TGF-β1基因SNPs及单体型分子标志与长沙汉族人群脑卒中的相关性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景和目的:
     通过20多年的临床流行病学研究,我们发现长沙是世界脑卒中的高发地区,其发病率呈缓慢上升趋势。受国家“八五”“九五”攻关课题资助,我们既往的研究发现长沙汉族人群在血压、血脂、血糖水平、体重指数这些传统的常规脑卒中危险因素无明显差异的前提下,湖南长沙地区汉族人群脑卒中的发病率仍较其他人群的发病率高。这表明除了传统的脑卒中危险因素之外,尚有其他因素影响了脑卒中的发生发展。目前认为脑卒中属于多基因疾病,遗传因素在脑卒中的发生发展中有着重要的作用。但目前脑卒中发生的具体遗传学机制仍不十分明确。我们的前期研究表明,apoH,apoB等与脂质代谢相关的基因多态现象与长沙汉族人群脑卒中相关。本研究力图寻找一种能够对脑卒中发生发展有着多重作用的基因。
     动脉粥样硬化是脑梗死和脑出血的一个共同病理过程,其形成和发展受到众多因素的影响。除了高血压、高脂血症、吸烟、饮酒等传统的脑卒中危险因素外,炎症细胞及其分泌的各种细胞因子与动脉粥样硬化的发生密切相关,如TNF、IL-6、IL-10等细胞因子和炎症介质均被证实参与了动脉粥样硬化的形成。
     TGF-β1是一种多功能细胞因子,与动脉粥样硬化斑块形成、高血压发生及血脂代谢紊乱等病理过程有关。研究表明TGFB1-800G>A、-509C>T、+869T>C三个SNP参与了TGFB1表达的调节,可能影响到TGF-β1表达水平,且三者存在强连锁不平衡(LD, linkage disequilibrium)。有研究证实TGF-β1 SNP与动脉粥样硬化形成、高血压发生有关。基于以上事实,我们推测TGFB1 SNPs亦与长沙汉族人群脑卒中可能相关。经文献检索,目前尚无有关TGFB1 SNPs及单体型分子标志与脑卒中的相关研究。
     本研究旨在通过对长沙汉族人群TGFB1的多态分布规律的研究,从遗传流行病学的角度探讨TGFB1 SNPs与长沙汉族人群脑卒中的关系,揭示长沙汉族人群脑卒中高发病率的遗传学因素,并寻找可靠的脑卒中分子遗传标记;为筛选脑卒中的高危人群提供分子流行病学依据;同时也为脑卒中的基因功能学研究、治疗及预防奠定理论基础。
     方法:
     实验方法:应用聚合酶链反应(polymerase chain reaction,PCR)、限制性片段长度多态性(restriction fragment length polymorphism, RFLP)及DNA直接测序等方法对研究人群进行-800G>A、-509C>T及+869T>C基因分型。研究对象包括:①脑梗死(cerebral infarction, CI)患者186例,其中有高血压病史患者(定义为CI+H组)和无高血压病史患者(定义为CI+WH组)分别为75例和111例;有糖尿病病史的脑梗死及无糖尿病病史的脑梗死患者分别为39例和147例;无颈动脉粥样硬化斑块患者(定义为CI+WAP组)为26例,有颈动脉斑块形成患者(定义为CI+AP组)为160例,其中软斑、硬斑及混合斑形成患者分别为68、33、59例;有脑梗死家族史的患者(定义为FCI组)为132例,无脑梗死家族史的患者(定义为NFCI组)为54例;②脑出血(intracerebral hemorrhage, CH)患者202例,其中有高血压病史患者(定义为CH+H组)和无高血压病史患者(定义为CH+WH组)分别为125例和77例;有糖尿病病史的脑出血及无糖尿病病史的脑出血患者分别为30例和172例;无颈动脉粥样硬化斑块患者(定义为CH+WAP组)为60例,有颈动脉斑块成患者(定义为CH+AP组)为142例,其中软斑、硬斑及混合斑形成患者分别为60、32、50例;有脑出血家族史的患者(定义为FCH)为104例,无脑出血家族史的患者(定义为NFCH)为98例。③160例正常对照人群。
     统计学方法:应用SPSS13.0统计软件对所获得的实验数据进行相应的统计学处理:χ2检验分析各组基因型的Hardy-Weinberg平衡吻合度;计量资料两两比较采用t检验,两组以上比较采用ANOVA方差分析;计数资料采用χ2检验或Fisher确切概率法;建立logistic回归模型,将不同的脑卒中风险因素纳入模型,计量资料如血糖、血脂、年龄等进行分层分析,研究不同基因型对脑卒中发生风险的影响;利用SHEsis软件构建TGFB1单体型,并计算TGFB1-800G>A、-509C>T、+8691>C两两之间的D'和r2值,分析三者之间连锁不平衡(linkage disequilibrium)程度及不同单体型与脑卒中的关系。
     结果:
     1.脑梗死(cerebral infarction, CI)组和脑出血(cerebral hemorrhage,CH)组分别与对照组比较,-800G>A基因型及等位基因频率分布无显著差异(P>0.05);FCI、NFCI组分别与对照组比较,-800G>A基因型及等位基因频率分布无显著差异(P>0.05);-800G>A基因型及等位基因在各组内H亚组和WH亚组之间分布差异无统计学意义(P>0.05);-800G>A基因型及等位基因在各组内AP亚组和WAP亚组之间分布无显著差异(P>0.05);各组内GG基因型携带者较A等位基因携带者TC水平低(P>0.01);对照组中GG基因型携带者LDL-C平均水平较A等位基因携带者(P<0.01)。
     2.CI组、CH组与对照组比较,-509C>T和+869T>C基因型及等位基因频率分布无统计学差异(P>0.05),FCI与对照组比较,-509T等位基因携带者及+869C等位基因携带者频率较高(P<0.05),其中-509T携带者脑梗死的患病风险为对照组的1.557倍,+869C携带者脑梗死的患病风险为对照组的1.45倍。-509C>T和+869T>C基因型及等位基因在各组内H亚组和WH亚组之间分布差异无统计学意义(P>0.05);-509C>T和+869T>C基因型及等位基因在各组内不同类型斑块亚组之间分布无显著差异(P>0.05);各组中不同类型-509C>T和+869T>C基因型携带者血浆TG、TC、HDL-C、LDL-C无显著差异(P>0.05)。
     3.CI组、CH组与对照组中,-509C>T与+869T>C均存在强连锁不平衡关系,但与-800G>A连锁不平衡不明显(D'=0.098,r2=0.000;D'=0.019; r2=0.000)。-509C>T与+869T>C构成两种主要单体型-509C/+869T和-509T/+869C。CI组和CH组分别与对照组比较,单体型频率分布无显著差异(P>0.05)。
     结论:
     1. TGFB1-509C>T及+869T>C与有脑梗死家族史的长沙汉族人群脑梗死发病可能相关,但与有脑出血家族史的长沙汉族人群脑出血发病无关,-509T和+869C等位基因可能是有脑梗死家族史的长沙汉族人群脑梗死发病的危险因子。
     2. TGFB1-800G>A与血浆中TC水平可能相关,A等位基因可能是血浆TC水平增高的一个危险因素。
     3. TGFB1-509C>T与+869T>C具有强的连锁关系,构成的单体型与长沙汉族人群脑梗死及脑出血发生无关。
Backgroud and objective:20 years of clinical epidemiological study showed that Changsha was the area of high stroke morbidity in the world. Supported by Eighth and Ninth Five-Year Plan, our previous studies showed that although there was no significant difference of the levels of blood lipid, blood glucose and BMI and other traditional risk factors, the stroke morbiditiy of Han population in Changsha area was higher than other areas. This suggests that there are some other factors in additional to the traditional risk factors. So far, it is known that stroke is multigenic disease, genetic factor play an important part in stroke. But the specific genetic machanisms of stroke are still unknown. Our previous studies showed that apoH, apoA and other gene polymorphism related with lipid metabolism were associated with the stroke of Han population in Changsha. In this study, we try to find a gene that have multiple action to stroke.
     Atherosclerosis is pathologic processes happen in both cerebral infarction and hemorrhage, which affected by many factors. Except for such as hypertension, hypelipidemia, smoking, drinking and other traditional factors, inflammatory cells and cytokine secreted by inflammatory cells are associated with the atherosclerosis. It has been proved that TNF, IL-6, IL-10 and other cytokines were related to this process.
     As a multifunctional cytokine, TGF-β1 is associated with atherosclerosis, hypertension and metabolism of lipid. Many studies showed TGFB1-800G>A,-509CT and+869T>C can regulate the expression of TGFB1 and the serum level of TGF-β1. The three SNPs are in linkage disequilibrium, they maybe affect the expression of TGFB1 togetherly. Some studies showed that the TGFB1 SNPs were related to the atherosclerosis and hypertension. Based on the fact, we hypothesis that these SNPs have association with stoke of Han population in Changsha area. Untill now, there is no related reports about the relationship between these SNPs and stroke in Changsha area.
     Through research of the TGFB1 SNP of Han population in Changsha area in this study, we will explore the relationship between the TGFB1 SNPs and the stroke in this area, reveal the genetic reason that the high morbidity of stroke in Changsha and find some dependable genetic marks of stroke. At the same time, it will provide molecular epidemiology evidence to screen the high-risk group of stroke and theoretical basis for gene function research, treatment and prevention of stroke.
     Method:The genotypes of 186 patients with cerebral infarction,202 patients with primary cerebral hemorrhage and 160 sex- and age-matched heath controls from Han population in Changsha area were detected by PCR-RFLP and direct DNA sequencing.χ2 test was used to check the Hardy-Weinberg balance of the genotype and compare the other numeration date. t test and AVONA analysis of variance was used to analysze the measurement date. Logistic regression analysis was used to evaluate the risk of onset of stroke of the subjects with different genotypes. The haplotypes and the linkage disequilibrium between TGFB1-800G>A,-509C>T and +869T>C were analyzed by SHEsis (http://analysis.bio-x.cn/myAnalysis.php). D' and r2 are used to evaluate the linkage disequilibriuim.
     Result:
     1. The distribution of-800G>A gentypes and alleles is not different between CI growp and the control (P>0.05), no difference is observed between the CH group and the control group (P>0.05). There is no difference of the distribution of-800G>A genotype and allele between the H subgroup and the WH subgroup in CI group, and also in CH and control group. When the three groups were divided into AP and WAP subgroups respectively, no differences were found between the two subgroups in each group. GG carriers had lower serum levels of TC than the A allele carriers (P<0.01), while GG carriers had lower serum level of LDL-C than A allele carries in control group(P<0.01).
     2. The frequencies of the-509C>T and +869T>C genotypes and alleles are not different between the CI and the control groups, no difference was found between the CH and the control groups(P>0.05). But the frequencies of-509T and +869C carriers in FCI is higher than control group, the stroke prevalences of the-509T carriers in FCI is 1.557 multiples compared to the control group, while the +869C carriers in FCI is 1.45 multiples compared to the control group. There is no difference of the distribution of -509C>T and +869T>C genotypes and alleles between the H subgroup and the WH subgroup in CI group, no difference was found in CH and control group(P>0.05). The frequencies of the-509C>T and +869T>C genotypes and alleles are not different among the subgroups with different atherosclerotic plaque(P>0.05). Serum levels of TG, TC, HDL-C and LDL-C of different-509C>T and +869T>C genotypes carriers are not different(P>0.05).
     3.-509C>T and +869T>C are in high linkage disequilibrium, but they are in low linkage disequilibrium with-800G>A (D'=0.098, r2=0.000; D'=0.019; r2=0.000). Two major haplotypes of TGFB1 were found in the Han people in Changsha area, they are-509C/+869T and-509T/+869C. The frequencies of the two haplotypes are not different between the CI and control growps, and are not different between the CH and control groups.
     Conclusion:
     1. TGFB1-509C>T and +869T>C are associated with cerebral infarction of the people with a family history of cerebral infarction, but are not related to cerebral hemorrhage.-509T and +869C alleles are probably the risk factors of stroke of the people with history of cerebral infarction.
     2. TGFB1-800G>A is related to the serum level of TC. A allele are probably the risk factor of high TC levels.
     3.-509C>T and+869T>C are in high linkage disequilibrium, but the haplotypes are not associated with both cerebral infarction and hemorrhage.
引文
[1]Thorvaldsen P. Stroke trends in the WHO-MONICA project. Stroke,1997, 28:500-506
    [2]许宏伟,杨期东,刘晓英,周艳宏.长沙市民脑卒中及其危险因素10年流行趋势分析.中国现代医学杂志,2003,13(9):89-91
    [3]Jian Xia, Qi-Dong Yang, Qi-Ming Yang, Hong-Wei Xu. Apolipoprotein H Gene Polymorphisms and Risk of Primary Cerebral Hemorrhage in a Chinese Population. Cerebrovasc Dis,2004,17:197-203
    [4]Qi-Dong Yang, Qi Niu, Yan-Hong Zhou, Hong-Wei Xu. Incidence of cerebral hemorrhage in the changsha community. Cerebrovasc Dis,2004,17:303-313
    [5]刘鸣.卒中防治研究证据——预防进展更加令人鼓舞.国外医学脑血管病分册,2001,9(3):195-196
    [6]杨期东,周艳红,刘运海等.长沙市脑血管病社区人群预防研究---死亡率的变化.卒中与神经疾病,2004,11:107-110.
    [7]Steve Bevan, Hugh Marku. The Genetics of Stroke. ACNR,2004,4(4):8-11.
    [8]Ge Robert A. Hegele and Martin Dichgans. Update on the Genetics of Stroke and Cerebrovascular Disease. Stroke,2007,39:252-254
    [9]Gerard C Blobe, William P Schiemann, Harvey F Lodish. Role of transforming growth factor beta in human disease. The New England Journal of Medicine, 2000,342(18):1350-1358
    [10]Massague'J. TGF-β signal transduction. Annu Rev Biochem,1998,67:753-791
    [11]Massague'J. How cells read TGF-b signals. Nat Rev Mol Cell Biol,2000,1: 169-178
    [12]Shi Y, Massague'J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell,2003,113:685-700
    [13]de Caestecker M. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev,2004,15:1-11
    [14]Dhore CR, Cleutjens JP, Lutgens E, et al. Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques. Arterioscler Thromb Vasc Biol,2001,21:1998-2003
    [15]Willette RN, Gu JL, Lysko PG, et al. BMP-2 gene expression and effects on human vascular smooth muscle cells. J Vasc Res,1999,36:120-125
    [16]Border WA, Noble NA, Yamamoto T, et al. Natural inhibitor of transforming growth factor beta protects against scarring in experimental kidney disease. Nature,1992,360 (6402):361-364.
    [17]Grainger DJ. Transforming growth factor beta and atherosclerosis:so far, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol.2004, 24(3):399-404
    [18]Cipollone F, Fazia M, Mincione G., et al. Increased expression of transforming growth factor-betal as a stabilizing factor in human atherosclerotic plaques. Stroke,2004,35(10):2253-2257
    [19]Porreca E, Di Febbo C, Mincione G, Reale M, Baccante G, Guglielmi MD, Cuccurullo F, Colletta G:Increased transforming growth factor-βproduction and gene expression by peripheral blood monocytes of hypertensive patients. Hypertension,1997,30:134-139
    [20]Zacchigna L, Vecchione C, Notte A, et al. Emilinl links TGF-beta maturation to blood pressure homeostasis. Cell,2006,124:929-942.
    [21]Ramji DP, Singh NN, Foka P, Irvine SA, Arnaoutakis K. Transforming growth factor-beta-regulated expression of genes in macrophages implicated in the control of cholesterol homoeostasis. Biochem Soc Tran,2006,34(Pt 6):1141-114
    [22]Marshall E. The hunting of the SNP. Science,1997,278:2046.
    [23]Toyoda T, Nakamura K, Yamada K, et al. SNP analyses of growth factor genes EGF, TGF beta-1, and HGF reveal haplotypic association of EGF with autism. Biochem Biophys Res Commun,2007,360(4):715-720
    [24]Grainger DJ, Kemp PR, Metcalfe JC, Liu AC, Lawn RM, Williams NR, Grace AA, Schofield PM, Chauhan A. The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis. Nat Med, 1995,1(1):74-79
    [25]Grainger DJ, Heathcote K, Chiano M, Snieder H, Kemp PR, Metcalfe JC, Carter ND, Spector TD. Genetic control of the circulating concentration of transforming growth factor type betal. Hum Mol Genet,1999,8(1):93-97
    [26]Shah R, K C, Hurley, et al. A molecular mechanism for the differential regulation of TGF-β1 expression due to the common SNP-509C-T (c.-1347C>T). Hum Genet,2006,120:461-469
    [27]Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF,
    Ponder BA, Metcalfe JCA transforming growth factorbetal signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res,2003,63(10):2610-2615
    [28]Sie MP, Uitterlinden AG, Bos MJ, Arp PP, Breteler MM, Koudstaal PJ, Pols HA, Hofman A, van Duijn CM, Witteman JC. TGF-beta 1 polymorphisms and risk of myocardial infarction and stroke:the Rotterdam Study. Stroke,2006,37(11): 2667-2671
    [29]Kim Y, Lee C. The gene encoding transforming growth factor beta 1 confers risk of ischemic stroke and vascular dementia. Stroke.2006,37 (11):2843-5
    [30]Prasad P, Tiwari AK, Kumar KM, et al. Association of TGFbetal, TNFalpha, CCR2 and CCR5 gene polymorphisms in type-2 diabetes and renal insufficiency among Asian Indians. BMC Med Genet,2007,12,8(20):1-6
    [31]Sergi Lario, Pablo Inigo, Josep M, Campistol, Esteban Poch, Francisca Rivera and Federico Oppenheimer. Restriction Enzyme-based Method for Transforming Growth factor-β1 genotyping:Nonisotopic Detection of Polymorphisms in Codons 10 and 25 and the 5'-Flanking region. Clinical Chemistry, 1999,45(8):1290-1292.
    [32]Wong TY, Poon P, Chow KM, Szeto CC, Cheung MK, Li PK. Association of transforming growth factor-beta (TGF-beta) T869C (Leu lOPro) gene polymorphisms with type 2 diabetic nephropathy in Chinese. Kidney Int.2003, 63(5):1831-1835.
    [33]中国肥胖问题工作组建议的超重和肥胖诊断分割点。中国糖尿病防治指南,2006: 14.
    [34]中国脑血管疾病防治指南.2005:8
    [35]Toyoda T, Nakamura K, Yamada K, Thanseem I, Anitha A, Suda S, Tsujii M, Iwayama Y, Hattori E, Toyota T, Miyachi T, Iwata Y, Suzuki K, Matsuzaki H, Kawai M, Sekine Y, Tsuchiya K, Sugihara G, Ouchi Y, Sugiyama T, Takei N, Yoshikawa T, Mori N. SNP analyses of growth factor genes EGF, TGF-β1, and HGF reveal haplotypic association of EGF with autism. Biochem Biophys Res Commun,2007,360(4):715-720
    [36]Kim SJ, Glick A, Sporn MB, Roberts AB. Characterization of the promoter region of the human transforming growth factor-(beta)1 gene. J Biol Chem, 1989a,264:402-408.
    [37]Dey BR, Sukhatme VP, Roberts AB, Sporn MB, Rauscher FJ Ⅲ, Kim SJ Repression of the transforming growth factor beta 1 gene by the Wilms' tumor suppressor WT1 gene product. Mol Endocrinol,1994,8:595-602
    [38]Geiser AG, Busam KJ, Kim SJ, Lafyatis R, O'Reilly MA, Webbink R, Roberts AB, Sporn MB Regulation of the transforming growth factor-beta 1 and -beta 3 promoters by transcription factor Sp1. Gene,1993,129:223-228.
    [39]Weigert C, Brodbeck K, Sawadogo M, Haring HU, Schleicher ED.Upstream stimulatory factor (USF) proteins induce human TGF-betal gene activation via the glucose-responseelement-1013/-1002 in mesangial cells:up-regulation of USF activity by the hexosamine biosynthetic pathway. J Biol Chem,2004,279: 15908-15915
    [40]Kim SJ, Glick A, Sporn MB, Roberts AB. Characterization of the promoter region of the human transforming growth factor-beta 1 gene. J Biol Chem,1989, 264(1):402-408.
    [41]Massague, J. Cell,1987 49:437-438
    [42]El Gamel A, Awad MR, Hasleton PS, Yonan NA, Hutchinson JA, Campbell CS, Rahman AH, Deiraniya AK, Sinnott PJ, Hutchinson IVTransforming growth factor-beta (TGFbeta1) genotype and lung allograft fibrosis. J Heart Lung Transplant,1999,18:517-523
    [43]Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y. Association of a T29->C polymorphism of the transforming growth factor-betal gene with genetic susceptibility to myocardial infarction in Japanese. Circulation,2000, 101:2783-2787
    [44]Awad MR, El Gamel A, Hasleton P, Turner DM, Sinnott PJ, Hutchinson IV Genotypic variation in the transforming growth factor-(beta)1 gene:association with transforming growth factor-(beta)1 production, fibrotic lung disease, and graft fibrosis after lung transplantation. Transplantation,1998,66:1014-1020.
    [45]Dunning AM, Ellis PD, McBride S, Kirschenlohr HL, Healey CS, Kemp PR, Luben RN, Chang-Claude J, Mannermaa A, Kataja V, Pharoah PD, Easton DF, Ponder BA, Metcalfe JC. A transforming growth factor beta 1 signal peptide variant increases secretion in vitro and is associated with increased incidence of invasive breast cancer. Cancer Res,2003,63:2610-2615.
    [46]Luedecking EK, DeKosky ST, Mehdi H, Ganguli M, Kamboh MI. Analysis of genetic polymorphisms in the transforming growth factor-betal gene and the risk of Alzheimer's disease. Hum Genet,2000,106:565-569.
    [47]Pulleyn LJ, Newton R, Adcock IM, Barnes PJ TGFbetal allele association with asthma severity. Hum Genet,2001,109:623-627
    [48]Saha A, Gupta V, Bairwa NK, Malhotra D, Bamezai R Transforming growth factor-beta1 genotype in sporadic breast cancer patients from India:status of enhancer, promoter,5'-untranslated-region and exon-1 polymorphisms. Eur J Immunogenet,2004,31:37-42
    [49]Silverman ES, Palmer LJ, Subramaniam V, Hallock A, Mathew S, Vallone J, Faffe DS, Shikanai T, Raby BA, Weiss ST, Shore SA. Transforming growth factor-beta(1) promoter polymorphism C-509T is associated with asthma. Am J Resp Crit Care Med 2004,169:214-219
    [50]Arkwright PD, Laurie S, Super M, Pravica V, Schwarz MJ, Webb AK, Hutchinson IV. TGF-beta(1) genotype and accelerated decline in lung function of patients with cystic fibrosis. Thorax,2000,55:459-462
    [51]Holweg CT, Baan CC, Balk AH, Niesters HG, Maat AP, Mulder PM, Weimar W The transforming growth factor-beta1 codon 10 gene polymorphism and accelerated graft vasculardisease after clinical heart transplantation. Transplantation,2001,71:1463-1467
    [52]Xaubet A, Marin-Arguedas A, Lario S, Ancochea J, Morell F, Ruiz-Manzano J, Rodriguez-Becerra E, Rodriguez-Arias JM,Inigo P, Sanz S, Campistol JM, Mullol J, Picado C. Transforming growth factor-beta1 gene polymorphisms are associated with disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med,2003,168:431-435
    [53]Shah R, Rahaman B, Hurley CK, Posch PE. Allelic diversity in the TGFB1 regulatory region:characterization of novel functional single nucleotide polymorphisms. Hum Genet,2006,119(1-2):61-74.
    [54]Silverman ES, Palmer LJ, Subramaniam V, Hallock A, Mathew S, Vallone J, Faffe DS, Shikanai T, Raby BA, Weiss ST, Shore SA. Transforming growth factor-beta(1) promoter polymorphism C-509T is associated with asthma. Am J Resp Crit Care Med 2004,169:214-219
    [55]Singh NN, Ramji DP. The role of transforming growth factor-beta in atherosclerosis. Cytokine Growth Factor Rev,2006,17(6):487-499
    [56]Singh NN, Ramji DP. The transforming growth factor-β-induced expression of the apolipoprotein E gene requires c-Jun N-terminal kinase, p38 kinase and casein kinase 2. Arterioscler Thromb Vasc Biol,2006,26:1323-9.
    [57]55 Panousis CG, Evans G, Zuckerman SH. TGF-β increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells:opposing the effects of IFN-y. J Lipid Res,2001,42:856-63.
    [58]Minami M, Kume N, Kataoka H, Morimoto M, Hayashida K, Sawamura T, et al. Transforming growth factor-β(1) increases the expression of lectin-like oxidized low-density lipoprotein receptor-1. Biochem Biophys Res Commun,2000, 272:357-61.
    [59]Draude G, Lorenz RL. TGF-b1 downregulates CD36 and scavenger receptor A but upregulates LOX-1 in human macrophages. Am J Physiol Heart Circ Physiol, 2000,278:1042-8.
    [60]Irvine SA, Foka P, Rogers SA, Mead JR, Ramji DP. A critical role for the Spl-binding sites in the transforming growth factor-β-mediated inhibition of lipoprotein lipase gene expression in macrophages. Nucl Acids Res,2005, 33:1423-34.
    [61]Nicholson AC, Hajjar DP. Transforming growth factor-β up-regulates low density lipoprotein-receptor-mediated cholesterol metabolism in vascular smooth muscle cells. J Biol Chem,1992,267:25982-7.
    [62]Argmann CA, Van Den Diepstraten CH, Sawyez CG, Edwards JY, Hegele RA,Wolfe BM, et al. Transforming growth factor-β1 inhibits macrophage cholesterol ester accumulation induced by native and oxidized VLDL remnants. Arterioscler Thromb Vase Biol,2001,21:2011-8.
    [63]Panousis CG, Evans G, Zuckerman SH. TGF-p increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells:opposing the effects of IFN-y. J Lipid Res,2001,42:856-63.
    [64]参考文献:Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med,2002,8:1235-1242.
    [65]Shashkin P, Draguler B, Ley K. Macrophage differentiation to foam cells. Curr Pharm Res,2005,11:3061-3072.
    [66]Choudhury RP, Lee JM, Greaves DR. Mechanisms of disease:macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat Clin Pract Cardiovasc Med,2005,2:309-315.
    [67]Draude G, Lorenz RL. TGF-bl downregulates CD36 and scavenger receptor A but upregulates LOX-1 in human macrophages. Am J Physiol Heart Circ Physiol, 2000,278:1042-8.
    [68]Zuckerman SH, Panousis CG, Evans GF. TGF-β reduced binding of high-density lipoproteins in murine macrophages and macrophagederived foam cells. Atherosclerosis,2001,155:79-85.
    [69]Pioli PA, Goonan KE, Wardwell K, Guyre PM. TGF-β regulation of human macrophage scavenger receptor CD163 is Smad3-dependent. J Leukoc Biol,2004, 76:500-8.
    [70]Gamble JR, Bradley S, Noack L, Vadas MA. TGF-β and endothelial cells inhibit VCAM-1 expression on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol,1995,15:949-55.
    [71]Minami M, Kume N, Kataoka H, Morimoto M, Hayashida K, Sawamura T, et al. Transforming growth factor-β(1) increases the expression of lectin-like oxidized low-density lipoprotein receptor-1. Biochem Biophys Res Commun,2000, 272:357-61.
    [72]de Souza AP, Trevilatto PC, Scarel-Caminaga RM, de Brito RB, Line SR. Analysis of the TGF-betal promoter polymorphism (C-509T) in patients with chronic periodontitis. J Clin Periodontol,2003,30:519-523
    [73]Drumm ML, Konstan MW, Schluchter MD, Handler A, Pace R, Zou F, Zariwala M, Fargo D, Xu A, Dunn JM, Darrah RJ, Dorfman R, Sandford AJ, Corey M, Zielenski J, Durie P, Goddard K, Yankaskas JR, Wright FA, Knowles MR. Genetic modiWers of lung disease in cystic Wbrosis. N Engl J Med,2005, 353:1443-1453
    [74]Kim SY, Han SW, Kim GW, Lee JM, Kang YM. TGF betal polymorphism determines the progression of joint damage in rheumatoid arthritis. Scand J Rheumatol,2004,33:389-394
    [75]Nishi H, Nakada T, Hokamura M, Osakabe Y, Itokazu O, Huang LE, Isaka K. Hypoxia-inducible factor-1 transactivates transforming growth factor-beta3 in trophoblast. Endocrinology,2004,145:4113-4118
    [76]Quarmby S, Fakhoury H, Levine E, Barber J, Wylie J, Hajeer AH, West C, Stewart A, Magee B, Kumar S. Association of transforming growth factor beta-1 single nucleotide polymorphisms with radiation-induced damage to normal tissues in breast cancer patients. Int J Radiat Biol,2003,79:137-143
    [77]Wang XL, Sim AS, Wilcken DEL. A common polymorphism of the transforming growth factor b 1 gene and coronary artery disease. Clin Sci,1998,95:745-6.
    [78]Koch W, Hoppmann P, Mueller JC, Schomig A, Kastrati A. Association of transforming growth factor-beta1 gene polymorphisms with myocardial infarction in patients with angiographically proven coronary heart disease._Clin Sci (Lond), 1998,95(6):659-67.
    [79]Syrris P, Carter ND, Metcalfe JC, Kemp PR, Grainger DJ, Kaski JC, Crossman DC, Francis SE, Gunn J, Jeffery S, Heathcote K. Transforming growth factor-betal gene polymorphisms and coronary artery disease. Clin Sci (Lond).1998,95(6):659-67
    [80]Cambien F, Ricard S, Troesch A, et al. Polymorphisms of the transforming growth factor-β1 gene in relation to myocardial infarction and blood pressure. Hypertension,1996,28:881-887.
    [81]Freedman BI, Yu H, Spray BJ, Rich SS, Rothschild CB, Bowden DW:Genetic linkage analysis of growth factor loci and end-stage renal disease in African-Americans. Kidney Int,1997,51:819-825.
    [82]Esmatjes E, Flores L, Inigo P, Lario S, Ruilope LM, Campistol JM:Effect of losartan on TGF-beta-1 and urinary albumin excretion in patients with type 2 diabetes mellitus and microalbuminuria. Nephrol Dial Transplant,2001,16:90-93.
    [83]Guetta V, Cannon RO III. Cardiovascular effects of estrogen and lipidlowering therapies in postmenopausal women. Circulation,1996,93:1928-1937.
    [84]Yoshiji Yamada. Association of a LeulOPro polymorphism of the transforming growth factor-bl with genetic susceptibility to osteoporosis and spinal osteoarthritis. Mechanisms of Ageing and Development,2000,116:113-123.
    [85]Crivello A, Giacalone A, Scola L, Forte GI, Nuzzo D, Giacconi R, Cipriano C, Candore G, Mocchegiani E, Colonna-Romano G, Lio D, Caruso C. Frequency of polymorphisms of signal peptide of TGF-betal and-1082G/A SNP at the promoter region of I1-10 gene in patients with carotid stenosis. Ann N Y Acad Sci, 2006,1067:288-93
    [86]Sie MP, Mattace-Raso FU, Uitterlinden AG, Arp PP, Hofman A, Hoeks AP, Reneman RS, Asmar R, van Duijn CM, Witteman JC. TGF-betal polymorphisms and arterial stiffness; the Rotterdam Study._J Hum Hypertens,2007,21(6):431-7.
    [87]75. Li B, Khanna A, Sharma V, Singh T, Suthanthiran M, August Ph:TGF-β1 DNA polymorphisms, protein levels and blood pressure.Hypertension,1999,33 Ⅱ-271-Ⅱ-275.
    [88]76. Rivera MA, Echegaray M, Rankinen T, Pe russe L, Rice T, Gagnon J, Leon
    AS, Skinner JS, Wilmore JH, Rao DC, Bouchard C:TGF-β1 gene-race interactions for resting and exercise blood pressure in the HERITAGE Family Study. J Appl Physiol,2001,9:1808-1813.
    [89]77. Suthanthiran M, Li B, Song JO, Ding R, Sharma VK, Schwartz JE, August Ph: Transforming growth factor-β1 hyperexpression in African- American hypertensives:a novel mediator of hypertension and/or target organ damage. PNAS,2000,97:3479-3484.
    [90]Frossard PM, Gupta A, Pravica V, Perrey C, Hutchinson IV, Lukic ML:A study of five human cytokine genes in human essential hypertension. Mol Immunol, 2002,38:969-976.
    [91]Jonth AC, Silveira L, Fingerlin TE, Sato H, Luby JC, Welsh KI, Rose CS, Newman LS, du Bois RM, Maier LA; ACCESS Group. TGF-beta 1 variants in chronic beryllium disease and sarcoidosis. J Immunol,2007,179(6):4255-62.
    [92]Crobu F, Palumbo L, Franco E, Bergerone S, Carturan S, Guarrera S, Frea S, Trevi G, Piazza A, Matullo G. Role of TGF-betal haplotypes in the occurrence of myocardial infarction in young Italian patients._BMC Med Genet,2008,9:13.
    [93]81. Wei YS, Zhu YH, Du B, Yang ZH, Liang WB, Lv ML, Kuang XH, Tai SH, Zhao Y, Zhang L. Association of transforming growth factor-β1 gene polymorphisms with genetic susceptibility to nasopharyngeal carcinoma.Clin Chim Acta,2007,380 (1-2):165-9.
    [94]Zwick ME, Cutler DJ, Chakravarti A. Patterns of genetic variationin Mendelian and complex traits. Annu Rev Genomics Hum Genet 2000,1:387-407.
    [95]Tomaszewski M, Charchar FJ, Samani NJ. Association studies in current cardiovascular genetics-functional variants, tags or both? J Hum Hypertens,2007, 21(6):425-6
    [96]Sato K, Kawasaki H, Nagayama H, Enomoto M, Morimoto C, Tadokoro K, et al. TGF-β1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. J Immunol,2000, 164:2285-95.
    [97]Hoying JB, Yin M, Diebold R, Ormsby I, Becker A, Doetschman T. Transforming growth factor β1 enhances platelet aggregation through a non-transcriptional effect on the fibrinogen receptor. J Biol Chem,1999, 274:31008-310113.
    [98]Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA,1993,770-4.
    [99]Grainger DJ, Kemp PR, Metcalfe JC, Liu AC, Lawn RM, Williams NR, et al. The serum concentration of active transforming growth factor-β is severely depressed in advanced atherosclerosis. Nat Med,1995,1:74-9.
    [100]Hering S, Jost C, Schilz H, Hellmich B, Schatz H, Pfeiffer H. Circulating transforming growth factor β1 (TGF-β1) is elevated by extensive exercise. Eur J Appl Physiol,2002,86:406-10.
    [101]Borkowski P, Robinson MJ, Kusiak JW, Borkowski A, Brathwaite C, Mergner WJ. Studies on TGF-β1 gene expression in the intima of the human aorta in regions with high and low probability of developing atherosclerotic lesions. Mod Pathol,1995,8:478-82.
    [102]Andreotti F, Porto I, Crea F, Maseri A. Inflammatory gene polymorphisms and ischaemic heart disease:review of population association studies. Heart,2002, 87:107-12.
    [1]Lusis AJ. Atherosclerosis. Nature 2000;407:233-41.
    [2]Glass CK, Witztum JL. Atherosclerosis. The road ahead. Cell,2001, 104:503-16.
    [3]Lusis AJ, Mar P, Pujakanta P. Genetics of atherosclerosis. Annu Rev Genomics Hum Genet,2004,5:189-218.
    [4]Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med,2002,8:1235-1242.
    [5]Shashkin P, Draguler B, Ley K. Macrophage differentiation to foam cells. Curr Pharm Res,2005,11:3061-3072.
    [6]Choudhury RP, Lee JM, Greaves DR. Mechanisms of disease:macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat Clin Pract Cardiovasc Med,2005,2:309-315.
    [7]Ross R. The pathology of atherosclerosis:a perspective for the 1990s. Nature 1993;362:801-9.
    [8]Ross R. Atherosclerosis-an inflammatory disease. N Engl J Med,1999,340:115-126.
    [9]Libby P.Inflammation in atherosclerosis. Nature,2002,420:868-74.
    [10]Hansson GK. Inflammation, atherosclerosis, and coronary artery disease. N Engl J Med,2005,352:1685-1695.
    [11]Libby P. Inflammation and cardiovascular disease mechanisms. Am J Clin Nutr, 2006,83:4565-4605.
    [12]Mehra VC, Ramgolam VS, Bender JR. Cytokines and cardiovascular disease. J Leukoc Biol,2005,78:805-818.
    [13]Tedgui A, Mallat Z. Cytokines in atherosclerosis:pathogenic and regulatory pathways. Physiol Rev,2006,86:515-581.
    [14]Sheikine YA, Hansson GK. Chemokines as potential therapeutic targets in atherosclerosis. Curr Drug Targets,2006,7:13-27.
    [15]Daugherty A, Webb NR, Rateri DL, King VL. Thematic review series:the immune system and atherogenesis. Cytokine regulation of macrophage function. J Lipid Res,2005,46:1812-22.
    [16]Harvey EJ, Ramji DP. Interferon-y and atherosclerosis:pro-or antiatherogenic? Cardiovasc Res,2005,67:11-20.
    [17]Massague'J. TGF-β signal transduction. Annu Rev Biochem,1998,67:753-91.
    [18]Massague'J. How cells read TGF-β signals. Nat Rev Mol Cell Biol,2000, 1:169-78.
    [19]Shi Y, Massague'J. Mechanisms of TGF-β signaling from cell membrane to the nucleus. Cell,2003,113:685-700.
    [20]de Caestecker M. The transforming growth factor-β superfamily of receptors. Cytokine Growth Factor Rev,2004,15:1-11.
    [21]Li MO, Wan YY, Sanjabi S, Robertson AK, Flavell RA. Transforming growth factor-β regulation of immune responses. Annu Rev Immunol,2006,24:99-146.
    [22]Bertolino P, Deckers M, Lebrin F, ten Dijke P. Transforming growth factor-β signal transduction in angiogenesis and vascular disorders. Chest,2005, 128:5855-905.
    [23]Kim IY, Kim MM, Kim SJ. Transforming growth factor-β:biology and clinical relevance. J Biochem Mol Biol,2005,38:1-8.
    [24]Leask A, Abraham DJ. TGF-P signaling and the fibrotic response. FASEB J, 2004,18:816-27.
    [25]Javelaud D, Mauviel A. Mammalian transforming growth factorbetas:Smad signaling and physiopathological roles. Int J Biochem Cell Biol,2004, b36:1161-1165.
    [26]Gorelik L, Flavell RA. Transforming growth factor-P in T-cell biology. Nat Rev Immunol,2002,2:46-53.
    [27]Verrecchia F, Mauviel A. Transforming growth factor-b signaling through the Smad pathway:role in extracellular matrix gene expression and regulation. J Invest Dermatol,2002,118:211-5.
    [28][28] Clark DA, Coker R. Transforming growth factor-β (TGF-b). Int J Biochem Cell Biol,1998,30:293-8.
    [29]Lawrence DA. Latent-TGF-p:an overview. Mol Cell Biochem,2001, 219:163-70.
    [30]Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF-β activation. J Cell Sci,2003,116:217-24.
    [31]Hyytiainen M, Penttinen C, Keski-Oja J. Latent TGF-β binding proteins: extracellular matrix association and roles in TGF-β activation. Crit Rev Clin Lab Sci,2004,41:233-64.
    [32]Todorovic V, Jurukovski V, Chen Y, Fontana L, Dabovic B, Rifkin DB. Latent TGF-β binding proteins. Int J Biochem Cell Biol,2005,37:38-41.
    [33]Rifkin DB. Latent transforming growth factor-β (TGF-β) binding proteins: orchestrators of TGF-β availability. J Biol Chem 2005;280:7409-12.
    [34]Massague'J. The transforming growth factor-β family. Annu Rev Cell Biol, 1990,6:597-641.
    [35]Kim SJ, Romeo D, Yoo YD, Park K. Transforming growth factor-β:expression in normal and pathological conditions. Horm Res,1994,42:5-8.
    [36]Kim SJ, Angel P, Lafyatis R, Hattori K, Kim KY, Sporn MB, et al. Autoinduction of transforming growth factor β1 is mediated by the AP-1 complex. Mol Cell Biol,1990,10:1492-7.
    [37]Sakamoto Y, Miyazaki A, Tamagawa H, Wang GP, Horiuchi S. Specific interaction of oxidized low-density lipoprotein with thrombospondin-1 inhibits transforming growth factor-β from its activation. Atherosclerosis,2005, 183:85-93.
    [38]Kojima S, Harpel PC, Rifkin DB. Lipoprotein (a) inhibits the generation of transforming growth factor β:an endogenous inhibitor of smooth muscle cell migration. J Cell Biol,1991,13:1439-45.
    [39]Grainger DJ, Byrne CD, Witchell CM, Metcalfe JC. Transforming growth factor P is sequestered into an inactive pool by lipoproteins. J Lipid Res,1997,38: 2344-52.
    [40]Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor β in human disease. N Engl J Med,2000,342:1350-8.
    [41]Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-β receptor function in the endothelium. Cardiovasc Res,2005,65:599-608.
    [42]van den Driesche S, Mummery CL, Westermann CJ. Hereditary hemorrhagic telangiectasia:an update on transforming growth factor β signaling in vasculogenesis and angiogenesis. Cardiovasc Res,2003,58:20-31.
    [43]Derynck R, Zhang YE. Smad-dependent and Smad-independent pathways in TGF-β signaling. Nature 2003,425:577-84.
    [44]Massague J, Seoane J, Wotton D. Smad transcription factors. Genes Dev,2005, 19:2783-810.
    [45]Feng XH, Derynck R. Specificity and versality in TGF-β signaling through Smads. Annu Rev Cell Dev Biol,2005,21:659-93.
    [46]Singh NN, Ramji DP. The transforming growth factor-β-induced expression of the apolipoprotein E gene requires c-Jun N-terminal kinase, p38 kinase and casein kinase 2. Arterioscler Thromb Vase Biol,2006,26:1323-9.
    [47]Moustakas A, Heldin CH. Non-Smad TGF-β signals. J Cell Sci,2005, 118:3573-84.
    [48]Bobik A, Agrotis A, Kanellakis P, Dilley R, Krushinsky A, Smirnov V, et al. Distinct patterns of transforming growth factor-P isoform and receptor expression in human atherosclerotic lesions. Colocalization implicates TGF-P in fibrofatty lesion development. Circulation,1999,99:2883-91.
    [49]Frostegard J, Ulfgren AK, Nyberg P, Hedin U, Swedenborg J,Andersson U, et al. Cytokine expression in advanced human atherosclerotic plaques:dominance of pro-inflammatory (Thl) and macrophage-stimulating cytokines. Atherosclerosis, 1999,145:33-43.
    [50]Kalinina N, Agrotis A, Antropova Y, Ilyinskaya O, Smirnov V, Tararak E, et al. Smad expression in human atherosclerotic lesions:evidence for impaired TGF-β/Smad signaling in smooth muscle cells of fibrofatty lesions. Arterioscler Thromb Vase Biol,2004,24:1391-6.
    [51]Brogi E, Wu T, Namiki A, Isner JM. Indirect angiogenic cytokinesupregulate VEGF and bFGF gene expression in vascular smoothmuscle cells, whereas hypoxia upregulates VEGF expression only. Circulation,1994,90:649-52.
    [52]Fu M, Zhang J, Zhu X, Myles DE, Willson TM, Liu X, et al. Peroxisome proliferators-activated receptor g inhibits transforming growth factor-β-induced connective tissue growth factor expression in human aortic smooth muscle cells by interfering with Smad3. J Biol Chem,2001,276:45888-94.
    [53]Xiao YG, Freire-de-Lima CG, Janssen WJ, Morimoto K, Lyu D, Bratton DL, et al. Oxidants selectively reverse TGF-P suppression of proinflammatory mediator production. J Immunol,2006,176:1209-17.
    [54]Imai K, Takeshita A, Hanazawa S. Transforming growth factor-β inhibits lipopolysaccharide-stimulated expression of inflammatory cytokines in mouse macrophages through downregulation of activation protein-1 and CD14 receptor expression. Infect Immun,2000,68:2418-23.
    [55]Di Febbo C, Baccante G, Reale M, Castellani ML, Angelini A, Cuccurullo F, et al. Transforming growth factor-β1 induces IL-1 receptor antagonist production and gene expression in rat vascular smooth muscle cells. Atherosclerosis,1998, 136:377-82.
    [56]Feinberg MW, Shimizu K, Lebedeva M, Haspel R, Takayama K, Chen Z, et al. Essential role for Smad3 in regulating MCP-1 expression and vascular inflammation. Circ Res,2004,94:601-8.
    [57]Turner M, Chantry D, Feldmann M. Transforming growth factor β induces the production of interleukin 6 by human peripheral blood mononuclear cells. Cytokine,1990,2:211-6.
    [58]Smith WB, Noack L, Khew-Goodall Y, Isenmann S, Vadas MA,Gamble JR. Transforming growth factor-β1 inhibits the production of IL-8 and the transmigration of neutrophils through activated endothelium. J Immunol,1996, 157:360-8.
    [59]Maeda H, Kuwahara H, IchimuraY, Ohtsuki M, Kurakata S, Shiraishi A. TGF-b enhances macrophage ability to promote IL-10 in normal and tumor-bearing mice. J Immunol,1995,155:4926-32.
    [60]Weiss JM, Cuff CA, Berman JW. TGF-p downmodulates cytokineinduced monocyte chemoattractant protein (MCP)-1 expression in human endothelial cells. A putative role for TGF-β in the modulation of TNF receptor expression. Endothelium,1999,6:291-302.
    [61]Taylor LM, Khachigian LM. Induction of platelet-derived growth factor B-chain by transforming growth factor-β involves transactivation by Smads. J Biol Chem, 2000,275:16709-16.
    [62]DiChiara MR, Kiely JM, Gimbrone Jr MA, Lee ME, Perrella MA, Topper JN. Inhibition of E-selectin gene expression by transforming growth factor β in endothelial cells involves coactivator integration of Smad and nuclear factor kB-mediated signals. J Exp Med 2000,192:695-704.
    [63]Bauvois B, Rouillard D, Sanceau J, Weitzerbin J. IFN-y and transforming growth factor-β1 differentially regulate fibronectin and laminin receptors of human differentiating monocytic cells. J Immunol,1992,148:3912-9.
    [64]Chen H, Lin D, Saldeen T, Mehta JL. Transforming growth factorβ1 modulates oxidatively modified LDL-induced expression of adhesion molecules:role of LOX-1. Circ Res,2001,89:1155-60.
    [65]van Royen N, Hoefer I, Buschmann I, Heil M, Kostin S, Deindl E, et al. Exogenous application of transforming growth factor β1 stimulates arteriogenesis in the peripheral circulation. FASEB J,2002,16:432-4.
    [66]Gamble JR, Bradley S, Noack L, Vadas MA. TGF-β and endothelial cells inhibit VCAM-1 expression on human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol,1995,15:949-55.
    [67]Botella LM, Sanchez-Elsner T, Rius C, Corbi A, Bemabeu C. Identification of a critical Spl site within the endoglin promoter and its involvement in the transforming growth factor-β stimulation.J Biol Chem,2001,276:34486-94.
    [68]Saura M, Zaragoza C, Cao W, Bao C, Rodriguez-Puyol M, Rodriguez-Puyol D, et al. Smad2 mediates transforming growth factor-β induction of endothelial nitric oxide synthase expression. Circ Res,2002,91:806-13.
    [69]Feinberg MW, Watanabe M, Lebedeva MA, Depina AS, Hanai J,Mammoto T, et al. Transforming growth factor-β1 inhibition of vascular smooth muscle cell activation is mediated via Smad3. J Biol Chem,2004,279:16388-93.
    [70]Feinberg MW, Cao Z, Wara AK, Lebedeva MA, Senbanerjee S, Jain MK. Kruppel-like factor 4 is a mediator of proinflammatory signaling in macrophages. J Biol Chem,2005,280:38247-58.
    [71]Argmann CA, Van Den Diepstraten CH, Sawyez CG, Edwards JY, Hegele RA,Wolfe BM, et al. Transforming growth factor-β1 inhibits macrophage cholesterol ester accumulation induced by native and oxidized VLDL remnants. Arterioscler Thromb Vasc Biol,2001,21:2011-8.
    [72]Panousis CG, Evans G, Zuckerman SH. TGF-β increases cholesterol efflux and ABC-1 expression in macrophage-derived foam cells:opposing the effects of IFN-y. J Lipid Res,2001,42:856-63.
    [73]Minami M, Kume N, Kataoka H, Morimoto M, Hayashida K, Sawamura T, et al. Transforming growth factor-β(1) increases the expression of lectin-like oxidized low-density lipoprotein receptor-1. Biochem Biophys Res Commun,2000, 272:357-61.
    [74]Draude G, Lorenz RL. TGF-b1 downregulates CD36 and scavenger receptor A but upregulates LOX-1 in human macrophages. Am J Physiol Heart Circ Physiol,2000,278:1042-8.
    [75]Irvine SA, Foka P, Rogers SA, Mead JR, Ramji DP. A critical role for the Sp1-binding sites in the transforming growth factor-β-mediated inhibition of lipoprotein lipase gene expression in macrophages. Nucl Acids Res,2005, 33:1423-34.
    [76]Nicholson AC, Hajjar DP. Transforming growth factor-β up-regulates low density lipoprotein-receptor-mediated cholesterol metabolism in vascular smooth muscle cells. J Biol Chem,1992,267:25982-7.
    [77]Fu M, Zhang J, Lin Y, Zhu X, Zhao L, Ahmad M, et al. Earlystimulation and late inhibition of peroxisome proliferator-activated receptor y (PPAR-y) gene expression by transforming growth factor β in human aortic smooth muscle cells: role of early growth-response factor-1 (Egr-1), activator protein 1 (AP1) and Smads. Biochem J,2003,370(3):1019-25.
    [78]Zuckerman SH, Panousis CG, Evans GF. TGF-β reduced binding of high-density lipoproteins in murine macrophages and macrophagederived foam cells. Atherosclerosis,2001,155:79-85.
    [79]Pioli PA, Goonan KE, Wardwell K, Guyre PM. TGF-p regulation of human macrophage scavenger receptor CD163 is Smad3-dependent. J Leukoc Biol, 2004,76:500-8.
    [80]Basoni C, Nobles M, Grimshaw A, Desgranges C, Davies D, Perretti M, et al. Inhibitory control of TGF-β1 on the activation of Rapl, CD11b and transendothelial migration of leukocytes. FASEB J,2005,19:822-4.
    [81]Adam PJ, Clesham GJ, Flynn PD, Weissberg PL. Identification and characterization of transforming growth factor-β-regulated vascular smooth muscle cell genes. Cytokine,2000,12:348-54.
    [82]Kubota K, Okazaki J, Louie O, Kent KC, Liu B. TGF-β stimulates collagen (Ⅰ) in vascular smooth muscle cells via a short element in the proximal collagen promoter. J Surg Res,2003,109:43-50.
    [83]Lawrence R, Hartmann DJ, Sonenshein GE. Transforming growth factor β1 stimulates type V collagen expression in bovine vascular smooth muscle cells. J Biol Chem,1994,269:9603-9.
    [84]Ryer EJ, Hom RP, Sakakibara K, Nakayama KJ, Nakayama K, Faries PL, et al. PKCd is necessary for Smad3 expression and transforming growth factor-β-induced fibronectin synthesis in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol,2006,26:780-6.
    [85]Ma C, Chegini N. Regulation of matrix metalloproteinases (MMPs) and their tissue inhibitors in human myometrial smooth muscle cells by TGF-β1. Mol Hum Reprod,1999,5:950-4.
    [86]Ogawa PA, Chen F, Kuang C, Chen Y. Suppression of matrix metalloproteinase-9 transcription by transforming growth factor-β is mediated by a nuclear factor-kB site. Biochem J,2004,381:413-22.
    [87]Werner F, Jain MK, Feinberg MW, Sibinga NE, Pellacani A, WieselP, et al. Transforming growth factor-β1 inhibition of macrophage activation is mediated via Smad3. J Biol Chem 2000;275:36653-8.
    [88]Feinberg MW, Jain MK, Werner F, Sibinga NE, Wiesel P, Wang H, et al. Transforming growth factor-β1 inhibits cytokine-mediated induction of human metalloelastase in macrophages. J Biol Chem,2000,275:25766-73.
    [89]Stoldt VR, Schnorr O, Schulze-Osthoff K, Scharf RE. Transforming growth factor-β1 enhances the antifibrinolytic and prothrombotic state of growing endothelial cells in a cell cycle-specific manner. FASEB J,2006,20:965-6.
    [90]Woodward RN, Finn AV, Dichek DA. Identification of intracellular pathways through which TGF-β1 upregulates PAI-1 expression. Atherosclerosis,2006, 186:92-100.
    [91]Samarakoon R, Higgins CE, Higgins SP, Kutz SM, Higgins PJ. Plasminogen activator inhibitor type-1 gene expression and induced migration in TGF-β1-stimulated smooth muscle cells is pp60(c-src)/MEK-dependent. J Cell Physiol,2005,204:236-46.
    [92]Falcone DJ, McCaffrey TA, Haimovitz-Friedman A, Garcia M. Transforming growth factor-bl stimulates macrophage urokinase expression and release of matrix-bound basic fibroblast growth factor. J Cell Physiol,1993,155:595-605.
    [93]Rama A, Matsushita T, Charolidi N, Rothery S, Dupont E, Severs NJ. Up-regulation of connexin 43 correlates with increased synthetic activity and enhanced contractile differentiation in TGF-β-treated human aortic smooth muscle cells. Eur J Cell Biol,2006,85:375-86.
    [94]Rodriguez-Pascual F, Redondo-Horcajo M, Lamas S. Functional cooperation between Smad proteins and activator protein-1 regulates transforming growth factor-β-mediated induction of endothelin-1 expression. Circ Res,2003, 92:1288-95.
    [95]Wenzel S, Schorr K, Degenhardt H, Frischkopf K, Kojda G,Wiesner RJ, et al. TGF-β(1) downregulates parathyroid hormone-related peptide (pTHrP) in coronary endothelial cells. J Mol Cell Cardiol,2001,1181-90.
    [96]Deaton RA, Su C, Valencia TG, Grant SR. Transforming growth factor-β1-induced expression of smooth muscle marker genes involves activation of PKN and p38 MAPK. J Biol Chem,2005,280:31172-81.
    [97]Ohji T, Urano H, Shirahata A, Yamagishi M, Higashi K, Gotoh S, et al. Transforming growth factor-β1 and -β2 induce down-modulation of thrombomodulin in human umbilical vein endothelial cells. Thromb Haemost, 1995,73:812-8.
    [98]Shi SC, Ju M, Liu N, Mo JR, Ney JJ, Smith LE. Transforming growth factor-β1 induction of vascular endothelial growth factor receptor 1:mechanism of pericyte-induced vascular survival in vivo. Proc Natl Acad Sci, USA 2003, 100:15859-64.
    [99]Vodovotz Y, Bogdan C, Paik J, Xie QW, Nathan C. Mechanisms of suppression of macrophage nitric oxide release by transforming growth factor β. J Exp Med, 1993,178:605-13.
    [100]Tsunawaki S, Sporn M, Ding A, Nathan C. Deactivation of macrophages by transforming growth factor-β. Nature,1998,334:260-2.
    [101]Chin BY, Petrache I, Choi AM, Choi ME. Transforming growth factor-β1 rescues serum deprivation-induced apoptosis via the mitogen- activated protein kinase (MAPK) pathway in macrophages. J Biol Chem,1999,274:11362-8.
    [102]Wahl SM, Hunt DA, Wakefield LM, McCartney-Francis N, Wahl LM, Roberts AB, et al. Transforming growth factor type β induces monocyte chemotaxis and growth factor production. Proc Natl Acad Sci USA,1987,84:5788-92.
    [103]Wahl SM, Allen JB, Weeks BS, Wong HL, Klotman PE. Transforming growth factor β enhances integrin expression and type IV collagenase secretion in human monocytes. Proc Natl Acad Sci USA,1993,90:4577-81.
    [104]Bombara C, Ignotz RA. TGF-β inhibits proliferation of and promotes differentiation of human promonocytic leukemia cells. J Cell Physiol,1992, 153:30-7.
    [105]Geissmann F, Prost C, Monnet J-P, Dy M, Brousse N, Hermine O.Transforming growth factor-β1, in the presence of granulocyte/macrophage colony-stimulating factor and interleukin 4, induces differentiation of human peripheral blood monocytes into dendritic Langerhans cells. J Exp Med,1998,187:961-6.
    [106]Kalinina N, Agrotis A, Tararak E, Antropova Y, Kanellakis P, Ilyinskaya O, et al. Cytochrome b558-dependent NAD(P)H oxidase-phox units in smooth muscle and macrophages of atherosclerotic lesions. Arterioscler Thromb Vasc Biol,2002,22:2037-43.
    [107]Greenow K, Pearce NJ, Ramji DP. The key role of apolipoprotein E in atherosclerosis. J Mol Med,2005,83:329-42.
    [108]Oram JF, Heinecke JW. ATP-binding cassette transporter A1:a cell cholesterol exporter that protects against cardiovascular disease. Physiol Rev,2005, 85:1343-72.
    [109]Marcil M, Brooks-Wilson A, Clee SM, Roomp K, Zhang LH, Yu L, et al. Mutations in the ABC1 gene in familial HDL deficiency with defective cholesterol efflux. Lancet,1999,354:1341-6.
    [110]Eck MV, Bos ST, Kaminsky WE, Orso E, Rothe G, Twisk J, et al. Leukocyte ABCA1 controls susceptibility to atherosclerosis and macrophage recruitment into tissues. Proc Natl Acad Sci USA,2002,99:6298-703.
    [111]Singaraja RR, Fievet C, Castro G, James ER, Hennuyer N, Clee SM, et al. Increased ABCA1 activity protects against atherosclerosis. J Clin Invest,2002, 110:35-42.
    [112][112] Luciani MF, Chimini G. The ATP binding cassette transporter ABC1 is required for the engulfment of corpses generated by apoptotic cell death. EMBO J,1996,15:226-35.
    [113]Eckardstein AV, Langer C, Engel T, Schaukal I, Cignarella A, Reinhardt J, et al. ATP binding cassette transporter ABCA1 modulates the secretion of apolipoprotein E from human monocytederived macrophages. FASEB J,2001, 15:1555-61.
    [114]Wang N, Lan D, ChenW, Matsuura F, Tall AR. ATP-binding cassette transporters G1 and G4 mediate cellular cholesterol efflux to highdensity lipoproteins. Proc Natl Acad Sci USA,2004,101:9774-9.
    [115]Owens GK, Kumar MS, Wamhoff BR. Molecular regulation of vascular smooth muscle cell differentiation in development and disease. Physiol Rev,2004, 84:767-801.
    [116]Zampetaki A, Zhang Z, Hu Y, Xu Q. Biomechanical stress induces IL-6 expression in smooth muscle cells via Ras/Racl-p38 MAPKNF-kB signaling pathways. Am J Physiol Heart Circ Physiol,2005,288:2946-54.
    [117]Chen. JK, Hoshi H, McKeehan WL. Transforming growth factor type b specifically stimulates synthesis of proteoglycan in human arterial smooth muscle cells. Proc Natl Acad Sci USA,1987,84:5287-91.
    [118]Schonherr E, Jarvelainen HT, Sandell LJ, Wight TN. Effects of platelet-derived growth factor and transforming growth factor-β1 on the synthesis of a large versican-like chondroitin sulfate proteoglycan by arterial smooth muscle cells. J Biol Chem,1991,266:17640-7.
    [119]Schonherr E, Jarvelainen HT, Kinsella MG, Sandell LJ, Wight TN. Platelet-derived growth factor and transforming growth factor-β1 differentially affect the synthesis of biglycan and decorin by monkey arterial smooth muscle cells. Arterioscler Thromb,1993,13:1026-36.
    [120]Edwards DR, Murphy G, Reynolds JJ, Whitham SE, Docherty AJ, Angel P, et al. Transforming growth factor β modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J,1987,6:1899-904.
    [121]Little PJ, Tannock L, Olin KL, Chait A, Wight TN. Proteoglycans synthesized by arterial smooth muscle cells in the presence of transforming growth factor-β1 exhibit increased binding to LDLs. Arterioscler Thromb Vasc Biol,2002, 22:55-60.
    [122]Mii S, Ware JA, Kent KC. Transforming growth factor-β inhibits human vascular smooth muscle cell growth and migration. Surgery,1993,114:464-70.
    [123]Grainger DJ, Kemp PR, Witchell CM, Weissberg PL, Metcalfe JC. Transforming growth factor (3 decreases the rate of proliferation of rat vascular smooth muscle cells by extending the G2 phase of the cell cycle and delays the rise in cyclic AMP before entry into M phase. Biochem J,1994,299:227-35.
    [124]Kirschenlohr HL, Metcalfe JC, Weissberg PL, Grainger DJ. Proliferation of human aortic vascular smooth muscle cells in culture is modulated by active TGF-β. Cardiovasc Res,1995,29:848-55.
    [125]Ma X, Labinaz M, Goldstein J, Miller H, Keon WJ, Letarte M, et al. Endoglin is overexpressed after arterial injury and is required for transforming growth factor-β-induced inhibition of smooth muscle cell migration. Arterioscler Thromb Vasc Biol,2005,20:2546-52.
    [126]McCaffrey TA, Consigli S, Du B, Falcone DJ, Sanborn TA, Spokojny AM, et al. Decreased type Ⅱ/type Ⅰ TGF-β receptor ratio in cells derived from human atherosclerotic lesions. Conversion from an antiproliferative to profibrotic response to TGF-β1. J Clin Invest,1995,96:2667-75.
    [127]Grainger DJ, Metcalfe JC, Grace AA, Mosedale DE. Transforming growth factor-β dynamically regulates vascular smooth muscle differentiation in vivo. J Cell Sci,1998,111:2977-88.
    [128]Grainger DJ. Transforming growth factor β and atherosclerosis:so far, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol,2004, 24:399-404.
    [129]McCaffrey TA. TGF-β and TGF-β receptors in atherosclerosis. Cytokine Growth Factor Rev,2000,11:103-14.
    [130]Stouffer GA, Owens GK. TGF-β promotes proliferation of cultured SMC via both PDGF-AA-dependent and PDGF-AA-independent mechanisms. J Clin Invest,1994,93:2048-55.
    [131]Nabel EG, Shum L, Pompili VJ, Yang ZY, San H, Shu HB, et al. Direct transfer of transforming growth factor β1 gene into arteries stimulates fibrocellular hyperplasia. Proc Natl Acad Sci USA,1993,90:10759-63.
    [132]Kanzaki T, Tamura K, Takahashi K, Saito Y, Akikusa B, Oohashi H, et al. In vivo effect of TGF-b1. Enhanced intimal thickening by administration of TGF-β1 in rabbit arteries injured with a balloon catheter. Arterioscler Thromb Vasc Biol,1995,15:1951-7.
    [133]Majesky MW, Lindner V, Twardzik DR, Schwartz SM, Reidy MA. Production of transforming growth factor-β1 during repair of arterial injury. J Clin Invest, 1991,88:904-10.
    [134]Nikol S, Isner JM, Pickering JG, Kearney M, Leclerc G, Weir L. Expression of transforming growth factor-β1 is increased in human vascular restenosis lesions. J Clin Invest,1992,90:1582-92.
    [135]Yamamoto K, Morishita R, Tomita N, Shimozato T, Nakagami H, Kikuchi A, et al. Ribozyme oligonucleotides against transforming growth factor-β inhibited neointimal formation after vascular injury in rat model:potential application of ribozyme strategy to treat cardiovascular disease. Circulation,2000, 102:1308-14.
    [136]Kobayashi K, Yokote K, Fujimoto M, Yamashita K, Sakamoto A, Kitahara M, et al. Targeted disruption of TGF-β-Smad3 signaling leads to enhanced neointimal hyperplasia with diminished matrix deposition in response to vascular injury. Circ Res,2005,96:904-12.
    [137][137] Mallat Z, Gojova A, Marchiol-Fournigault C, Esposito B, Kamate C, Merval R, et al. Inhibition of transforming growth factor-β signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res, 2001,89:930-4.
    [138]Lutgens E, Gijbels M, Smook M, Heeringa P, Gotwals P, Koteliansky VE, et al. Transforming growth factor-β mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol,2002, 22:975-82.
    [139]Cipollone F, Fazia M, Mincione G, Iezzi A, Pini B, Cuccurullo C, et al. Increased expression of transforming growth factor-β1 as a stabilizing factor in human atherosclerotic plaques. Stroke,2004,35:2253-7.
    [140]Cybulsky MI, Gimbrone MJ. Endothelial expression of a mononuclear leukocyte adhesion molecule during atherogenesis. Science,1991,251:788-91.
    [141]Dong ZM, Brown AA, Wagner DD. Prominent role of P-selectin in the development of advanced atherosclerosis in apoE-deficient mice. Circulation, 2000,101:2290-5.
    [142]Chen CC, Manning AM. TGF-b1, IL-10 and IL-4 differentially modulate the cytokine-induced expression of IL-6 and IL-8 in human endothelial cells. Cytokine,1996,8:58-65.
    [143]Takehara K, LeRoy EC, Grotendorst GR. TGF-b inhibition of endothelial cell proliferation:alteration of EGF binding and EGF induced growth-regulatory (competence) gene expression. Cell,1987,49:415-22.
    [144]Heimark RL, Twardzik DR, Schwartz SM. Inhibition of endothelial regeneration by type-β transforming growth factor from platelets. Science,1986, 233:1078-80.
    [145]Harris H, Kirschenlohr H, Szabados N, Metcalfe J. Transforming growth factor-β1 inhibits thrombin activation of endothelial cells. Cytokine,2004, 25:85-93.
    [146]Manganini M, Maier JA. Transforming growth factor β2 inhibition of hepatocyte growth factor-induced endothelial proliferation and migration. Oncogene,2000,19:123-33.
    [147]Leksa V, Godar S, Schiller HB, Fuertbauer E, Muhammad A, Slezakova K, et al. TGF-β-induced apoptosis in endothelial cells mediated by MGP/IGFII-R and mini-plasminogen. J Cell Sci,2005,118:4577-86.
    [148]Grainger DJ, Mosedale DE, Metcalfe JC, Bottinger EP. Dietary fat and reduced levels of TGF-β1 act synergistically to promote activation of the vascular endothelium and formation of lipid lesions. J Cell Sci,2000,113:2355-61.
    [149]Lefer AM, Ma XL, Weyrich AS, Scalia R. Mechanism of the cardioprotective effect of transforming growth factor β1 in feline myocardial ischemia and reperfusion. Proc Natl Acad Sci USA,1993,90:1018-22.
    [150]Li DY, Sorensen LK, Brooke BS, Urness LD, Davis EC, Taylor DG, et al. Defective angiogenesis in mice lacking endoglin. Science,1999,284:1534-7.
    [151]Larsson J, Goumans MJ, Sjostrand LJ, van Rooihen MA, Ward D, Leveen P, et al. Abnormal angiogenesis but intact hematopoietic potential in TGF-β type Ⅰ receptor-deficient mice. EMBO J,2001,20:1663-73.
    [152]Goumans MJ, Valdimarsdottir G, Itoh S, Rosendahl A, Sideras P, ten Dijke P. Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors. EMBO J,2002,21:1743-53.
    [153]Ota T, Fujii M, Sugizaki T, Ishii M, Miyazawa K, Aburatani H, et al. Targets of transcriptional regulation by two distinct type I receptors for transforming growth factor-β in human umbilical vein endothelial cells. J Cell Physiol,2002, 193:299-318.
    [154]Valdimarsdottir G, Goumans MJ, Rosendahl A, Brugman M, Itoh S, Lebrin F, et al. Stimulation of Idl expression by bone morphogenetic protein-induced activation of endothelial cells. Circulation,2002,106:2263-70.
    [155]Pece-Barbara N, Vera S, Kathirkamathamby K, Liebner S, Di Guglielmo GM, Dejana E, et al. Endoglin null endothelial cells proliferate faster and are more responsive to transforming growth factor-β1 with higher affinity receptors and an activated ALK1 pathway. J Biol Chem,2005,280:27800-8.
    [156]Jerkic M, Rivas-Elena JV, Prieto M, Carron R, Sanz-Rodriguez F, Perez-Barriocanal F, et al. Endoglin regulates nitric oxide-dependent vasodilation. FASEB J,2004,18:609-11.
    [157]Chen W, Jin W, Tian H, Sicurello P, Frank M, Orenstein JM, et al. Requirement for transforming growth factor β1 in controlling T cell apoptosis. J Exp Med, 2001,194:439-53.
    [158]Cazac BB, Roes J. TGF-β receptor controls B cell responsiveness and induction of IgA in vivo. Immunity,2000,13:443-51.
    [159]Lebman DA, Edmiston JS. The role of TGF-P in growth, differentiation, and maturation of B lymphocytes. Microbes Infect,1999,1:1297-304.
    [160]Rook AH, Kehrl JH, Wakefield LM, Roberts AB, Sporn MB, Burlington DB, et al. Effects of transforming growth factor-β on the functions of natural killer cells: depressed cytosolic activity and blunting of interferon responsiveness. J Immunol,1986,136:3916-20.
    [161]Bellone G, Aste-Amezaga M, Trinchieri G, Rodeck U. Regulation of NK cell functions by TGF-β1. J Immunol,1995,155:1066-73.
    [162]Strobl H, Knapp W. TGF-β1 regulation of dendritic cells. Microbes Infect,1999, 1:1283-90.
    [163]Sato K, Kawasaki H, Nagayama H, Enomoto M, Morimoto C, Tadokoro K, et al. TGF-β1 reciprocally controls chemotaxis of human peripheral blood monocyte-derived dendritic cells via chemokine receptors. J Immunol,2000, 164:2285-95.
    [164]Hoying JB, Yin M, Diebold R, Ormsby I, Becker A, Doetschman T. Transforming growth factor β1 enhances platelet aggregation through a non-transcriptional effect on the fibrinogen receptor. J Biol Chem,1999, 274:31008-310113.
    [165]Kulkarni AB, Huh CG, Becker D, Geiser A, Lyght M, Flanders KC, et al. Transforming growth factor β1 null mutation in mice causes excessive inflammatory response and early death. Proc Natl Acad Sci USA,1993,770-4.
    [166]Grainger DJ, Kemp PR, Metcalfe JC, Liu AC, Lawn RM, Williams NR, et al. The serum concentration of active transforming growth factor-β is severely depressed in advanced atherosclerosis. Nat Med,1995,1:74-9.
    [167]Hering S, Jost C, Schilz H, Hellmich B, Schatz H, Pfeiffer H. Circulating transforming growth factor β1 (TGF-β1) is elevated by extensive exercise. Eur J Appl Physiol,2002,86:406-10.
    [168]Borkowski P, Robinson MJ, Kusiak JW, Borkowski A, Brathwaite C, Mergner WJ. Studies on TGF-β1 gene expression in the intima of the human aorta in regions with high and low probability of developing atherosclerotic lesions. Mod Pathol,1995,8:478-82.
    [169]Andreotti F, Porto I, Crea F, Maseri A. Inflammatory gene polymorphisms and ischaemic heart disease:review of population association studies. Heart,2002, 87:107-12.
    [170]Koch W, Hoppmann P, Mueller JC, Achomig A, Kastrati A. Association of transforming growth factor-β1 gene polymorphisms with myocardial infarction in patients with angiographically proven coronary heart disease. Arterioscler Thromb Vasc Biol,2006,26:1114-9.
    [171]Grainger DJ, Kemp PR, Liu AC, Lawn RM, Metcalfe JC. Activation of transforming growth factor-β is inhibited in transgenic apolipoprotein (a) mice. Nature 1994;370:460-2.
    [172]Grainger DJ, Witchell CM, Metcalfe JC. Tamoxifen elevates transforming growth factor-P and suppresses diet-induced formation of lipid lesions in mouse aorta. Nat Med,1995,1:1067-73.
    [173]Lutgens E, Cleutjens KB, Heeneman S, Koteliansky VE, Burkly LC, Daemen MJ. Both early and delayed anti-CD40L antibody treatment induces a stable plaque phenotype. Proc Natl Acad Sci USA,2000,97:7464-9.
    [174]Koglin J, Glysing-Jensen T, Raisanen-Sokolowski A, Russell ME. Immune sources of transforming growth factor-β1 reduce transplant arteriosclerosis: insight derived from a knockout mouse model. Circ Res,1998,83:652-60.
    [175]Robertson AK, Rudling M, Zhou X, Gorelik L, Flavell RA, Hansson GK. Disruption of TGF-β signaling in T cells accelerates atherosclerosis. J Clin Invest,2003,112:1342-50.
    [176]Gojova A, Brun V, Esposito B, Cottrez F, Gourdy P, Ardouin P, et al. Specific abrogation of transforming growth factor-β signaling in T cells alters atherosclerotic lesion size and composition in mice. Blood,2003,102:4052-8.
    [1]Piek E, Heldin CH, Ten Dijke P. Specificity, diversity and regulation in TGF-beta superfamily signalling. FASEB J 1999; 13:2105-24.
    [2]Bobik A. Transforming growth factor-betas and vascular disorders. Arterioscler Thromb Vasc Biol 2006;26:1712-20.
    [3]Karsdal MA, Larsen L, Engsig MT, Lou H, Ferreras M, Lochter A,Delaisse JM, Foged NT. Matrix metalloproteinase- dependent activation of latent transforming growth factor-beta controls the conversion of osteoblasts into osteocytes by blocking osteoblast apoptosis. J Biol Chem 2002;277:44061-7.
    [4]Yuan W, Varga J. Transforming growth factor-beta repression of matrix metalloproteinase-1 in dermal fibroblasts involves Smad3. J Biol Chem 2001;276:38502-10.
    [5]Alexakis C, Mestries P, Garcia S, Petit E, Barbier V, Papy-Garcia D, Sagot MA, Barritault D, Caruelle JP, Kern P. Structurally different RGTAs modulate collagen-type expression by cultured aortic smooth muscle cells via different pathways involving fibroblast growth factor-2 or transforming growth factor-betal. FASEB J 2005; 18:1147-9.
    [6]Shi Y, Massague'J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 2003; 113:685-90.
    [7]Yu W, Murray NR, Weems C, Chen L, Guo H, Ethridge R, et al. Role of cyclooxygenase 2 in protein kinase C beta Ⅱ-mediated colon carcinogenesis. J Biol Chem 2003;278:11167-74.
    [8]Grainger DJ. Transforming growth factor beta and atherosclerosis:sofar, so good for the protective cytokine hypothesis. Arterioscler Thromb Vasc Biol 2004;24:399-404.
    [9]McCaffrey TA, Du B, Fu C, Bray PJ, Sanborn TA, Deutsch E, et al. The expression of TGF-beta receptors in human atherosclerosis:evidence for acquired resistance to apoptosis due to receptor imbalance. J Mol Cell Cardiol 1999;31:1627-42.
    [10]Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL. Distinct endocytic pathways regulate TGF-beta receptor signalling and turnover. Nat Cell Biol 2003;5:410-21.
    [11]Ten Dijke P, Hill CS. New insights into TGF-beta-Smad signalling. Trends
    Biochem Sci 2004;29:265-73.
    [12]Redondo S, Ruiz E, Santos-Gallego CG, Padilla E, Tejerina T. Pioglitazone induces vascular smooth muscle cell apoptosis through a peroxisome proliferator-activated receptor-gamma, transforming growth factor-betal, and Smad2-dependent mechanism. Diabetes 2005;54:811-7.
    [13]Yagi K, Goto D, Hamamoto T, Takenoshita S, Kato M, Miyazono K. Alternatively spliced variant of Smad2 lacking exon 3. Comparison with wild-type Smad2 and Smad3. J Biol Chem 1999;274:703-9.
    [14]Lebrin F, Deckers M, Bertolino P, Ten Dijke P. TGF-beta receptor function in the endothelium. Cardiovasc Res 2005;15:599-608.
    [15]Lebrin F, Goumans MJ, Jonker L, Carvalho RL, Valdimarsdottir G, Thorikay M, et al. Endoglin promotes endothelial cell proliferation and TGF-beta/ALK1 signal transduction. EMBO J 2004;23:4018-28.
    [16]Kamaraju AK, Roberts AB. Role of Rho/ROCK and p38 MAP kinase pathways in transforming growth factor-beta-mediated Smad-dependent growth inhibition of human breast carcinoma cells in vivo. J Biol Chem 2005;280:1024-36.
    [17]Seay U, Sedding D, Krick S, Hecker M, SeegerW, Eickelberg O. TGF-{beta}-dependent growth inhibition in primary vascular smooth muscle cells is p38-dependent. J Pharmacol Exp Ther 2005;315:1005-12.
    [18]Bhowmick NA, Ghiassi M, Aakre M, Brown K, Singh V, Moses HL. TGF-beta-induced RhoA and p160ROCK activation is involved in the inhibition of Cdc25A with resultant cell-cycle arrest. Proc Natl Acad Sci USA 2003;100:15548-53.
    [19]McGowan TA, Madesh M, Zhu Y,Wang L, Russo M, Deelman L, et al. TGF-beta-induced Ca2+ influx involves the type III IP(3) receptor and regulates actin cytoskeleton. Am J Physiol Renal Physiol 2002; 282:F910-20.
    [20]Bakin AV, Safina A, Rinehart C, Daroqui C, Darbary H, Helfman DM. A critical role of tropomyosins in TGF-beta regulation of the actin cytoskeleton and cell motility in epithelial cells. Mol Biol Cell 2004; 15:4682-94.
    [21]Besson A, Assoian RK, Roberts JM. Regulation of the cytoskeleton:an oncogenic function for CDK inhibitors? Nat Rev Cancer 2005;4:948-55.
    [22]Goodman LV, Majack RA. Vascular smooth muscle cells express distinct transforming growth factor-beta receptor phenotypes as a function of cell density in culture. J Biol Chem 1989;264:5241-4.
    [23]Zhu S, Goldschmidt-Clermont PJ, Dong C. Transforming growth factor-beta-induced inhibition of myogenesis is mediated through Smad pathway and is modulated by microtubule dynamic stability. Circ Res 2004;94:617-25.
    [24]Dong C, Li Z, Alvarez Jr R, Feng XH, Goldschmidt-Clermont PJ. Microtubule binding to Smads may regulate TGF beta activity. Mol Cell 2000;5:27-34.
    [25]Engel ME, McDonnell MA, Law BK, Moses HL. Interdependent SMAD and JNK signaling in transforming growth factor-betamediated transcription. J Biol Chem 1999;274:37413-20.
    [26]Mallat Z, Tedgui A. The role of transforming growth factor beta in atherosclerosis:novel insights and future perspectives. Curr Opin Lipidol 2002; 13:523-9.
    [27]Nillson J, Hansson GK, Shah PK. Immunomodulation of atherosclerosis: implications for vaccine development. Arterioscler Thromb Vasc Biol 2005;25:18-28.
    [28]Cottrez F, Groux H. Regulation of TGF-beta response during T cell activation is modulated by IL-10. J Immunol 2001;167:773-838.
    [29]Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000;12(2):171-81.
    [30]Marie JC, Letterio JJ, Gavin M, Rudensky AY. TGF-betal maintains suppressor function and Foxp3 expression in CD4+ CD25+ regulatory T cells. J Exp Med 2005;201:1061-7.
    [31]Ait-Oufella H, Salomon BL, Potteaux S, Robertson AK, Gourdy P, Zoll J, Merval R, Esposito B, Cohen JL, Fisson S, Flavell RA, Hansson GK, Klatzmann D, Tedgui A, Mallat Z. Natural regulatory T cells control the development of atherosclerosis in mice. Nat Med 2006;12(2):178-80.
    [32]Grainger DJ, Kemp PR, Metcalfe JC, Liu AC, Lawn RM, Williams NR, et al. The serum concentration of active transforming growth factor-beta is severely depressed in advanced atherosclerosis. Nat Med 1995; 1:174-9.
    [33]O'Neil CH, Boffa MB, Hancock MA, Pickering JG, Koschinsky ML. Stimulation of vascular smooth muscle cell proliferation and migration by apolipoprotein(a) is dependent on inhibition of transforming growth factor-beta activation and on the presence of kringle IV type 9. J Biol Chem 2004;279:55187-95.
    [34]Byrne CD, Wareham NJ, Martensz ND, Humphries SE, Metcalfe JC, Grainger DJ.
    Increasde PAI activity and PAI-1 antigen occurring with an oral fat load: associations with PAI-1 genotype and plasma active TGF-beta levels. Atherosclerosis 1998;140:45-53.
    [35]Kalinina N, Agrotis A, Antropova Y, Ilyinskaya O, Smirnov V, Tararak E, et al. Smad expression in human atherosclerotic lesions:evidence for impaired TGF-beta/Smad signaling in smooth muscle cells of fibrofatty lesions. Arterioscler Thromb Vasc Biol 2004;224:1391-6.
    [36]Topper JN, Cai J, Qiu Y, Anderson KR, Xu YY, Deeds JD, et al. Vascular MADs: two novel MAD-related genes selectively inducible by flow in human vascular endothelium. Proc Natl Acad Sci USA 1997; 19:9314-49.
    [37]McCaffrey TA, Du BH, Consigli S, Szabo P, Bray PJ, Hartner L, et al. Genomic instability in the type II TGF-beta 1 receptor gene in atherosclerotic and restenotic vascular cells. J Clin Invest 1997; 100:2182-228.
    [38]Clark KJ, Cary NR, Grace AA, Metcalfe JC. Microsatellite mutation of type II transforming growth factor-beta receptor is rare in atherosclerotic plaques. Arterioscler Thromb Vasc Biol 2001;4:555-9.
    [39]Mallat Z, Gojova A, Marchiol-Fournigault C, Esposito B, Kamate C, Merval R, et al. Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice. Circ Res 2001;89:930-40.
    [40]Lutgens E, Gijbels M, Smook M, Heeringa P, Gotwals P, Koteliansky VE, et al. Transforming growth factor-beta mediates balance between inflammation and fibrosis during plaque progression. Arterioscler Thromb Vasc Biol 2002;22:975-82.
    [41]Negishi M, Lu D, Zhang YQ, Sawada Y, Sasaki T, Kayo T, et al. Upregulatory expression of furin and transforming growth factor-beta by fluid shear stress in vascular endothelial cells. Arterioscler Thromb Vasc Biol 2001;21:785-90.
    [42]Leonarduzzi G, Sevanian A, Sottero B, Arkan MC, Biasi F, Chiarpotto E, et al. Up-regulation of the fibrogenic cytokine TGF-betal by oxysterols:a mechanistic link between cholesterol and atherosclerosis. FASEB J 2001; 15:1619-21.
    [43]Siegert A, Ritz E, Orth S, Wagner J. Differential regulation of transforming growth factor receptors by angiotensin Ⅱ and transforming growth factor-beta1 in vascular smooth muscle. J Mol Med 1999;77:437-45.
    [44]Redondo S, Santos-Gallego CG, Ganado P, Garcia M, Rico L, Del Rio M, et al. Acetylsalicylic acid inhibits cell proliferation by involving transforming growth factor-beta. Circulation 2003; 107:626-9.
    [45]Cipollone F, FaziaM, Mincione G, Iezzi A, Pini B, Cuccurullo C, et al. Increased expression of transforming growth factor-betal as a stabilizing factor in human atherosclerotic plaques. Stroke 2004;35:2253-7.
    [46]Panutsopulos D, Papalambros E, Sigala F, Zafiropoulos A, Arvanitis DL, Spandidos DA. Protein and mRNA expression levels of VEGF-A and TGF-betal in different types of human coronary atherosclerotic lesions. Int J Mol Med 2005;15:603-10.
    [47]Wang XL, Liu SX, Wilcken DE. Circulating transforming growth factor beta 1 and coronary artery disease. Cardiovasc Res 1998;34:404-10.
    [48]Laviades C, Varo N, Diez J. Transforming growth factor beta in hypertensives with cardiorenal damage. Hypertension 2000;36:517-22.
    [49]Lijnen PJ, Petrov VV, Fagard RH. Association between transforming growth factor-beta and hypertension. Am J Hypertens 2003; 16:604-11.
    [50]Chung IM, Gold HK, Schwartz SM, Ikari Y, Reidy MA, Wight TN. Enhanced extracellular matrix accumulation in restenosis of coronary arteries after stent deployment. J Am Coll Cardiol 2002; 40:2072-81.
    [51]Chamberlain J, Gunn J, Francis SE, Holt CM, Arnold ND, Cumberland DC, et al. TGF beta is active, and correlates with activators of TGF beta, following porcine coronary angioplasty. Cardiovasc Res 2001;50:125-36.
    [52]Smith JD, Bryant SR, Couper LL, Vary CP, Gotwals PJ, Koteliansky VE, et al. Soluble transforming growth factor-beta type II receptor inhibits negative remodeling, fibroblast transdifferentiation, and intimal lesion formation but not endothelial growth. Circ Res 1999;84:1212-22.
    [53]Kingston PA, Sinha S, David A, Castro MG, Lowenstein PR, Heagerty AM. Adenovirus-mediated gene transfer of a secreted transforming growth factor-beta type II receptor inhibits luminal loss and constrictive remodelling after coronary angioplasty and enhances adventitial collagen deposition. Circulation 2001; 104:2595-601.
    [54]Hristov M, Weber C. Endothelial progenitor cells:characterization, pathophysiology, and possible clinical relevance. J Cell Mol Med 2004;8:498-508.
    [55]Henrich D, Hahn P, Wahl M, Wilhelm K, Dernbach E, Dimmeler S, et al. Serum
    derived from multiple trauma patients promotes the differentiation of endothelial progenitor cells in vitro:possible role of transforming growth factor-betal and vascular endothelial growth factor 165. Shock 2004;21:13-6.
    [56]Fukuda D, Sata M, Tanaka K, Nagai R. Potent inhibitory effect of sirolimus on circulating vascular progenitor cells. Circulation 2005; 111:926-31.
    [57]Sugiyama S, Kugiyama K, Nakamura S, Kataoka K, Aikawa M, Shimizu K, Koide S, Mitchell RN, Ogawa H, Libby P. Characterization of smooth muscle-like cells in circulating human peripheral blood. Atherosclerosis 2006; 187:351-62.
    [58]Ninomiya K, Takahashi A, Fujioka Y, Ishikawa Y, Yokoyama M. Transforming growth factor-beta signaling enhances transdifferentiation of macrophages into smooth muscle-like cells. Hypertens Res 2006;29:269-76.
    [59]Annes JP, Munger JS, Rifkin DB. Making sense of latent TGF beta activation. J Cell Sci 2003; 116:217-24.
    [60]Lindschau C, Quass P, Menne J, Guler F, Fiebeler A, Leitges M, et al. Glucose-induced TGF-betal and TGF-beta receptor-1 expression in vascular smooth muscle cells is mediated by protein kinase C-alpha. Hypertension 2003;42:335-41.
    [61]Fernandez T, Amoroso S, Sharpe S, Jones GM, Bliskovski V, Kovalchuk A, et al. Disruption of transforming growth factor beta signaling by a novel ligand-dependent mechanism. J Exp Med 2004;20:1247-55.
    [62]Cambien F, Ricard S, Troesch A, Mallet C, Generenaz L, Evans A, et al. Polymorphisms of the transforming growth factor-beta 1 gene in relation to myocardial infarction and blood pressure. The Etude Cas-Temoin de l'Infarctus du Myocarde (ECTIM) Study. Hypertension 1996;28:881-7.
    [63]Yokota M, Ichihara S, Lin TL, Nakashima N, Yamada Y. Association of a T29! C polymorphism of the transforming growth factor-betal gene with genetic susceptibility to myocardial infarction in Japanese. Circulation 2002;101:2783-7.
    [64]Blobe GC, Schiemann WP, Lodish HF. Role of transforming growth factor beta in human disease. N Engl J Med 2000;342:1350-8.
    [65]Weber C. Platelets and chemokines in atherosclerosis:partners in crime. Circ Res 2005;96:612-6.
    [66]Sheng H, Shao J, O'Mahony CA, Lamps L, Albo D, Isakson PC, et al. Transformation of intestinal epithelial cells by chronic TGF-betal treatment results in downregulation of the type II TGF-beta receptor and induction of cyclooxygenase-2. Oncogene 1999;18:855-67.
    [67]Yingling JM, Blanchard KL, Sawyer JS. Development of TGF-beta signalling inhibitors for cancer therapy. Nat Rev Drug Discov 2004;3:1011-22.
    [68]Benigni A, Zoja C, Corna D, Zatelli C, Conti S, Campana M, et al. Add-on anti-TGF-beta antibody to ACE inhibitor arrests progressive diabetic nephropathy in the rat. J Am Soc Nephrol 2003;14:1816-24.
    [69]Mead AL,Wong TT, CordeiroMF, Anderson IK, Khaw PT. Evaluation of anti-TGF-beta2 antibody as a new postoperative anti-scarring agent in glaucoma surgery. Invest Ophthalmol Vis Sci 2003;44:3394-401.
    [70]Grygielko ET, Martin WM, Tweed CW, Thornton PP, Harling JD, Brooks DP, et al. Inhibition of gene markers of fibrosis with a novel inhibitor of TGF{beta}-type I receptor kinase in puromycin-induced nephritis. J Pharmacol Exp Ther 2005;313:943-51.
    [71]De Gouville AC, Boullay V, Krysa G, Pilot J, Brusq JM, Loriolle F, et al. Inhibition of TGF-beta signaling by an ALK5 inhibitor protects rats from dimethylnitrosamine-induced liver fibrosis. Br J Pharmacol 2005; 145:166-77.
    [72]Bonniaud P, Margetts PJ, Kolb M, Schroeder JA, Kapoun AM, Damm D, et al. Progressive transforming growth factor{beta} 1-induced lung fibrosis is blocked by an orally active ALK5 kinase inhibitor. Am J Respir Crit Care Med 2005;171:889-98.
    [73]Inman GJ, Nicolas FJ, Callahan JF, Harling JD, Gaster LM, Reith AD, et al. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol Pharmacol 2002;62:65-74.
    [74]Matsuyama S, Iwadate M, Kondo M, Saitoh M, Hanyu A, Shimizu K, et al. SB-431542 and Gleevec inhibit transforming growth factor-betainduced proliferation of human osteosarcoma cells. Cancer Res 2003;63:7791-8.
    [75]Jinnin M, Ihn H, Tamaki K. Characterization of SIS3, a novel specific inhibitor of Smad3, and its effect on transforming growth factor-beta 1-induced extracellular matrix expression. Mol Pharmacol 2006;69:597-607.
    [76]Porreca E, Di Febbo C, Baccante G, Di Nisio M, Cuccurullo F. Increased transforming growth factor-beta(1) circulating levels and production in human monocytes after 3-hydroxy-3-methyl-glutarylcoenzyme a reductase inhibition
    with pravastatin. J Am Coll Cardiol 2002;39:1752-7.
    [77]Guo B, Koya D, Isono M, Sugimoto T, Kashiwagi A, Haneda M. Peroxisome proliferator-activated receptor-gamma ligands inhibit S. Redondo et al./Cytokine & Growth Factor Reviews 18 (2007) 279-286 285 TGF-beta 1-induced fibronectin expression in glomerular mesangial cells. Diabetes 2004;53:200-8.
    [78]Matsumoto Y, Uwatoku T, Oi K, Abe K, Hattori T, Morishige K, et al. Long-term inhibition of rho-kinase suppresses neointimal formation after stent implantation in porcine coronary arteries:involvement of multiple mechanisms. Arterioscler Thromb Vasc Biol 2004;24:181-6.
    [79]Rumble JR, Gilbert RE, Cox A, Wu L, Cooper ME. Angiotensin converting enzyme inhibition reduces the expression of transforming growth factor-betal and type IV collagen in diabetic vasculopathy. J Hypertens 1998; 16:1603-9.
    [1]A. Bobik, Transforming growth factor-betas and vascular disorders, 2066Arterioscler. Thromb. Vasc. Biol,26 (2006) 1712-1720.
    [2]A.B. Kulkarni, S. Karlsson, Transforming growth factor-beta 1 knockout 2068mice. A mutation in one cytokine gene causes a dramatic inflammatory 2069 disease. Am. J. Pathol,143 (1993) 3-9.
    [3]L.P. Sanford, I. Ormsby, A.C. Gittenberger-de Groot, H. Sariola, et al. TGFbeta2 knockout mice have multiple developmental defects that are non-overlapping with other TGFbeta knockout phenotypes. Development,124 (1997) 2659-2670.
    [4]K.L. Stenvers, M.L. Tursky, K.W. Harder, et al. Heart and liver defects and reduced transforming growth factor beta2 sensitivity in transforming growth factor beta type III receptor-deficient embryos. Mol. Cell Biol,23 (2003) 4371-4385.
    [5]L.A. Compton, D.A. Potash, C.B. Brown, et al. Coronary vessel development is dependent on the type III transforming growth factor beta receptor, Circ. Res,101 (2007)784-791.
    [6]V. Gaussin, G.E. Morley, L. Cox, A. Zwijsen, K.M. Vance, L. Emile, Y. Tian, J. Liu, C. Hong, D. Myers, S.J. Conway, C. Depre, Y. Mishina, R.R. Behringer, M.C. Hanks, M.D. Schneider, D. Huylebroeck, G.I. Fishman, J.B. Burch, S.F. Vatner, Alk3/Bmprla receptor is required for development of the atrioventricular canal into valves and annulus fibrosus, Circ. Res,97 (2005) 219-226.
    [7]L. Song, R. Fassler, Y. Mishina, K. Jiao, H.S. Baldwin, Essentialfunctions of Alk3 during AV cushion morphogenesis in mouse embryonic hearts, Dev. Biol, 301(2007)276-286.
    [8]L. Song, W.Yan, X.Chen, C.X.Deng, Q.Wang, K. Jiao. Myocardial smad4 is essential for cardiogenesis in mouse embryos, Circ. Res,101 (2007) 277-285.
    [9]P. ten Dijke, H.M. Arthur, Extracellular control of TGF beta signalling in vascular development and disease, Nat. Rev., Mol. Cell Biol,8 (2007) 857-869.
    [10]L.A. Fernandez, F. Sanz-Rodriguez, F.J. Blanco, C. Bernabeu, L.M. Botella, Hereditary hemorrhagic telangiectasia, a vascular dysplasia affecting the TGF-beta signaling pathway, Clin. Med. Res,4 (2006) 66-78.
    [11]S.A. Abdalla, M. Letarte, Hereditary haemorrhagic telangiectasia:current views on genetics and mechanisms of disease, J. Med. Genet,43 (2006) 97-110.
    [12]C. Sabba, G. Pasculli, G.M. Lenato, P. Suppressa, P. Lastella, M. Memeo, F. Dicuonzo, G. Guant, Hereditary hemorrhagic telangiectasia:clinical 2107features in ENG and ALK1 mutation carriers, J. Thromb. Haemost.5 (2007) 1149-1157.
    [13]H.M. Arthur, J. Ure, A.J. Smith, G. Renforth, D.I.Wilson, E. Torsney, R.Charlton, D.V. Parums, T. Jowett, D.A. Marchuk, J. Burn, A.G. Diamond, Endoglin, an ancillary TGF beta receptor, is required for extraembryonicangiogenesis and plays a key role in heart development, Dev. Biol,217 (2000) 42-53.
    [14]D.W. Johnson, J.N. Berg, M.A. Baldwin, C.J. Gallione, I. Marondel, S.J.Yoon, T.T. Stenzel, M. Speer, M.A. Pericak-Vance, A. Diamond, A.E.Guttmacher, C.E. Jackson, L. Attisano, R. Kucherlapati, M.E. Porteous,D.A. Marchuk, Mutations in the activin receptor-like kinase 1 gene inhereditary haemorrhagic telangiectasia type 2, Nat. Genet,13 (1996)189-195.
    [15]J.R. Howe, M.G. Sayed, A.F. Ahmed, J. Ringold, J. Larsen-Haidle, A.Merg, F.A. Mitros, C.A. Vaccaro, G.M. Petersen, F.M. Giardiello, S.T.Tinley, L.A. Aaltonen, H.T. Lynch. The prevalence of MADH4 and BMPR1A mutations in juvenile polyposis and absence of BMPR2, BMPR1B, and ACVR1 mutations, J. Med. Genet,41 (2004) 484-491.
    [16]H.A. El-Harith el,W. Kuhnau, J. Schmidtke, D. Gadzicki, M. Ahmed, M. Krawczak, M. Stuhrmann, Hereditary hemorrhagic telangiectasia iscaused by the Q490X mutation of the ACVRL1 gene in a large Arabfamily:support of homozygous lethality, Eur. J. Med. Genet.49 (2006) 323-330.
    [17]T. Seki, J. Yun, S.P. Oh, Arterial endothelium-specific activin receptor-like kinase 1 expression suggests its role in arterialization and vascular remodeling, Circ. Res.93 (2003) 682-689.
    [18]S.P. Oh, T. Seki, K.A. Goss, T. Imamura, Y. Yi, P.K. Donahoe, L. Li, K. Miyazono, P. ten Dijke, S. Kim, E. Li, Activin receptor-like kinase lmodulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis, Proc. Natl. Acad. Sci. U. S. A,97 (2000) 2626-2631.
    [19]S.G. Cole, M.E. Begbie, G.M. Wallace, C.L. Shovlin, A new locus for hereditary haemorrhagic telangiectasia (HHT3) maps to chromosome 5, J. Med. Genet,42 (2005)577-582.
    [20]R.E. Harrison, J.A. Flanagan, M. Sankelo, S.A. Abdalla, J. Rowell, R.D. Machado, C.G. Elliott, I.M. Robbins, H. Olschewski, V. McLaughlin, E.Gruenig, F. Kermeen, M. Halme, A. Raisanen-Sokolowski, T. Laitinen,N.W. Morrell, R.C. Trembath, Molecular and functional analysis identifies ALK-1 as the predominant cause of pulmonary hypertension related to hereditary haemorrhagic telangiectasia, J. Med. Genet,40 (2003) 865-871.
    [21]K.H. Hong, T. Seki, S.P. Oh, Activin receptor-like kinase 1 is essential forplacental vascular development in mice, Lab. Invest,87 (2007) 670-679.
    [22]A. Bourdeau, M.E. Faughnan, M. Letarte, Endoglin-deficient mice, a unique model to study hereditary hemorrhagic telangiectasia, TrendsCardiovasc. Med,10 (2000)279-285.
    [23]S. Srinivasan, M.A. Hanes, T. Dickens, M.E. Porteous, S.P. Oh, L.P. Hale,D.A. Marchuk, A mouse model for hereditary hemorrhagic telangiectasia(HHT) type 2, Hum. Mol. Genet,12 (2003) 473-482.
    [24]F. Lebrin, M. Deckers, P. Bertolino, P. Ten Dijke, TGF-beta receptor function in the endothelium, Cardiovasc. Res,65 (2005) 599-608.
    [25]M.J. Goumans, G. Valdimarsdottir, S. Itoh, A. Rosendahl, P. Sideras, P. ten Dijke, Balancing the activation state of the endothelium via two distinct TGF-beta type I receptors, EMBO J,21 (2002) 1743-1753.
    [26]L.A. Fernandez, F. Sanz-Rodriguez, R. Zarrabeitia, A. Perez-Molino, R.P. Hebbel, J. Nguyen, C. Bernabeu, L.M. Botella, Blood outgrowth endo-thelial cells from Hereditary Haemorrhagic Telangiectasia patients reveal abnormalities compatible with vascular lesions, Cardiovasc. Res,68 (2005) 235-248.
    [27]N.P. Barbara, J.L. Wrana, M. Letarte, Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple membersof the transforming growth factor-beta superfamily, J. Biol. Chem.274 (1999) 584-594.
    [28]M. Scharpfenecker,M. van Dinther, Z. Liu, R.L. van Bezooijen, Q. Zhao, L. Pukac, C.W. Lowik, P. ten Dijke, BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angio-genesis, J. Cell Sci.120 (2007) 964-972.
    [29]B.A. Conley, R. Koleva, J.D. Smith, D. Kacer, D. Zhang, C. Bernabeu,C.P. Vary, Endoglin controls cell migration and composition of focaladhesions:function of the cytosolic domain, J. Biol. Chem,279 (2004) 27440-27449.
    [30]F. Sanz-Rodriguez, M. Guerrero-Esteo, L.M. Botella, D. Banville, C.P. Vary, C. Bernabeu, Endoglin regulates cytoskeletal organization throughbinding to ZRP-1, a member of the Lim family of proteins, J. Biol. Chem,279 (2004) 32858-32868. 2181
    [31]M. Jerkic, J.V. Rivas-Elena, J.F. Santibanez, M. Prieto, A. Rodriguez-Barbero, F. Perez-Barriocanal, M. Pericacho, M. Arevalo, C.P. Vary, M. Letarte, C. Bernabeu, J.M. Lopez-Novoa, Endoglin regulates cycloox-ygenase-2 expression and activity, Circ. Res,99 (2006) 248-256.
    [32]R.I. Koleva, B.A. Conley, D. Romero, K.S. Riley, J.A. Marto, A. Lux, C.P. Vary, Endoglin structure and function:determinants of endoglin phosphorylation by transforming growth factor-beta receptors, J. Biol. Chem,281 (2006) 25110-25123.
    [33]M. Guerrero-Esteo, T. Sanchez-Elsner, A. Letamendia, C. Bernabeu, Extra-cellular and cytoplasmic domains of endoglin interact with the transforming growth factor-beta receptors Ⅰ and Ⅱ, J. Biol. Chem,277 (2002) 29197-29209.
    [34]P.J. Adam, G.J. Clesham, P.L.Weissberg, Expression of endoglin mRNAand protein in human vascular smooth muscle cells, Biochem. Biophys. Res. Commun,247 (1998) 33-37.
    [35]J. Pannu, S. Nakerakanti, E. Smith, P. ten Dijke, M. Trojanowska, Transforming growth factor-beta receptor type I-dependent fibrogenic gene program is mediated via activation of Smadl and ERK1/2 pathways, J. Biol. Chem.282 (2007)10405-10413.
    [36]L. David, C. Mallet, B. Vailhe, S. Lamouille, J.J. Feige, S. Bailly, Activin receptor-like kinase 1 inhibits human microvascular endothelial cell migration: potential roles for JNK and ERK, J. Cell Physiol.213 (2007) 484-489.
    [37]J. Mo, S.J. Fang,W. Chen, G.C. Blobe, Regulation of ALK-1 signaling by the nuclear receptor LXRbeta, J. Biol. Chem.277 (2002) 50788-50794.2
    [38]B.L. Loeys, J. Chen, E.R. Neptune, D.P. Judge, M. Podowski, T. Holm, J. Meyers, C.C. Leitch, N. Katsanis, N. Sharifi, F.L. Xu, L.A. Myers, P.J. Spevak, D.E. Cameron, J. De Backer, J. Hellemans, Y. Chen, E.C. Davis, C.L. Webb, W. Kress, P. Coucke, D.B. Rifkin, A.M. De Paepe, H.C. Dietz, A syndrome of altered cardiovascular, craniofacial, neurocognitive and skeletal development caused by mutations in TGFBR1 or TGFBR2, Nat. Genet.37 (2005) 275-281.2213
    [39]H. Pannu, N. Avidan, V. Tran-Fadulu, D.M. Milewicz, Genetic basis of thoracic aortic aneurysms and dissections:potential relevance to abdom-inal aortic aneurysms, Ann. N. Y. Acad. Sci.1085 (2006) 242-255.
    [40]G. Matyas, E. Arnold, T. Carrel, D. Baumgartner, C. Boileau, W. Berger,2B. Steinmann, Identification and in silico analyses of novel TGFBR1 and TGFBR2 mutations in Marfan syndrome-related disorders, Hum. Mutat.27 (2006) 760-769.
    [41]P.J. Coucke, A. Willaert, M.W. Wessels, B. Callewaert, N. Zoppi, J. De Backer, J.E. Fox, G.M. Mancini, M. Kambouris, R. Gardella, F. Facchetti, P.J.Willems, R. Forsyth, H.C. Dietz, S. Barlati, M. Colombi, B. Loeys, A. De Paepe, Mutations in the facilitative glucose transporter GLUT10 alter angiogenesis and cause arterial tortuosity syndrome, Nat. Genet.38 (2006) 452-457.
    [42]G. Lagna, P.H. Nguyen, W. Ni, A. Hata, BMP-dependent activation of caspase-9 and caspase-8 mediates apoptosis in pulmonary artery smooth muscle cells, Am. J. Physiol., Lung Cell. Mol. Physiol.291 (2006) L1059-L1067.
    [43]E.D. Austin, J.E. Loyd, Genetics and mediators in pulmonary arterial hypertension, Clin. Chest Med.28 (2007) 43-57
    [44]N.W. Morrell, Pulmonary hypertension due to BMPR2 mutation:a new paradigm for tissue remodeling? Proc. Am. Thorac. Soc.3 (2006) 680-686.
    [45]R.D. Machado, M.A. Aldred, V. James, R.E. Harrison, B. Patel, E.C. Schwalbe, E. Gruenig, B. Janssen, R. Koehler, W. Seeger, O. Eickelberg, H. Olschewski, C.G. Elliott, E. Glissmeyer, J. Carlquist, M. Kim, A. Torbicki, A. Fijalkowska, G. Szewczyk, J. Parma, M.J. Abramowicz, N. Galie, H. Morisaki, S. Kyotani, N. Nakanishi, T. Morisaki, M. Humbert, G. Simonneau, O. Sitbon, F. Soubrier, F. Coulet, N.W. Morrell, R.C. Trembath, Mutations of the TGF-beta type Ⅱ receptor BMPR2 in pulmonary arterial hypertension, Hum. Mutat.27 (2006) 121-132.
    [46]R.C. Trembath, J.R. Thomson, R.D. Machado, N.V. Morgan, C. Atkinson, I. Winship, G. Simonneau, N. Galie, J.E. Loyd, M. Humbert, W.C. Nichols, N.W. Morrell, J. Berg, A. Manes, J. McGaughran, M.Pauciulo, L. Wheeler, Clinical and molecular genetic features of pulmonary hypertension in patients with hereditary hemorrhagictelangiectasia, N. Engl. J. Med.345 (2001) 325-334.
    [47]H. Beppu, M. Kawabata, T. Hamamoto, A. Chytil, O. Minowa, T. Noda,K. Miyazono, BMP type Ⅱ receptor is required for gastrulation and early development of mouse embryos, Dev. Biol.221 (2000) 249-258.
    [48]E.C. Delot, M.E. Bahamonde, M. Zhao, K.M. Lyons, BMP signaling isrequired for septation of the outflow tract of the mammalian heart,Development 130 (2003) 209-220.
    [49]D.Liu, J.Wang, B. Kinzel, M. Mueller, X. Mao, R. Valdez, Y. Liu, E. Li,Dosage-dependent requirement of BMP type Ⅱ receptor for maintenance of
    vascular integrity, Blood 110 (2007) 1502-1510.
    [50]H. Beppu, F. Ichinose, N. Kawai, R.C. Jones, P.B. Yu, W.M. Zapol, K.Miyazono, E. Li, K.D. Bloch, BMPR-Ⅱ heterozygous mice have mildpulmonary hypertension and an impaired pulmonary vascular remodeling response to prolonged hypoxia, Am. J. Physiol., Lung Cell. Mol. Physiol.287 (2004) L1241-L1247.
    [51]Y. Song, J.E. Jones, H. Beppu, J.F. Keaney Jr., J. Loscalzo, Y.Y. Zhang, Increased susceptibility to pulmonary hypertension in heterozygous BMPR2-mutant mice, Circulation 112 (2005) 553-562.
    [52]J. West, K. Fagan, W. Steudel, B. Fouty, K. Lane, J. Harral, M. Hoedt-Miller, Y. Tada, J. Ozimek, R. Tuder, D.M. Rodman, Pulmonaryhypertension in transgenic mice expressing a dominant-negative BMPRIIgene in smooth muscle, Circ. Res. 94(2004)1109-1114.
    [53]A.M. Reynolds, W. Xia, M.D. Holmes, S.J. Hodge, S. Danilov, D.T.Curiel, N.W. Morrell, P.N. Reynolds, Bone morphogenetic protein type 2receptor gene therapy attenuates hypoxic pulmonary hypertension, Am. J.Physiol., Lung Cell. Mol. Physiol.292 (2007) L1182-L1192.
    [54]A. Zakrzewicz, M. Hecker, L.M. Marsh, G. Kwapiszewska, B. Nejman,L. Long, W. Seeger, R.T. Schermuly, N.W. Morrell, R.E. Morty, O.Eickelberg, Receptor for activated C-kinase 1, a novel interaction partnerof type II bone morphogenetic protein receptor, regulates smooth musclecell proliferation in pulmonary arterial hypertension, Circulation 115 (2007) 2957-2968.
    [55]M. Hagen, K. Fagan,W. Steudel, M. Carr, K. Lane, D.M. Rodman, J.West,Interaction of interleukin-6 and the BMP pathway in pulmonary smoothmuscle,Am. J. Physiol., Lung Cell.Mol. Physiol.292 (2007) L1473-L1479.
    [56]L. Long, M.R. MacLean, T.K. Jeffery, I. Morecroft, X. Yang, N.Rudarakanchana, M. Southwood, V. James, R.C. Trembath, N.W.Morrell, Serotonin increases susceptibility to pulmonary hypertensionin BMPR2-deficient mice, Circ. Res.98 (2006)818-827.
    [57]J. Newstead, P. von Dadelszen, L.A. Magee, Preeclampsia and futurecardiovascular risk, Expert Rev. Cardiovasc. Ther.5 (2007) 283-294.
    [58]S. Venkatesha, M. Toporsian, C. Lam, J. Hanai, T. Mammoto, Y.M. Kim,Y. Bdolah, K.H. Lim, H.T. Yuan, T.A. Libermann, I.E. Stillman, D.Roberts, P.A. D'Amore, F.H. Epstein, F.W. Sellke, R. Romero, V.P.Sukhatme, M. Letarte, S.A. Karumanchi, Soluble endoglin contributes tothe pathogenesis of preeclampsia, Nat. Med.12 (2006) 642-649.
    [59]R.J. Levine, C. Lam, C. Qian, K.F. Yu, S.E. Maynard, B.P. Sachs, B.M.Sibai, F.H. Epstein, R. Romero, R. Thadhani, S.A. Karumanchi, Solubleendoglin and other circulating antiangiogenic factors in preeclampsia,N. Engl. J. Med.355 (2006)992-1005.
    [60]C.J. Robinson, D.D. Johnson, Soluble endoglin as a second-trimestermarker for preeclampsia, Am. J. Obstet. Gynecol.197 (2007) e171-e175174.
    [61]A. Bobik, A. Agrotis, P. Kanellakis, R. Dilley, A. Krushinsky, V.Smirnov, E. Tararak, M. Condron, G. Kostolias, Distinct patterns oftransforming growth factor-beta isoform and receptor expression inhuman atherosclerotic lesions. Colocalization implicates TGF-beta infibrofatty lesion development, Circulation 99(1999)2883-2891.
    [62]F. Cipollone, M. Fazia, G. Mincione, A. Iezzi, B. Pini, C. Cuccurullo, S.Ucchino, F. Spigonardo, M. DiNisio, F. Cuccurullo,A.Mezzetti, E. Porreca,Increased expression of transforming growth factor-betal as a stabilizingfactor in human atherosclerotic plaques, Stroke 35 (2004) 2253-2257.
    [63]D.J. Grainger, P.R. Kemp, A.C. Liu, R.M. Lawn, J.C. Metcalfe, Activation of transforming growth factor-beta is inhibited in transgenic apolipoprotein(a) mice, Nature 370 (1994) 460-462.
    [64]E. Lutgens, M. Gijbels, M. Smook, P. Heeringa, P. Gotwals, V.E. 2314Koteliansky, M.J. Daemen, Transforming growth factor-beta mediates 2315balance between inflammation and fibrosis during plaque progression, Arterioscler. Thromb. Vase. Biol.22 (2002) 975-982.
    [65]Z. Mallat, A. Gojova, C. Marchiol-Fournigault, B. Esposito, C. Kamate, R. Merval, D. Fradelizi, A. Tedgui, Inhibition of transforming growth factor-beta signaling accelerates atherosclerosis and induces an unstable plaque phenotype in mice, Circ. Res.89 (2001) 930-934.
    [66]A.K. Robertson, M. Rudling, X. Zhou, L. Gorelik, R.A. Flavell, G.K. Hansson, Disruption of TGF-beta signaling in T cells acceleratesatherosclerosis, J. Clin. Invest.112 (2003) 1342-1350
    [67]D.J. Grainger, D.E. Mosedale, J.C. Metcalfe, E.P. Bottinger, Dietary fat and reduced levels of TGFbetal act synergistically to promote activation of the
    vascular endothelium and formation of lipid lesions, J. Cell Sci.113 (Pt 13) (2000) 2355-2361.
    [68]D.J. Grainger, C.M. Witchell, J.C. Metcalfe, Tamoxifen elevates transforming growth factor-beta and suppresses diet-induced formation of lipid lesions in mouse aorta, Nat. Med.1 (1995) 1067-1073.
    [69]T:A. McCaffrey, B. Du, S. Consigli, P. Szabo, P.J. Bray, L. Hartner, B.B. Weksler, T.A. Sanborn, G. Bergman, H.L. Bush Jr., Genomic instability in the type II TGF-betal receptor gene in atherosclerotic and restenotic 2vascular cells, J. Clin. Invest.100 (1997) 2182-2188.
    [70]T.A. McCaffrey, S. Consigli, B. Du, D.J. Falcone, T.A. Sanborn, A.M. Spokojny, H.L. Bush Jr., Decreased type II/type I TGF-beta receptor ratio in cells derived from human atherosclerotic lesions. Conversion from an antiproliferative to profibrotic response to TGF-betal, J. Clin. Invest.96 (1995) 2667-2675.
    [71]D. Li, Y. Liu, J. Chen, N. Velchala, F. Amani, A. Nemarkommula, K. Chen, H. Rayaz, D. Zhang, H. Liu, A.K. Sinha, F. Romeo, P.L. Hermonat, J.L. Mehta, Suppression of atherogenesis by delivery of TGFbetalACT using adeno-associated virus type 2 in LDLR knockout mice, Biochem. Biophys. Res. Commun.344 (2006) 701-707
    [72]F. Cambien, S. Ricard, A. Troesch, C. Mallet, L. Generenaz, A. Evans, D. Arveiler, G. Luc, J.B. Ruidavets, O. Poirier, Polymorphisms of the trans-forming growth factor-beta 1 gene in relation to myocardial infarction 2and blood pressure. The Etude Cas-Temoin de l'Infarctus du Myocarde (ECTIM) Study, Hypertension 28(1996)881-887.
    [73]W. Koch, P. Hoppmann, J.C. Mueller, A. Schomig, A. Kastrati, Asso-ciation of transforming growth factor-beta1 gene polymorphisms with myocardial infarction in patients with angiographically proven coronary 2353heart disease, Arterioscler. Thromb. Vasc. Biol.26 (2006) 1114-1119.2354
    [74]M. Yokota, S. Ichihara, T.L. Lin, N. Nakashima, Y. Yamada, Association 2355of a T29->C polymorphism of the transforming growth factor-betal gene 2356with genetic susceptibility to myocardial infarction in Japanese, Circulation101 (2000) 2783-2787.
    [75]M.P. Sie, A.G. Uitterlinden, M.J. Bos, P.P. Arp, M.M. Breteler, P.J. Koudstaal, H.A. Pols, A. Hofman, C.M. van Duijn, J.C. Witteman, TGF-beta 1 polymorphisms and risk of myocardial infarction and stroke:theRotterdam Study, Stroke 37 (2006) 2667-2671.
    [76]E.Y. Wang, E.Y. Ma, T.K. Woodruff, Activin signal transduction in the fetal rat adrenal gland and in human H295R cells, J. Endocrinol.178 (2003) 137-148.
    [77]C.R. Dhore, J.P. Cleutjens, E. Lutgens, K.B. Cleutjens, P.P. Geusens, P.J.Kitslaar, J.H. Tordoir, H.M. Spronk, C. Vermeer, M.J. Daemen,Differential expression of bone matrix regulatory proteins in human atherosclerotic plaques, Arterioscler. Thromb. Vasc. Biol.21 (2001) 1998-2003.
    [78]K. Bostrom, K.E. Watson, S. Horn, C. Wortham, I.M. Herman, L.L. Demer, Bone morphogenetic protein expression in human atherosclerotic lesions, J. Clin. Invest. 91(1993)1800-1809.
    [79]M.R. Ward, A. Agrotis, P. Kanellakis, R. Dilley, G. Jennings, A. Bobik, Inhibition of protein tyrosine kinases attenuates increases in expression of transforming growth factor-beta isoforms and their receptors following arterial injury, Arterioscler. Thromb. Vasc. Biol.17 (1997) 2461-2470.
    [80]E.G. Nabel, L. Shum, V.J. Pompili, Z.Y. Yang, H. San, H.B. Shu, S. Liptay, L. Gold, D. Gordon, R. Derynck, et al., Direct transfer of trans-forming growth factor beta 1 gene into arteries stimulates fibrocellular hyperplasia, Proc. Natl. Acad. Sci. U. S. A.90 (1993) 10759-10763.
    [81]M. Ruiz-Ortega, J. Rodriguez-Vita, E. Sanchez-Lopez, G. Carvajal, J.Egido, TGF-beta signaling in vascular fibrosis, Cardiovasc. Res.74(2007) 196-206.
    [82]H. Lim, Y.Z. Zhu, Role of transforming growth factor-beta in theprogression of heart failure, Cell. Mol. Life Sci.63 (2006) 2584-2596.
    [83]K. Yamamoto, R. Morishita, N. Tomita, T. Shimozato, H. Nakagami, A.Kikuchi, M. Aoki, J. Higaki, Y. Kaneda, T. Ogihara, Ribozyme oligo-nucleotides against transforming growth factor-beta inhibited neointimalformation after vascular injury in rat model:potential application ofribozyme strategy to treat cardiovascular disease, Circulation 102 (2000)1308-1314.
    [84]M.R. Ward, A. Agrotis, P. Kanellakis, J. Hall, G. Jennings, A. Bobik,Tranilast prevents activation of transforming growth factor-beta system,leukocyte accumulation, and neointimal growth in porcine coronary arteriesafter stenting, Arterioscler. Thromb. Vasc. Biol.22 (2002) 940-948.
    [85]C.M. Mallawaarachchi, P.L. Weissberg, R.C. Siow, Smad7 gene transferattenuates adventitial cell migration and vascular remodeling afterballoon injury, Arterioscler. Thromb. Vasc. Biol.25 (2005) 1383-1387.
    [86]L. Zacchigna, C. Vecchione, A. Notte, M. Cordenonsi, S. Dupont, S.Maretto, G. Cifelli, A. Ferrari, A. Maffei, C. Fabbro, P. Braghetta, G.Marino, G. Selvetella, A. Aretini, C. Colonnese, U. Bettarini, G. Russo,S. Soligo, M. Adorno, P. Bonaldo, D. Volpin, S. Piccolo, G. Lembo, G.M.Bressan, Emilin1 links TGF-beta maturation to blood pressure home-ostasis, Cell 124 (2006) 929-942.
    [87]P. Lavoie, G. Robitaille, M. Agharazii, S. Ledbetter, M. Lebel, R.Lariviere, Neutralization of transforming growth factor-beta attenuateshypertension and prevents renal injury in uremic rats, J. Hypertens.23(2005) 1895-1903.
    [88]B. Li, A. Khanna, V. Sharma, T. Singh, M. Suthanthiran, P. August, TGF-betal DNA polymorphisms, protein levels, and blood pressure,Hypertension 33 (1999) 271-275.
    [89]S. Rosenkranz, TGF-betal and angiotensin networking in cardiacremodeling, Cardiovasc. Res.63 (2004) 423-432
    [90]G. Wolf, Renal injury due to renin-angiotensin-aldosterone systemactivation of the transforming growth factor-beta pathway, Kidney Int.70(2006) 1914-1919.
    [91]T. Naito, T. Masaki, D.J. Nikolic-Paterson, C. Tanji, N. Yorioka, N.Kohno, Angiotensin II induces thrombospondin-1 production in humanmesangial cells via p38 MAPK and JNK:a mechanism for activation oflatent TGF-betal, Am. J. Physiol., Renal Physiol.286 (2004) F278-F287.
    [92]S. Wenzel, G. Taimor, H.M. Piper, K.D. Schluter, Redox-sensitiveintermediates mediate angiotensin II-induced p38 MAP kinase activation,AP-1 binding activity, and TGF-beta expression in adult ventricularcardiomyocytes, FASEB J.15 (2001) 2291-2293.
    [93]M. Ruiz-Ortega, O. Lorenzo, J. Egido, Angiotensin III up-regulates genesinvolved in kidney damage in mesangial cells and renal interstitialfibroblasts, Kidney Int. (Suppl 68) (1998) S41-S45.
    [94]J. Yuan, R. Jia, Y. Bao, Aldosterone up-regulates production ofplasminogen activator inhibitor-1 by renal mesangial cells, J. Biochem.Mol. Biol.40 (2007) 180-188.
    [95]A. Benigni, C. Zoja, D. Corna, C. Zatelli, S. Conti, M. Campana, E.Gagliardini, D. Rottoli, C. Zanchi, M. Abbate, S. Ledbetter, G. Remuzzi,Add-on anti-TGF-beta antibody to ACE inhibitor arrests progressivediabetic nephropathy in the rat, J. Am. Soc. Nephrol.14 (2003)1816-1824
    [96]J. Schultz Jel, S.A. Witt, B.J. Glascock, M.L. Nieman, P.J. Reiser, S.L.Nix, T.R. Kimball, T. Doetschman, TGF-betal mediates the hypertrophiccardiomyocyte growth induced by angiotensin Ⅱ, J. Clin. Invest.109(2002) 787-796.
    [97]C.T. Holweg, C.C. Baan, H.G. Niesters, P.J. Vantrimpont, P.G. Mulder,A.P. Maat, W. Weimar, A.H. Balk, TGF-betal gene polymorphisms inpatients with end-stage heart failure, J. Heart Lung Transplant.20 (2001)979-984.Q3
    [98]N. Nakano, H. Hori, M. Abe, H. Shibata, T. Arimura, T. Sasaoka, M.Sawabe, K. Chida, T. Arai, K.I. Nakahara, T. Kubo, K. Sugimoto, T.Katsuya, T. Ogihara, Y. Doi, T. Izumi, A. Kimura, Interaction of BMP10with Tcap may modulate the course of hypertensive cardiac hypertrophy,Am. J. Physiol., Heart Circ. Physiol. (2007).
    [99]H. Chen, S. Shi, L. Acosta, W. Li, J. Lu, S. Bao, Z. Chen, Z. Yang, M.D. 2450Schneider, K.R. Chien, S.J. Conway, M.C. Yoder, L.S. Haneline, D. 2451 Franco, W. Shou, BMP10 is essential for maintaining cardiac growth 2452during murine cardiogenesis, Development 131 (2004) 2219-2231.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700