植物生理学实验指南[M].上海:上海科学技术出版社,10-188
    王人民,杨肖娥.不同锌离子活度下水稻锌高效基因型农艺特性的遗传分析[J].作物学报.2003,29(2):181-187
    王人民,杨肖娥.不同Zn~(2+)活度对水稻根和叶生长生理特性的影响[J].作物学报,1999,25(4):466-473
    王人民,杨肖娥.水稻耐低锌基因型的生长发育和若干生理特性研究[J].植物营养与肥料学报,1998,4(3):284-293.
    王人民,杨肖娥,杨玉爱.水稻对不同Zn~(2+)活度反应的基因型差异及其生理特性的研究[J].浙江农业大学学报,1997,23(4):442-446
    王火焰.硼钙营养对甘蓝型油菜IAA含量的影响[J].华中农业大学学报,1998,19(4):341-344
    王庆华.α-苦瓜素和β-苦瓜素研究进展[J].中草药,1995,26(5):266-268
    
    
    王克武,陈清,李晓林.施用硼、锌、铝肥对紫花苜蓿生长及品质的影响[J].土壤肥料,2003(3):24-29
    王亚琴,梁承邺,黄江康.植物叶片衰老的特性、基因表达及调控[J].华南农业大学学报,2002,23(3):87-90
    王先远,朱晓颖.苦瓜果实的生物学效用研究进展[J].军事医学科学院院刊,2002,26(2):148-151
    王春利.植物缺硼的生理伤害[J].植物生理学通讯,2001,37(4):352-355
    王景安,张福锁.锌对不同基因型玉米缺锌后的恢复效果及胚乳在缺锌中的作用[J].中国生态农业学报,2003,11(3):72-75
    王景安,张福锁,李春俭.缺zn对番茄、甜椒生长发育及矿质代谢的影响[J].土壤通报,2001,32(4):177-179
    王景安,张福锁.一定的低锌比缺锌对玉米危害更大[J].自然科学进展,2002,12(2):205-207
    王晓云,邹琦.多胺与植物衰老关系研究进展[J].植物学通报,2002,19(1): 11-20
    王晓云,马池珠,李向东.多效唑对花生叶片多胺含量及衰老的调节作用[J].西北植物学报,2001,21(1):323-328
    王晓云,李向东,邹琦.外源多胺、多胺合成前体及抑制剂对花生连体叶片衰老的影响[J].中国农业科学,2000,33(3):30-35
    王晓云,李向东,马池珠.花生不同衰老型品种叶片衰老过程中多胺变化规律的研究[J].中国油料作物学报,1999,21(1):31-34
    王晓云,程炳嵩.锌对生姜叶片解剖结构,叶绿体亚显微结构及光合速率的影响[J].山东农业大学学报,1995,26(1):119-122
    王晓云,程炳嵩.锌、硼对生姜的增产效果及吸收,分配规律的研究[J].山东农业大学学报,1994,25(1):77-81
    
    
    王晓云,程炳嵩.不同锌水平对姜苗氮代谢的影响[J].山东农业大学学报,1993,24(2):207-210
    王艳,王景华,许福明.锌肥对日光温室西芹硝酸盐及营养品质研究[J].生态学报,2001,21(4):681-683
    王衍安,范伟国,张方爱.施肥方式对缺锌小叶病苹果树锌营养的影响[J].中国农业科学,2002,35(10):1249-1253
    王震宇,张福锁.缺硼与低温对黄瓜幼苗一些生理反应的影响[J].植物生理学报,1998,24(1):59-64
    牛义,张盛.林植物硼素营养研究的现状及展望[J].中国农学通报,2003,19(2) 101-104
    石磊,杨玉华.硼对作物细胞膜功能影响的研究进展[J].华中农业大学学报,2002,21(4):395-400
    龙新宪,倪吾钟.菜园土壤锌的吸附—解吸特性研究[J].土壤通报,2002,33(1): 51-53
    厉建中,李坚等.锌指蛋白基因ZNF191[J].生命的化学.2001,21(2):116-118
    孙学成,胡承孝.施用钼肥对冬小麦游离氨基酸、可溶性蛋白质和糖含量的影响[J].华中农业大学学报,2002,21(1):40-43
    孙学成,胡承孝.施钼对冬小麦铵态氮含量及膜透性的影响[J].三峡大学学报:自然科学版,2001,23(4):381-384
    孙桂芬,杨光穗.土壤—植物系统中锌的研究进展[J].华南热带农业大学学报,2002,8(2):22-30
    孙燕,苟德明.C2H2型锌指蛋白研究进展[J].生命的化学,2001,21(6):473-475
    许长成,邹琦.大豆叶片早促衰老及其与膜质过氧化的关系[J].作物学报,1993,19(4):359-364
    许红心,倪坚军.苦瓜的药用研究概况[J].浙江中医学院学报,2001,25(4):73-75
    
    
    朱广廉,钟海文,张爱琴.植物生理实验[M],北京:北京大学出版社,1990,142-245
    朱建华,刘武定.缺硼对棉花不同品种苗期叶片POD、SOD同工酶的影响[J].植物营养与肥料学报,2001,7(3):331-336
    朱端卫.蔬菜作物钼效应及其临界值研究[J].华中农业大学学报,1998,17(5): 459-464
    华珞,韦东普,白玲玉等.氮锌硒肥配合施用对白三叶的固氮作用与氮转移的影响[J].生态学报,2001,21(4):588-592
    华珞,何忠俊.氮锌复合作用对混播系统白三叶生长与固氮及氮转移的影响[J].生态学报,2003,23(2):264-270
    刘文菊,张西科.磷胁迫对水稻基因型根系形态及吸收铁锰铜锌的影响[J].生态环境,2003,12(1):49-51
    刘芷宇,唐永良,罗质超编著.主要作物营养失调症状图谱[M].北京:农业出版社,1982,10-120
    刘春增,石田博.沿黄稻麦区水稻赤枯病的缺Zn诊断与防治效果研究[J].土壤肥料,1997,(3):31-33
    刘新保.玉米施Zn研究[J].土壤学报,1993,30(增刊):153-163
    刘国顺,习向银等.锌对烤烟漂浮育苗中烟苗生长及生理特性的影响[J].河南农业大学学报,2002,36(1):18-22
    刘铮.微量元素的农业化学[M].北京:农业出版社,1991,62-219
    刘继芳,蒋以超,王桔.锌络合物的稳定性与其对植物有效性的关系[J].土壤学报,1993,30(增刊):146-152.
    刘鹏,杨玉爱.铝、硼对大豆品质的影响[J].中国农业科学,2003a,36(2):184-189
    刘鹏,杨玉爱.氮、磷、钾配施及其与铜、硼配施对大豆产量的影响[J].安徽农业大学学报,2003b,30(2):117-122
    刘鹏,杨玉爱.钼,硼对大豆叶片膜脂过氧化及体内保护系统的影响[J].植物学
    
    报.2000a,42(5):461-466
    刘鹏,杨玉爱.硼钼胁迫对大豆叶片硝酸还原酶与硝态氮的影响[J].浙江大学学报(农业与生命科学版).2000b,26(2):151-154
    刘鹏,杨玉爱.钼、硼对大豆氮代谢的影响[J].植物营养与肥料学报.1999,5(4): 347-351
    李化.苦瓜的现代研究进展[J].陕西中医学院学报,2001,24(6):47-47
    李芳亭,鲁强,王世国.黄土丘陵区土壤钼锌含量及农作物对钼锌的反应[J].农业环境科学学报,2002(6):610-614
    李志刚,叶正钱.供锌水平对水稻生长和锌保累和分配的影响[J].中国水稻科学,2003,17(1):61-66
    李成霞,敖光明.植物TFⅢA类型锌指蛋白的研究进展[J].中国农业科技导报,2000.2(6):9-13
    李军,李祥东.硼钼营养对马铃薯鲜薯产量及活性氧代谢的影响[J].中国马铃薯,2002,(1):10-13
    李孟良,刘芳荣,马荣浩.油菜锌硼配合施用效果研究[J].安徽技术师范学院学报,2003,17(1):42-43
    李杨瑞.不同基因型甘蔗的几个生化特性与产量、品质的关系[D].福州:福建农学院,1987,6-89
    李宗霆,周燮.植物激素及其免疫检测技术[M].南京:江苏科学技术出版社,1996,214-225
    李柏林.燕麦叶片衰老与活性氧代谢的关系[J].植物生理学报,1989,15(1):6-12
    李树真.锌肥对油菜碳代谢的影响[J].西北农业大学学报,1986,14(3):94-101.
    李意坚.氮、磷、锌肥对纤维亚麻产量的效应[J].土壤,2002,34(5):286-288
    严红,李文雄,郭亚芬.硼对小麦体内碳水化合物同化与运输的影响[J].土壤学报,2003,40(3):440-445
    
    
    严红,胡尚连.硼对小麦生殖器官形态及解剖结构的影响[J].作物学报,2002,28(1):47-51
    严启新,罗天浩.苦瓜的研究及开发思考[J].时珍国药研究,1997.8(4):381-383
    汪洪,刘新保,褚天铎.锌肥对作物产量、子粒锌及土壤有效锌含量的后效[J].土壤肥料,2003a,(1):3-6,9
    汪洪,金继运.不同水分状况下施锌对玉米生长和锌吸收的影响[J].植物营养与肥料学报,2003b,9(1):91-97
    杜应琼,廖新荣等.硼、钼对花生氮代谢的影响[J].作物学报,2001,27(5):612-616
    杜应琼,廖新荣.施用硼钼对花生硼钼吸收积累与分配的影响[J].土壤与环境,1999,8(4):274-279
    杜昌文,王火焰.不同硼效率甘蓝型油菜品种中硼的形态及其相互关系[J].植物营养与肥料学报,2002,8(1):105-109
    吴振球,吴岳轩.铜锌对水稻幼苗生长及超氧化物歧化酶的影响[J].植物生理学报,1990,16(2):139-146.
    沈振国,刘友良.重金属超量积累植物研究进展[J].植物生理通讯,1998,34(2): 133-139
    沈振国,张秀省,王振宇等.硼素营养对油菜花粉萌发的影响[J].中国农业科学,1994,27(1):51-56
    陈光财,王人民,杨肖娥.水稻锌营养高效基因型的生理特性[J].中国水稻科学,2003,17(2):161-165
    陈怡平,张晶,李丽.铜盐与锌盐配合物的生物学研究[J].新疆大学学报:自然科学版,2003,20(2):161-164
    陈伟栋,陈西凯.不同时期甘蔗叶片生化指标与茎蔗糖分的相关及因子分析[J].作物学报,1996,22(2):233-237
    陈薇.植物组织中硝酸还原酶的提取、测定和纯化[J].植物生理学通讯,1980(4):
    
    45-49
    杨玉华,杜昌文.不同硼效率甘蓝型油菜品种细胞壁中硼的分配[J].植物生理与分子生物学学报,2002a,28(5):339-343
    杨玉华,王运华.硼对不同硼效率甘蓝型油菜品种细胞壁组成的影响[J].植物营养与肥料学报,2002b,8(3):340-343,376
    杨志敏,郑绍建,胡霭堂.植物体内磷与重金属元素锌、镉交互作用的研究进展[J].植物营养与肥料学报,1999,5(4):366-376
    杨利华,郭丽敏.施锌对玉米氮磷钾肥料利用率、产量及籽粒品质的影响[J].中国生态农业学报,2003,11(2):41-43
    杨秀清,原海云.铜、锌元素对华北落叶松苗期酶活性影响[J].山西农业大学学报,2001,21(3):277-280
    杨思存,霍琳.灰钙土上玉米的锌肥效应研究[J].西北农业学报,2002,11(4): 55-58
    杨晓东,孙素琴,李一勤.硼缺乏导致花粉管细胞壁多糖分布的改变[J].植物学报,1999,41(11):1169-1176
    杨淑慎.氧、自由基与活性植物的衰老[J].西北植物学报,2001,21(2):215-220
    杨暹,李德明.氮、锌营养与青花菜花球发育过程中核酸及钙调素的关系[J].园艺学报,2001,28(4):312-316
    张水旺.氮锌配施及锌肥不同用量对夏大豆产量及品质的影响[J].土壤肥料,1996,(3):37-39.
    张永清.蔬菜奢侈吸锌的研究进展[J].山西师范大学学报(自然科学版),2002,16(2):76-80
    张西科,张福锁等.根系氧化力不同的水稻品种磷锌营养状况的研究[J].植物营养与肥料学报,2002,8(1):54-57
    张明方.高等植物中与蔗糖代谢相关的酶[J].植物生理学通讯,2002,38(3):
    
    289-295
    张振贤.大白菜矿质营养吸收与分配规律研究[J].园艺学报,1993(20):150-154
    张福锁.锌在植物细胞原生质膜稳定性方面的作用[J].土壤学报,1993a,30(增刊):104-110
    张福锁.植物营养生态学和遗传学[M].北京:中国科学技术出版社,1993b.114-137
    张福锁.锌营养状况对小麦根细胞膜透性的影响[J].植物生理学报,1992,18(1): 20-28
    张素.植物药材中抗艾滋病毒活性成分研究[J].中医药信息,1994,(4):30-33
    张绪忠.苦瓜抗菌作用的研究[J].中草约,1995,26(10):556-559
    罗正荣,朱丽华,吴谋成.植物组织中赤霉素含量的高效液相色谱测定[J].植物生理学通讯,1990(2):50-52
    屈红征,王丽萍.植物硼素营养研究进展[J].山西农业大学学报,2001,21(2): 173-176
    范伟国.苹果缺锌小叶病防治技术研究[J].河北农业大学学报,2002,25(2):42-45
    时忠杰,李荣生等.铅、锌胁迫对蕹菜光合色素及活性氧代谢的影响[J].江西农业大学学报,2002,24(2):208-212
    欧阳石文.植物TFIIIA型Zn指蛋白[J].生命的化学,2001,21(5):401-402
    欧阳红,何尤琥.缺锌对健康的危害及补锌过程中应注意的问题[J].广东微量元素科学,2001,8(12):8-10
    周可金.花生B、Cu、Mo、Zn肥配施效应研究[J].花生学报,2003,32(1):21-25
    郑小林,彭克勤.籽粒低锌与高锌含量基因型水稻锌营养特性的比较[J].植物资源与环境学报,2000,9(2):26-29
    林植芳,李双顺,林桂珠.水稻叶片的衰老与超氧物歧化酶活性及脂质过氧化作用的关系[J].植物学报,1984,26(6):605-615
    
    
    赵成章.锌元素对籼稻成熟胚愈伤组织绿苗分化率的影响[J].作物学报,2001,27(3):404-407
    赵同科,曹云者,马丽敏.不同玉米基因型缺Zn胁迫适应性研究[J].华北农学报,2000,15(增刊):64-68
    赵竹青,王运华.缺硼对黄瓜生长素代谢的影响[J].华中农业大学学报,1998,17(3):232-236
    赵宇瑛,韩慧军.叶面喷锌对富士苹果树光合速率的影响[J].湖北农学院学报,2002,22(4):324-326
    赵智中,张上隆,徐昌杰.蔗糖代谢相关酶在温州蜜柑果实糖积累中的作用[J].园艺学报,2001,28(2):112-118
    赵静.钼对降低蔬菜硝酸盐积累的效应研究[J].农业环境保护,2001,20(4):238-239
    郝明德,魏孝荣,党廷辉.旱地长期施用锌肥对小麦吸锌及产量的影响[J].生态环境,2003,12(1):46-48
    胡学玉,李学垣等.不同青菜品种吸锌能力差异及与根系分泌物的关系[J].植物营养与肥料学报,2002,8(2):234-238
    胡学玉,李学垣.青菜品种锌效率特性研究[J].中国农业科学,2001,34(2):227-231
    胡学玉,李学恒,谢振翅.不同小白菜品种吸收锌能力差异及原因[J].华中农业大学学报,2000,19(6):550-553
    胡勇,印莉萍.Zn~(2+)吸收、转运的相关基因[J].首都师范大学学报(自然科学版),2001,22(1):80-83
    胡承孝,王运华等.钼营养对冬小麦无机氮组分的影响[J].华中农业大学学报,2001,20(2):125-129
    胡承孝.钼在冬小麦植株中分布研究[J].华中农业大学学报,2000,19(6):568-572
    胡承孝,王运华.钼、氮配合施用对冬小麦产量、干物质积累的影响[J].华中农业大学学报,1999,18(3):225-228
    
    
    胡承孝,庞静.利用钼值作为冬小麦缺Mo土壤诊断指标的探讨[J].植物营养与肥料学报,1998,4(4):393-398
    施木田.锌对苦瓜叶片内源激素含量与氮素代谢及产量的影响研究[J].中国生态农业学报,2004a,12(1):59-62
    施木田,陈如凯.锌对苦瓜叶片碳代谢及相关酶活性的影响研究[J].中国生态农业学报,2004b,12(1):56-58
    施木田,陈如凯.锌硼营养对苦瓜产量品质与叶片多胺、激素及衰老的影响[J].应用生态学报,2004c,15(1):77-80
    施木田,陈如凯.锌硼营养对苦瓜叶片碳氮代谢的影响[J].植物营养与肥料学报,2004d,10(2):198-201
    施木田,陈如凯.锌钼营养对苦瓜叶片多胺、激素含量与活性氧代谢的影响[J].热带亚热带植物学报,2004e,12(3): 247-251
    施木田,陈如凯.锌肥水平对苦瓜叶片多胺含量与活性氧代谢的影响[J].热带作物学报2003a,24(2):33-36
    施木田,陈如凯.锌钼营养对苦瓜产量、品质及叶片氮素代谢的影响[J].热带作物学报,2003b,24(4):57-61
    施木田,甘纯玑,彭时尧.HPLC测定植株样品中多胺[J].福建分析测试,1995,4(1):231-232
    施木田,陈少华.园艺植物营养与施肥技术[M].厦门:厦门大学出版社,2002,137-155
    施木田,潘东明.HPLC分析果蔬中IAA、ABA含量[J].福建省园艺学会96年会议论文
    施木田,蔡秋红,杨仁崔.早籼稻米的蛋白质含量及其氨基酸的组成[J].福建农业大学学报,1995,24(3):358-362
    施木田.高效液相色谱法分析玉米、芋头中的氨基酸[J].福建省第三届色谱学术讨论会论文集(下册),1990:51-57
    
    
    原海云,焦晓光.华北落叶松铜锌元素与酶活性关系初探[J].山西农业大学学报: 自然科学版,2002,22(1):61-64
    南京农学院主编,土壤农化分析[M],北京:农业出版社,1981,10-312
    娄运生,杨玉爱.氮磷钾、硼水平对不同基因型油菜硼吸收及某些生物学性状的影响[J].应用生态学报,2001,12(2):213-217
    徐芳森,王运华.甘蓝型油菜硼营养高效的遗传分析[J].植物营养与肥料学报,2001,7(4):429-434
    徐晓燕.水稻锌营养基因型差异的研究[J].广东微量元素科学,2003,10(2):1-4
    徐晓燕,杨肖娥等.HCO_3对不同水稻品种锌吸收运输的影响[J].应用与环境生物学报,2001,7(6):532-535
    徐晓燕,杨肖娥.锌、铜对水稻幼苗生长及超氧化物歧化酶的影响[J].山西农业大学学报,1997,17(2):113-115
    徐勤松,施国新,杜开和.锌胁迫下水车前叶细胞自由基过氧化损伤与超微结构变化之间关系的研究[J].植物学通报,2001a,18(5):597-604
    徐勤松,施国新,杜开和.锌诱导的菹草叶抗氧化酶活性的变化和超微结构损害[J].植物研究,2001b,21(4):569-573
    姚延梼,原海云,焦晓光.华北落叶松铜锌元素与酶活性关系初探[J].山西农业大学学报,2002,22(1):61-64
    浙江农业大学.植物营养与施肥[M].北京:中国农业出版社,2002,142-168
    骆抗先,王临旭,孙永涛.MAP30苦瓜抗HIV蛋白对细胞内HBeAg表达抑制作用的定量分析[J].细胞与分子免疫学杂志.2003,19(2):183-184
    聂湘平,蓝崇钰,束文圣.锌对大叶相思-根瘤菌共生固氮体系影响研究[J].植物生态学报,2002,26(3):264-268
    秦遂初.作物营养障碍的诊断及其防治[M].杭州:浙江科学出版社,1988,305-308
    高质,林葆,周卫.锌素营养对春玉米内源激素与氧自由基代谢的影响[J].植物营
    
    养与肥料学报,2001,7(4):424-428
    柴团耀,张玉秀,张正东.菜豆重金属胁迫响应基因Ⅱ:富含脯氨酸蛋白cDNA克隆及基因表达分析[J].见林忠平主编,走向21世纪的植物分子生物学[J].北京:科技出版社,1999,165-171
    耿明建,朱建华,吴礼树.硼对不同硼效率棉花品种苗期叶片膜状过氧化和多胺含量的影响[J].植物营养与肥料学报,2003,9(3):337-341
    耿明建,吴礼树.硼对2个棉花品种花器官不同部位矿质营养的影响Ⅰ.对微量元素B、Cu、Zn、Fe和Mn的影响[J].华中农业大学学报,2003,22(1):40-44
    耿明建,曹享云,朱端卫等.硼对甘蓝型油菜不同品种花期生理特性的影响[J].中国油料作物学报,1998,20(1):70-73
    袁政,张大兵.植物叶片衰老的分子机制[J].植物生理学通讯,2002,38(4): 417-422
    袁震林,任军.锌、钾肥防治水稻赤枯病技术研究[J].土壤肥料,1991,(1):33-34
    曹干.甘蔗光合强度与2种光合酶活性的关系[J].福建农学院学报,1990,19(增刊):19-21
    黄启为,彭建伟.化肥对蔬菜硝酸盐含量的影响[J].湖南农业大学学报,2002,28(5):387-390
    黄国清,彭珊珊等.食用花卉中微量元素Fe,Zn的蛋白质结合态分布[J].光谱实验室,2002,19(3):332-334
    黄益宗,李志先.尾叶桉叶片氮磷钾钙镁硼元素营养诊断指标[J].生态学报,2002a,22(8):1254-1259
    黄益宗.植物对硼素不足的反应及其成因探讨[J].土壤与环境,2002b,11(4):434-438
    黄骥,杨金水等.一个新的水稻C2H2型锌指蛋白cDNA的克隆与序列分析[J].南京农业大学学报,2002,25(2):110-112
    梁和.硼钙营养对不同品种柑桔糖代谢的影响[J].土壤通报,2002a,33(5):377-380
    
    
    梁和.硼钙营养对胡柚果实品质的影响[J].广东微量元素科学,2001b,8(7):21-26
    焦晓燕,Quick WP.不同供硼水平对绿豆植株形态及其叶片生长特征的影响[J].生态学报,2003,23(3):456-462
    韩雪梅,吴树彪.几种矿质元素对青菜叶形态解剖结构的影响[J].华北农学报,1997,12(1):65-71
    董文轩,孟繁静.锌铜处理对苹果属植物叶内碳酸酐酶活性的影响[J].果树科学.1995,12(1):10-14.
    董英,吴其飞.茎部施锌对金桔生长和果实品质的影响[J].农业机械学报,2003,34(2):61-64,68
    喻敏,王运华.种子钼对冬小麦硝酸还原酶活性、干物质重及产量的影响[J].植物营养与肥料学报,2000,6(2):220-226
    喻敏,王运华.高等植物中的钼[J].植物学通报,1999,16(5):547-554
    甄海,苏倩.稻米色氨酸测定方法的改进[J].氨基酸杂志,1988(1):18-20
    蒋琳,沈曾佑,张志良.多胺对裸大麦离体叶片活性氧代谢的影响[J].植物生理学报,1993,19(4):367-371
    蒋继宏.植物中抗病毒活性物质的分离及其作用机制研究[D].福建农业大学博士后士学位论文,2000:25-30
    腾树川.钼、硼、锌微肥对花生产量形成的试验浅析[J].耕作与栽培,2003,(1): 57-58
    熊双莲,吴礼树等.黄瓜缺硼症状与激素变化关系的研究[J].植物营养与肥料学报,2001,7(2):194-198
    福建省土壤普查办公室编.福建土壤[M],福州:福建科学技术出版社,1991,200-280
    褚天铎,刘新保.锌素营养对作物叶片解剖结构的影响[J].植物营养与肥料学报,1995,1(1):24-29
    褚海燕,喻敏等.缺硼对甘蓝型油菜亲本及其F1代CAT和POD活性的影响[J].安
    
    徽农业大学学报,2001,28(3):281~283
    蔡晓布.双低油菜的磷钼营养效应研究[J].中国油料作物学报,2000,22(1):65-68
    颜秋生,李向辉.大麦叶肉原生质体培养中核酸酶活性的研究[J].植物生理学通讯,1981(5):11-12
    潘华,乔伟伟.苦瓜素对小鼠降血糖作用[J].上海实验动物科学,2002,22(3): 187-187
    魏文学,徐驰明.钼营养与冬小麦籽粒蛋白质和氨基酸组成的关系[J].华中农业大学学报,1998,17(4):364-368
    Altman A. Stabilization of oat leaf protoplasts through polyamine-mediated inhibition of senescence[J]. Plant Physiol, 1977, 60: 570-574
    Bettger W J,O. Dell B L.A critical physiological role of Zn in the structure and function of biomembrane[J].Life Sci, 1981,28:1245-1438.
    Birabaun E H. Boron mobility in plants[J]. Plant Physiol, 1977, 59:1034-1038
    Borrell A, Carbonell L, Farras R et al. Polyamines inhibit lipid peroxidation in senescing oat leaves[J]. Physiol Plant, 1997,99:385-390
    Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance[J]. Annu Rev Plant Physiol Plant Mol Biol, 1992, 43: 83-116.
    Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of proteindye binding [J].Anal. Biol. Chem.,1976,72:302-310
    Cakmak I. Possible roles of zinc in protecting plant cells from damage by reactive oxygen species[J].New Phytol. 2000,146:185-205
    Cakmak I, Ekiz H, Yilmaz A, et al. Differential response of rye, triticale, bread and durum wheats to zinc deficiency in calcareous soils[J].Plant and Soil, 1997a, 188(1): 1-10.
    
    
    Cakmak I. Concentration of zinc and activity of copper/zinc-superoxide dismutase in leaves of rye and wheat cultivars differing in sensitivity to zinc deficiency[J]. J. Plant Physiol.,1997b, 151: 91-95.
    Cakmak I, Romheld V. Boron deficiency-induced, impairment of cellular functions in plants[5]. Plant Soil, 1997c, 193: 71-83
    Cakmak I, Marschner H. Increase in membrane permeability and exudation in roots of Zn deficient plants[J]. J Plant Physiol, 1988(a), 132:356-361.
    Cakmak I, Marschner H. Enhanced superoxide radical production in roots of zinc deficient plants[J]. J Exp Bot, 1988(b), 39:1449-1460
    Cakmak I, Marschner H. Zinc dependent changes in ESR signals, NADPH oxidase and plasma membrane permeability in cotton roots[J]. Physiol Plant, 1988(c), 73: 182-186.
    Cakmak I, Marschner H. Mechanism of hosphorous-induced zinc deficiency in cotton Ⅲ. Changes in physiologicalavailability of zinc in plants[J].Physiol Plant, 1987, 70: 13-20.
    Campbell W H. Nitrate reductase structure, function, and regulation: bridging the gap between biochemistry and physiology[5], Annu. Rev. Plant Physiol. Plant Mol. Biol. 1999, 50: 277-303.
    Chandler W H. Zinc as a nutrient for plants[J]. Bot Gaz, 1937, 98: 625-646.
    Chvapil M. New aspects in the biological role of zinc:A stabilizer of macromolecules and biological membranes[J]. Life Sci, 13: 1041-1049.
    Colvin R A. pH dependence and compartmentalization of zinc transported across plasma membrane of rat cortical neurons[J]. Am. 5. Physiol. 2002, 282: 317-329
    Conklin D S, McMaster J A. COT1, a gene involved in cobalt accumulation in
    
    Saccharomyces cerevisiae[J].Molecular Cell Biology, 1992,12:3678-3688
    Czupryn M. Zinc deficiency and metabolism of histones and non-histone proteins in Euglena gracilis[J]. Biochemistry, 1987, 26:8263-8269.
    Das D K. Transformation of different fractions of zinc in submerged soils as affected by the application of nitrogen[J]. Crop Res, 1996, 11(1): 53-61.
    Davydova V N. The abscissic acid content of zinc-deficient Phaseolus plants [J]. Fizologiya Biokhimyya Kulfurnykh Rastenij, 1980, 12: 588-591.
    Dell B, Huang L. Physiological response of plants to low boron[J]. Plant and Soil, 1997, 193: 103-120
    Depater S, Greco V, Pham K. Characterization of a zinc-dependent transcriptional activator from Arabidopsis[J].Nucleic Acids Res, 1996,24(23):4624-4631
    Dev S, Shukia U C. N and Zn contant in maize affectod by their different sources[J]. J Indian Soci Soil Sci, 1980, 28: 336-341.
    Dordas C, Chrispeels M J, Brown P H. Permeability and channel-mediated transport of boric acid across membrane vesicles isolated from squash roots[J]. Plant Physiol. 2000, 124: 1349-1362
    Dutta B K, Deb P R. Effect of organic and inorganic amendments on the soil and rhizosphere microflora in relation to the biology and control of Schlerotium rolfsii causing foot rot soybean[J]. Z Pflanzenkrankh Pflanzenschutz, 1986,93:163-171.
    Dwivedi R S, Takkar P N. Ribonuclease activity as index of hidden hunger of zinc in crops[J].Plant and Soil,1974,40:170-181.
    Erenoglu B C, Romheld I, Derici R R. Uptake of zinc by rye, bread wheat
    
    and durum wheat cultivars differing in zinc efficiency[J]. Plant and Soil, 1999,209:245-252
    Falchuk K H, Hardy C, Ulpino L, Vallee B L. RNA metabolism, manganese, and RNA polymerases of zinc sufficient and zinc deficient Euglena gracilis [J] .Proc Nat Acad Sci USA, 1978,75:4175-4179.
    Galston A W. Polyamines in plant physiology(J). Plant Physiol, 1990, 94:406-410
    Giedroc D P, Keating K M, Williams K R. Gene 32 protein the single stranded DNA binding protein from bacteriophage T4 is a zinc metalloprotein[J].Proc Nat Acad Sci USA, 1986,83: 8452-8456.
    Gitan R S, Luo H, Rodgers J, et al. Zinc-induced inactivation of the yeast ZRT1 zinc transporter occurs through endocytosis and vacuolar degradation[J]. J. Biol. Chem. 1998, 273: 28617-28624
    Grass G, Wong M D, Rosen B P. ZupT is a Zn(Ⅱ)uptake system in Escherichia coli[J]. J. Baeteriol. 2002, 184: 864-866
    Hacisalihoglu G, Hart J J., Wang YH. Zinc efficiency is correlated with enhanced expression and activity of zinc-equiring enzymes in wheat[J]. Plant Physiol, 2003,131:595-602
    Hacisalihoglu G, Hart J J, Kochian L V. High-and low-affinity zinc transport systems and their possible role in zinc efficiency in bread wheat[J]. Plant Physiol. 2001, 125: 456-463
    Hale K L, McGrath S P, Lombi E. Molybdenum sequestration in brassica species. A role for anthocyanins?[J]. Plant Physiol, 2001, 126:1391-1402
    Hanas J S, Hazuda D J, Bogenhagen D F. Xenopus transcrption factor A requires zinc for binding to the 5S RNA gene[J]. J Biol Chem,1983,258:
    
    14120-14125.
    Hatch M D, Bumell J N. Carbon anhydrase activity in leaves and its role in the first step of C_4photosynthesis[J]. Plant Physiol, 1990, 93:825-828.
    Helmerhorst E, Stokes GB.Microcentrifuge desalting: A rapid quantitative method for desalting small amount of protein[J].Anal. Biochem., 1980, 104: 130-135
    Hille R. The mononuclear molybdenum enzymes[J]. Chem. Rev. 1996, 96: 2757-2816
    Hirel B, Bertin P, Quillere I, Bourdoncle W. Towards a better understanding of the genetic and physiological basis for nitrogen use efficiency in maize[J]. Plant Physiol. 2001, 125: 1258-1270
    Hubbard N L, Huber S C, Pharr D M. Sucrose phosphate synthase and acid invertase as determinants of sucrose concentration in developing muskmelon(Cucu mis melo L.)fruits[J]. Plant Physiol.,1989,91:1527-1534
    Jyung W H, Ehmann A, Schlender K K, Scala J. Zinc nutrition and starch metabolism in phaselus vulgaris L[J]. Plant Physiol, 1975,55:414-420.
    Jyung W H, Camp M E, Polson D E, Afams M W, Witter S H. Differential response of two bean varieties to zinc as revealed by electrophoretic protein pattern[J]. Crop Sci, 1972, 12: 26-29.
    Kabata A P, Pendias M H. Trace elements in soil and plants[M]. CRC Press Inc., 1992. 85-96.
    Kakuzo K, Hitoshi O. Effects of Zinc deficiency on the nitrogen metabolisn of meristematic tissues of rices paltns with reference to protein synthesis[J]. Soil Sci Plant Nutri, 1986, 32(3): 397-405.
    
    
    Kamizono A, Nishizawa M, Mitsubishi Y,et al. Identification of a gene conferring resistance to zinc and cadmium ions in the yeast S. cerevisiae Mo[J].Gen Genet, 1998(2): 312-318
    Kang Y J, Olson O J. Phosphorylation of acid soluble proteins in isolated nucleoli of novikoff hepatoma ascites cells[J]. J Biol Chem, 1974, 258:5580-5585
    Kaiser W M, Huber S C. Post-translational regulation of nitrate reductase: mechanism, physiological relevance and environmental triggers[J]. J. Exp. Bot..2001, 52: 1981-1989
    Kisker C, Schindelin H, Rees D C. Molybdenum cofactor-containing enzymes: Structure and mechanism[J], Annu. Rev. Biochem. 1997, 66: 233-267
    Kitagishi K. Effect of zinc deficiency on 80S ribosome content of meristematic tissues of rice plant[J]. Soil Sci Plant Nutr, 1987,33:423-429.
    Kitagishi K, Obata H.Effects of zinc deficiency on the nitrogen metabolism of meristematic tissues of rice plants with reference to protein synthesis[J]. Soil Sci Plant Nutr, 1986,32:397-405.
    Komatsu A, Takanokura Y,Moriguchi T, et al. Differential expression of three sucrose-phosphate synthase isoforms during accumulation in citrus fruit(Citrvs unshiu Marc.)[J].Plant Sci.,1999,140: 169-178
    Koshiba T, Saito E, Ono N, Yamamoto N, Sato M. Purification and properties of flavin-and molybdenum-containing aldehyde oxidase from coleoptyles of maize[J]. Plant Physiol. 1996, 110: 781-789
    Kumar V, Ahlawat V S, Antil R S. Interactions of nitrogen and Zinc in pearl millet: 2. Effect on concentration and uptake of phosphorus, potassium, iron, manganese and copper[J]. Soil Sci, 1986, 142(6): 340-345.
    
    
    Kumar V, Ahlawat VS. Interactions of nitrogen and Zinc in peart millet: 1. Effect of nitrogen and Zinc levels on dry matter yield and concentration and uptake of introgen and zinc in peart millet[J]. Soil Sci, 1985, 139(4): 351-356.
    Lasat M M. Phytoextraction of toxic metals: A review of biological mechanisms[J]. J Environ Qual,2002,31:109-120
    Lasat M M, Pence N S. Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens[J]. J. Exp. Bot. 2000, 51:71-79
    Law D M.Gibberellin enhanced indole-3-acetic acid biosynthesis:D-tryptophan as the precusor of indole-3-acetic acid[J].Physiol Plant, 1987, 70:626-623.
    Lester G E, Arias L S, Lim M G. Muskmelon fruit soluble acid invertase and sucrose phosphate synthase activity and polypeptide profiles during growth and maturation[J].J Amer Soc Hort Sci, 2001, 126:33-36
    Lombi L, Tearall K L, Howarth J R, et al. Influence of iron status on cadmium and zinc uptake by different ecotypes of the hyperaccumulator Thlaspi caerulescens[J]. Plant Physiol, 2002,128:1359-1367
    Lowell C A, Tomlinson P T, Koch K E. Sucrose-metabolizing enzymes in transport tissue and adjacent sink structures in developing citrus fruit[J].Plant Physiol.,1989, 90: 1394-1402
    Macdiarmid C W, Gaither L A, Eide D. Zinc transporters that regulate vacuolar zinc storage in Saccharomyces cerevisiae[J].EMBO J. 2000.19:2845-2855
    Mahendr A S, Singh S P, Singh M. Effect of Zinc and phosphorus on absorption of iron and nitrogen by submerged paddy[J]. Soil Sci, 1983, 135(2): 71-78
    
    
    Mahendr A S, Singh S P, Singh M. Effect of nitrgen and Zinc on the yield of submerged rice and uptake of of N and Zn on unlimed and limed soils[J]. Plant and Soil, 1981a, 62: 183-192.
    MahendrA S, Singh M. Effect of Zinc, phosphorus and nitrogen on tryptophan concentration in rice grains grown on limed and unlimed soils[J]. Plant and Soil, 1981b, 62: 2, 305-308.
    Mahendr A S. Availabiity of native and applied Zinc(Zn~(65)) as affected by nitrogen carriers in normal and saline soils[J]. Plant and Soil, 1974, 40: 699-702.
    Marschner H. Mineral nutrition of higher plants(2nd ed)[M].Academic Press, 1995,347-364.
    Marschmer H, Cakmak L. High light intensity enhances chlorosis and necrosis in leaves of zinc, phosphorous and magnesium deficient bean(phaseolus vulgaris)plant[J].J Plant Physiol, 1989,134:308-315.
    Marschner H. Mineral nutrition of higher plants[M]. London: Academic press, 1986.21-158
    Mena M, Nandel M A, Lerner D R, et al. A Characterization of the MADS-box gene family in maize[J]. Plant J.,1995.8(6):845-854
    Mendel R R, Schwarz G. Molybdoenzymes and molybdenum cofactor in plants[J]. Crit. Rev. Plant Sci. 1999, 18: 33-69
    Mertens A J, Shiraishi M, Campbell W H. Recombinant expression of molybdenum reductase fragments of plant nitrate reductase at high levels in Pichia pastoris[J]. Plant Physiol, 2000, 123: 743-756
    Mohamed A A, khalil I. Increase in NDD(P)H-dependent generation of active oxygen species and changes in lipid composition of microsomes isolated
    
    from roots of zinc-deficient bean plants[J]. J. Plant Nutr. 2000, 23(3):285-295
    Moreau S, Thomson RM, Kaiser B N,et al. GmZIP1 encodes a symbiosis-specific zinc transporter in soybean[J].J. Biol. Chem.,2002,277:4738-4746
    Naik M S, Asana R D. Effect of Zinc deficiency on the synthesis of protein, mineral uptake and ribonuclease activity in the cotton plant[J]. Indian J Plant physiol, 1961, 4: 103-108
    Obata H, Kawamura S, Senoo K. Changes in level of protein and activity of Cu/Zn-superoxide dismutase in zinc deficient rice plant(Oryza sativa L.)[J].Soil Sci. Plant Nutr.,1999,45: 891-896.
    Obermeyer G, Kriechbaumer R, Strasser D. Boric acid stimulates the plasma membrane H~+—ATPase of ungerminated lily pollen grains[J]. Physiol Plant, 1996,98:281-290
    O'Neill M A, Eberhard S, Albersheim P, Darvill A G. Requirement of borate cross-linking of cell wall rhamnogalacturonan Ⅱ for arabidopsis growth[J]. Science, 2001, 294: 846-849
    Ozanne P G. The effect of nitrogen on zinc deficiency in subteranean clover[J]. J Biol Sci, 1955, 8: 47-55.
    Pallitt K E, Young A, Carotenoids J. Antioxidants in higher plants[J]. Boca Raton: CRC Press, 1992. 59-60.
    Pence N S, Larsen P B, Ebbs S D, et al. The molecular physiology of heavy metal transport in the Zn/Cd hyperaccumulator Thlaspi caerulescens[J]. Proc. Nat. Acad. Sci. U S A. 2000, 97: 4956-4960
    Pike C S, Cohen W S. Nitrate reductase: A model system for the investigation of enzyme induction in eukaryotes[J]. Biochem. Educ. 2002,30:111-115
    
    
    Pinton R, Cakmak I. Zinc deficiency enhanced NAD(P)H-dependent superoxide radical production in plasma membrane vesicles isolated from roots of bean plants[J]. J. Experimental Botany, 1994,45:45-50.
    Pollar A S, Parr A J, Loughman B C. Boron in relation to membrane function in higher plants[J].J Exp Bpt, 1977,28:831-841
    Prask J A, Plocke D J. A role for zinc in the structural integrity of cytoplasmic ribosomes of Euglena gracilis[J]. Plant Physiol, 1971, 48:150-155.
    Rahdall P J, Bouma D. Zinc deficiency, carbonic anhydrase and photosynthesis in leaves of spinach[J].Plant Physiol, 1973,52:229-232.
    Ramesh S A, Shin R, David J. Differential metal selectivity and gene expression of two zinc transporters from rice(J). Plant Physiol.,2003,133:126-134
    Salami A U, Kenefick D C. Stimulation of growth in zinc-deficient com seedings by the addition of tryptophan[J]. Crop Sci, 1970, 10: 291-294.
    Satinder D, Shukla V C. Nitrogen-Zinc content in maize as affected by their different sources[J]. J Indian Soci Sol Sci, 1980, Vol. 28: 336-341.
    Seethambaram Y, Das V S. RNA and RNase of rice(Oryza sativa L)and pearl miller(Pennisetum americarmun L. Leeke)under zinc deficiency[J]. Plant Physiol Biochem, 1984, 11: 91-94.
    Serrano M, Martinez-Madrid M C, Romojaro F. Ethylene biosynthesis and polyamine and ABA levels in cut carnations treated with aminotriazole (J). J Am Society Hortic Sci, 1999, 124(1):81-85
    Sharma P N, Tripathi A, Bisht S S. Zinc requirement for stomatal opening in cauliflower[J]. Plant Physiol. 1995, 107: 751-756
    Sharma P N, Kumar N, Bisht S S. Effect of zinc deficiency on chlorophyll
    
    content, photosynthesis and water relations of cauliflower plants[J]. Photosynthetica. 1994, 30: 353-359
    Shingles R, North M, Mccarty R E. Ferrous ion transport across chloroplast inner envelope membranes[J].Plant Physiol, 2002,128:1022-1030
    Shit A O, Yie L O, Reisenauer H M. Zinc nutrition of alfalfa[J]. Agronomy Journal, 1968, 60: 444-454.
    Shrotri C K, Tewari M N, Rathore V S. Effects of zinc nutrition on sucrose biosynthesis in maize[J].Phytochemistry, 1980, 19: 139-140.
    Shrotri C K, Tewari M N, Rathore V S. Morphological and ulttrastructural abnormalities in zinc deficient maize chloroplasts untritional deficiencies[J]. Plant Biochem J, 1978, 5:89-96.
    Skipper L, Campbell W H, Mertens J A, Lowe D J. Pre-steady-state kinetic analysis of recombinant arabidopsis NADH: Nitrate reductase rate-limiting processes in cataysis[J]. J Biol. Chem., 2001, 276(29): 26995-27002
    Sommer A L, Lipman C B. Evidence on the indispensible nature of zinc and boron for higher green plant[J].Plant Physiol, 1926,1: 231—249.
    Stiborova M,Ditrichova M, Brezinva A.Mechanism of function of Cu~(2+)+and Zn~(2+) on ribulose-1, 5-biphosphate carboxylase from barley(Hordeum vulgare L)[J]. Photosynthetica, 1987, 21: 161—165.
    Takaki H, Kushizaki M.Accumulation of free tryptophan and trytomine in zinc deficient maize seedling[J]. Plant Cell Physiol, 1970,11:793-804.
    Tiburcio A F, Besford R T. Mechanism of polyamine action during senescence responses induced by osmotic stress[J]. J Exp Bot, 1994, 45:1789-1800
    Tobin A J. Carbonic anhydrase from parsley leaves[J].J Biochem, 1970,245:
    
    2656-2666.
    Tomlinson J A, Hunt J. Studies on watercress chlorotic leaf spot virus and on the control of the funrus vector(Spongospora subterranea)with zinc [J].Ann Appl Biol,1987,110:75-88.
    Trindade L M, Horvath B M, Marian J. Isolation of a gene encoding a copper chaperone for the copper/zinc superoxide dismutase and characterization of its promoter in potato[J]. Plant Physiology, 2003, 133: 618-629
    Valle B L, Galdes A. The melallo-biochemistry of zinc enzymes [33. Adv Enzymol, 1984, 56: 284-430.
    Vodkin M H, Vodkin L O. A conserved zinc finger domain in higher plants [J].Plant Mol Biol,1989,12:593-594.
    Welch R M. Factors affecting the bioavailability of mineral nutritions in plant fouds[J]. Crops as Sources of Nutrients for Humans[M]. Eds Welch R M, Gabelman W H. American Society of Agronomy Madison WI, 1983,37-54.
    Welch R M, Webb M J, Loneragan J F. Zinc in membrane function and its role in phosphorus toxicity. Plant Nutrition 1982 Proc 9th Int Coll Plant Nutrition[M]. Ed Scaife A. 1982. 710-715.
    Welch R M, House W A. Effects of oxalic acid on availability of zinc from spinach leaves and zinc sulfate to rats[J]. J Nutr, 1976,107:923—933.
    Wenzel A A. Zinc deficiency enhances ozone toxicity in bush beans(Phaseolus vulgaris L. c. Saxa)[J].J. Plant Exp. Bot. 1995,46:867-872
    Yie S T. A study of the relationship of zine concentration to nitrogen fixation in soybean[J]. J Sci Engin(Taiwan), 1969, 6: 1-8.
    
    
    Yu Q, Rengel Z. Micronutrient deficiency influences plant growth and activities of superoxide dismutase in narrow-leafed lupins[J]. Annal. Bot. 1999,83:175-182
    Yu Q, Osborne L, Rengel Z. micronutrient deficiency changes activities of superoxide dismutase and ascorbate peroxidase in tobacco plants[J].J. Plant Nutr. 1998,21:1427-1437
    Zhao H, Eide D J. Zaplp, a metalloregulatory protein involved in zinc-responsive transcriptional regulation in Saccharomyces cerevisiae[J].Mol Cell Biol,1997,17(9):5044—5052
    Zhao H, Eide D. The yeast ZRT1 gene encodes the zinc transporter protein of a high affinity uptake system induced by zinc liumitation[J].PANS, 1996(a), 93(6):2454—2458
    Zhao H, David Eide. The ZRT2 gene encodes the low affinity zinc transporter in Saccharomyces cerevisiae[J]. J Biol Chem, 1996(b), 271(38):23203—23210

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700