Th17细胞及IL-17在幽门螺杆菌感染中的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
幽门螺杆菌(Helicobacter pylori,H. pylori)是一种螺旋状、微需氧革兰阴性杆菌,主要定植于人胃粘膜,已造成全球50%以上人口感染。H. pylori感染是慢性胃炎、消化性溃疡及胃粘膜相关淋巴组织淋巴瘤(MALT)等疾病的重要致病因子,与胃癌的发生密切相关,已被WHO列为Ⅰ类致癌因子。H. pylori感染可以引起机体较强烈的天然和获得性免疫应答,但自然感染H. pylori后的免疫反应并不能清除细菌,反而由于持续感染导致胃粘膜免疫病理损害。目前,H. pylori慢性持续性感染的机理仍不十分清楚。
     CD4+T细胞即Th细胞在H. pylori感染的免疫应答中发挥重要作用,Th细胞被激活后,通过不同的分化途径分化为效应性Th细胞,获得特定的生物学功能,根据其产生细胞因子和生物学功能的不同,传统上将效应性CD4+T细胞分为Th1和Th2亚群。H. pylori感染通常表现为粘膜组织内特异性CD4+T细胞增加,T细胞主要产生IL-2、IFN-γ、IL-12等细胞因子,提示为Thl型免疫应答。现多认为Thl型免疫应答参与了H. pylori感染慢性炎症的进程,并导致胃粘膜损伤甚至溃疡,但仅仅Th1型免疫应答并不能完全解释H. pylori感染后胃炎的发生。
     近年研究发现一类不同于Th1和Th2细胞的Th细胞亚群,此细胞亚群分泌IL-17、IL-6,IL-22和IL-21,而不分泌IL-4和IFN-γ,被命名为Th17细胞亚群。Thl7细胞主要介导慢性炎症,在自身免疫病、炎症性疾病及防御粘膜胞外菌感染中发挥重要作用。Thl7细胞的发现及其分化和功能的研究,有助于我们对以慢性炎症为机制的疾病的理解和阐明,为慢性炎症疾病的免疫防治提供了新的思路。那么Th17细胞在H. pylori感染过程中呈现什么样的应答规律,在H. pylori感染中发挥什么样的功能呢?目前还不清楚。
     【研究目的】
     1.本研究拟以Th17细胞及其主要效应因子IL-17作为研究的主要对象,研究其在H. pylori感染中的应答规律;
     2.初步明确Th17细胞在H. pylori慢性感染中的作用及初步机制探讨。
     【研究方法】
     1.建立H. pylori感染BALB/c小鼠模型,在H. pylori感染后不同时间点处死小鼠,取胃组织提取RNA检测细胞因子mRNA水平变化,提取胃组织蛋白,ELISA检测细胞因子蛋白水平变化,取小鼠的脾,肠系膜淋巴结,胃旁淋巴结分离淋巴细胞后,细胞内因子染色,FCM检测Th1,Th2和Th17细胞应答。
     2.基因工程方法制备GST-IL-17融合蛋白,免疫家兔制备抗IL-17抗体,鉴定其中和IL-17的活性。口服灌胃H. pylori前腹腔注射抗IL-17抗体,real-time PCR检测阻断IL-17效应后H. pylori定植量的变化,H&E染色检测胃组织炎症;并采用AdmIL-17口服灌胃后感染H. pylori,检测调控IL-17高表达对H. pylori定植量及胃组织炎症的影响。
     3.培养小鼠胃上皮细胞(MFC),加入IL-17刺激24 h,收集细胞,抽提RNA,real-time PCR检测基质金属蛋白酶(MMP )和趋化因子的变化,并在上述IL-17阻断和高表达模型中检测MMP和趋化因子的变化。
     【研究结果】
     1. Th17细胞及相关细胞因子在H. pylori感染中的应答规律
     1.1 H. pylori感染组的小鼠胃组织中IFN-γ和IL-17的表达在mRNA及蛋白水平均显著增高,而IL-4的表达在蛋白水平没有显著的变化。调控Th1和Th17细胞应答的细胞因子IL-12和IL-23的表达在H. pylori感染后也有显著升高。
     1.2通过流式细胞技术检测Th细胞的频率发现:H. pylori感染小鼠的脾淋巴细胞中H. pylori特异性的Th1和Th17细胞的比率显著高于正常小鼠的脾淋巴细胞,而Th2细胞应答变化不显著。提示H. pylori感染可以诱导特异性的Th1和Th17细胞应答。
     1.3 Th细胞应答呈现动态变化:H. pylori感染后7 d,在肠系膜淋巴结检测到Th1,Th2及Th17细胞的应答,在脾淋巴细胞中,Th17细胞在14 d开始增多,21 d达到高峰,Th1细胞在21 d开始增多,而Th2细胞在整个感染进程中没有显著变化。在胃旁淋巴结中Th细胞的应答较晚在28 d出现应答,其Th1及Th17细胞应答的规律与脾的情况类似。脾和胃旁淋巴结的淋巴细胞中Th细胞应答显示Th17细胞应答要早于Th1细胞应答,并且不同淋巴器官中Th细胞应答的时间提示肠系膜淋巴结可能是H. pylori激发特异性免疫应答较早的场所。
     2. Th17/IL-17促进H. pylori的定植以及胃组织炎症
     2.1兔抗IL-17抗体处理组的小鼠H. pylori定植量及胃组织炎症显著均显著低于对照IgG处理组小鼠(P < 0.05)。结果提示中和IL-17的活性有助于H. pylori的清除并减轻炎症,说明Th17/IL-17途径可能削弱了抗H. pylori感染的宿主防御。
     2.2我们采用AdmIL-17感染胃组织上调IL-17的表达后再感染H. pylori,检测H. pylori定植量和胃组织炎症的变化。AdmIL-17处理小鼠,与AdLuc和PBS处理组相比,在H. pylori感染后显著增加H. pylori的定植量(P < 0.01),而AdLuc处理组与PBS处理组相比,H. pylori的定植量没有显著变化(P > 0.05)。H&E染色切片显示,AdmIL-17组小鼠胃组织炎症程度强于AdLuc处理组(P < 0.0125),而AdLuc处理组小鼠的胃粘膜炎症与PBS组相比没有显著性变化(P > 0.05)。这些结果显示Th17 / IL-17可能增加了宿主对H. pylori感染的敏感性。
     3. Th17细胞/IL-17在H. pylori感染中的作用机制初探
     3.1小鼠胃上皮细胞系MFC细胞在IL-17的刺激下,MMP-2,MMP-3,MMP-7,MMP-9和趋化因子CCL2,CCL5,CCL20,CCL25以及CXCL1等mRNA表达与未刺激的细胞相比均显著增高(P < 0.05)。提示MMP和趋化因子可能参与了H. pylori感染中IL-17介导的免疫效应。
     3.2 IL-17抗体处理后H. pylori感染胃组织中MMP-9和CCL25的表达与对照IgG处理小鼠相比显著降低(P < 0.05),而其他MMP和趋化因子的表达没有显著变化。
     3.3 AdmIL-17处理后H. pylori感染组,与AdLuc和PBS处理组相比,MMP-2, MMP-9和CCL25的表达显著增高(P < 0.05)。以上结果提示我们Th17细胞及IL-17可能通过诱导MMP-9以及CCL25的表达参与调控H. pylori感染及炎症反应。
     【主要结论】
     1. H. pylori感染后可以诱导H. pylori特异性的Th1和Th17细胞应答。Th17细胞应答要早于Th1细胞应答,并且不同淋巴器官中Th细胞应答的时间提示肠系膜淋巴结可能是H. pylori激发特异性免疫应答较早的场所。
     2. Th17/IL-17可以促进H. pylori感染后的细菌定植以及炎症的程度。
     3. Th17/IL-17可能是通过调控MMP以及趋化因子的表达参与H. pylori感染后的细菌定植以及炎症的调控。
     【研究意义】
     Th17/IL-17可能成为H. pylori感染相关疾病辅助治疗的靶标,深入了解H. pylori感染后Th细胞免疫应答特征,功能及其调控,将有助于我们更全面了解H. pylori感染的致病机制,并且有助于指导H. pylori相关免疫疾病的免疫治疗。
Helicobacter pylori (H. pylori) is a Gram-negative, microaerophilic bacterium that resides extracellularly in the gastric mucosa and infects more than 50% of the population worldwide. H. pylori-induced chronic inflammation is the cause of gastritis and peptic ulcer and a risk factor for gastric cancer. H. pylori infection causes severe local inflammation in the gastric mucosa.
     CD3+ CD4+ T cells are increased in infected gastric lamina propria and play important roles in the pathogenesis of persistent H. pylori infection. Traditionally, CD4+ T cells, also known as T helper cells (Th cells), are classified into two main classes: Th1 and Th2, on the basis of their cytokine secretion and immune regulatory functions. Th1 cells secrete IFN-γ, IL-2, and IL-12 and regulate cellular immunity, while Th2 cells produce IL-4, IL-5, and IL-13 and mediate humoral responses. To date, studies of immune responses to H. pylori have largely focused on Th1 and Th2 cells and it is generally accepted that H. pylori infection results in a Th1-dominant response and that gastric inflammation largely depends on Th1 cell responses, however, IFN-γsecretion alone is insufficient to induce gastritis. Thus, the detailed mechanism of pathogenesis is not clear.
     Recently, a novel subset of effector T cells, identified by secretion of IL-17, has been defined as Th17 cells. Th17 cells are distinct from Th1 and Th2 cells in differentiation and function. Th17 cells are clearly implicated in the pathogenesis of autoimmune diseases by promoting chronic inflammation. However, the protective and pathogenic functions of IL-17-producing Th cells were both reported in infections. The identification of Th17 cells necessitates a re-evaluation of Th cell responses in H. pylori infection. However, the characteristics of Th cell responses, including those of Th1, Th2 and Th17 cells, remain unclear and the role of Th17 cell responses in H. pylori infection has not been elucidated.
     【Objectives】
     1. Try to characterize Th cell responses, especially Th17 cell responses, to H. pylori shortly after infection of a BALB/c mouse model.
     2. Aim to elucidate the role of Th17 cells in the early stage of H. pylori infection and explore the mechanism.
     【Methods】
     1. BALB/c mice were infected with H. pylori orally and gastric tissues were collected at the indicated times post-infection. Cytokine expression in the stomach was determined by real-time PCR and ELISA. Cell responses in spleen,mesenteric lymph node and paragastric lymph node were examined by intracellular staining for IFN-γ, IL-4 and IL-17.
     2. The recombinant GST-IL-17 was cloned and expressed in E. coli and were used to immunize rabbit to obtain the anti-IL-17 antibody. Before H. pylori infection, IL-17 antibody was administrated to the mice intraperitoneally and the colonization of H. pylori was measured with real-time PCR to detect the 16s rDNA of H. pylori and the gastric inflammation was assayed by H&E staining. In addition, AdmIL-17 was administrated to the mice orally before H. pylori infection to assay the effects of IL-17 on the colonization and inflammation.
     3. MFC cells were stimulated with commercial mIL-17, Cells were collected for analysis of MMP and chemokine mRNA expression by real-time PCR. The expression of MMP and chemokine mRNA was also detected in the IL-17 Ab or AdmIL-17 treated and H. pylori infected mouse model.
     【Results】
     1. H. pylori induced specific Th1 /Th17 cell responses
     1.1 Both mRNA and protein of IFN-γand IL-17 were expressed at a higher level in gastric tissue from H. pylori-infected mice than in those from control mice, whereas IL-4 expression did not change significantly in protein level. IL-23 and IL-12 were also increased in gastric tissue.
     1.2 Splenic lymphocytes from infected mice showed significantly higher Th1 and Th17 cell responses than those from uninfected mice when stimulated with PMA and ionomycin or H. pylori whole cell protein, whereas Th2 cell responses were not significantly changed, suggesting that specific Th1 and Th17 cell responses were induced in H. pylori infection.
     1.3 Th1, Th2 and Th17 cell responses in MLN were all primed on day 7 pi. In the spleen, Th17 cells were expanded on day 14 and peaked on day 21 pi, and Th1 cells were induced from day 21 to 28 pi, whereas Th2 showed no significant change during the course of infection. The Th cell responses were delayed in PLN, reaching detectable levels on day 28 pi. The Th cell responses in spleen and PLN showed a dynamic change: Th17 cell responses preceded Th1 cell responses. The time course of Th cell responses in different organs suggests that MLN may be an earlier site of T cell priming during H. pylori infection.
     2. Th17/IL-17 contribute to gastric inflammation and H. pylori colonization.
     2.1 The colonization of H. pylori and the inflammation of gastric tissue in the anti-IL-17 Ab-treated mice was significantly lower than that in the control IgG-treated mice (P < 0.05),suggesting that the Th17/IL-17 pathway might impair host defense against H. pylori infection.
     2.2 Pretreatment with AdmIL-17 resulted in more copies of H. pylori in the stomach than in mice treated with AdLuc (P < 0.01), while the copies of H. pylori after AdLuc pretreatment were not different from those in PBS-treated mice (P > 0.05). In addition, mice treated with AdmIL-17 showed significantly more gastric inflammation than mice treated with AdLuc (P < 0.0125), and the inflammatory response in AdLuc-treated mice was similar to that in PBS-treated mice (P > 0.05). These results indicate that Th17/IL-17 might increase the susceptibility to H. pylori infection.
     3. The effect of IL-17 on expression of MMPs and chemokines
     3.1 The expression of MMP-2, MMP-3, MMP-7, MMP-9 and chemokine CCL2, CCL5, CCL20, CCL25 and CXCL1 in MFC cells were up-regulated by IL-17 stimulation.
     3.2 IL-17 Ab pretreatment reduced MMP-9 and CCL25 expression in H. pylori-infected stomachs (P < 0.05), but it had no significant effect on the expression of other factors.
     3.3 AdmIL-17 treatment increased MMP-2, MMP-9 and CCL25 expression compared with AdLuc-treated and PBS-treated mice (P < 0.05). The results indicate that Th17/IL-17 pathway may exert its effect on H. pylori infection by enhancing MMP-9 and CCL25 production.
     【Conclusion】
     1. H. pylori-specific Th1/Th17 responses are induced in the BALB/c mouse model and display different dynamics. The Th cell responses occurred earlier in the mesenteric lymph node than in the spleen or paragastric lymph nodes.
     2. Th17/IL-17 pathway might facilitate bacterial colonization and inflammation in the early stage of H. pylori infection.
     3. The role of IL-17 on H. pylori infection might be associated with the expression of MMP-9 and CCL25.
     【significance】
     The Th17/IL-17 pathway might be a potential therapeutic target in H. pylori-associated diseases. Further study is required to elucidate the mechanisms by which H. pylori interacts with Th17 cells and how these cells facilitate infection. A better understanding of the nature, regulation, and function of Th cell responses to H. pylori may help to explore novel and effective immunotherapies for gastric diseases induced by this organism.
引文
1. D'Elios MM, Amedei A, Benagiano M, Azzurri A, Del Prete G. Helicobacter pylori, T cells and cytokines: the "dangerous liaisons". FEMS Immunol Med Microbiol 2005;44:113-9.
    2. O'Keeffe J, Moran AP. Conventional, regulatory, and unconventional T cells in the immunologic response to Helicobacter pylori. Helicobacter 2008;13:1-19.
    3. Park H, Li ZX, Yang XO, Chang SH, Nurieva R, Wang YH, Wang Y, Hood L, Zhu Z, Tian Q, Dong C. A distinct lineage of CD4 T cells regulates tissue inflammation by producing interleukin 17. Nature Immunology 2005;6:1133-1141.
    4. Harrington LE, Hatton RD, Mangan PR, Turner H, Murphy TL, Murphy KM, Weaver CT. Interleukin 17-producing CD4+ effector T cells develop via a lineage distinct from the T helper type 1 and 2 lineages. Nature Immunology 2005;6:1123-32.
    5. Luzza F, Parrello T, Monteleone G, Sebkova L, Romano M, Zarrilli R, Imeneo M, Pallone F. Up-regulation of IL-17 is associated with bioactive IL-8 expression in Helicobacter pylori-infected human gastric mucosa. J Immunol 2000;165:5332-7.
    6. Algood HM, Gallo-Romero J, Wilson KT, Peek RM, Jr., Cover TL. Host response to Helicobacter pylori infection before initiation of the adaptive immune response. FEMS Immunol Med Microbiol 2007;51:577-86.
    7. Mizuno T, Ando T, Nobata K, Tsuzuki T, Maeda O, Watanabe O, Minami M, Ina K, Kusugami K, Peek RM, Goto H. Interleukin-17 levels in Helicobacter pylori-infected gastric mucosa and pathologic sequelae of colonization. World J Gastroenterol 2005;11:6305-11.
    8. Auja SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Seminars in Immunology 2007;19:377-382.
    9. Happel KI, Zheng MQ, Young E, Quinton LJ, Lockhart E, Ramsay AJ, Shellito JE, Schurr JR, Bagby GJ, Nelson S, Kolls JK. Cutting edge: Roles of toll-like receptor 4 and IL-23 in IL-17 expression in response to Klebsiella pneumoniae infection. Journal of Immunology 2003;170:4432-4436.
    10. Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW. IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defenseagainst respiratory Mycoplasma pneumoniae infection. Microbes Infect 2007;9:78-86.
    11. Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infection and Immunity 2007;75:3055-3061.
    12. Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology 2007;37:2695-2706.
    13. Rutitzky LI, da Rosa JRL, Stadecker MJ. Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high. levels of IL-17. Journal of Immunology 2005;175:3920-3926.
    14. Rutitzky LI, Stadecker MJ. CD4 T cells producing pro-inflammatory interleukin-17 mediate high pathology in schistosomiasis. Memorias Do Instituto Oswaldo Cruz 2006;101:327-330.
    15. Chung DR, Kasper DL, Panzo RJ, Chtinis T, Grusby MJ, Sayegh MH, Tzianabos AO. CD4(+) T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. (vol 170, pg 1958, 2003). Journal of Immunology 2003;170:4411-4411.
    16. Roussel Y, Wilks M, Harris A, Mein C, Tabaqchali S. Evaluation of DNA extraction methods from mouse stomachs for the quantification of H. pylori by real-time PCR. J Microbiol Methods 2005;62:71-81.
    17. Garhart CA, Redline RW, Nedrud JG, Czinn SJ. Clearance of Helicobacter pylori Infection and Resolution of Postimmunization Gastritis in a Kinetic Study of Prophylactically Immunized Mice. Infect Immun 2002;70:3529-38.
    18. Uhlig HH, McKenzie BS, Hue S, Thompson C, Joyce-Shaikh B, Stepankova R, Robinson N, Buonocore S, Tlaskalova-Hogenova H, Cua DJ, Powrie F. Differential activity of IL-12 and IL-23 in mucosal and systemic innate immune pathology. Immunity 2006;25:309-18.
    19. Li Y, Schwabe RF, DeVries-Seimon T, Yao PM, Gerbod-Giannone MC, Tall AR, Davis RJ, Flavell R, Brenner DA, Tabas I. Free cholesterol-loaded macrophages are an abundant source of tumor necrosis factor-alpha and interleukin-6: model ofNF-kappaB- and map kinase-dependent inflammation in advanced atherosclerosis. Journal of Biological Chemistry 2005;280:21763-72.
    20. Li Y, Gerbod-Giannone MC, Seitz H, Cui D, Thorp E, Tall AR, Matsushima GK, Tabas I. Cholesterol-induced apoptotic macrophages elicit an inflammatory response in phagocytes, which is partially attenuated by the Mer receptor. Journal of Biological Chemistry 2006;281:6707-17.
    21. D'Elios MM, Manghetti M, De Carli M, Costa F, Baldari CT, Burroni D, Telford JL, Romagnani S, Del Prete G. T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J Immunol 1997;158:962-7.
    22. Bamford KB, Fan X, Crowe SE, Leary JF, Gourley WK, Luthra GK, Brooks EG, Graham DY, Reyes VE, Ernst PB. Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology 1998;114:482-92.
    23. D'Elios MM, Manghetti M, Almerigogna F, Amedei A, Costa F, Burroni D, Baldari CT, Romagnani S, Telford JL, Del Prete G. Different cytokine profile and antigen-specificity repertoire in Helicobacter pylori-specific T cell clones from the antrum of chronic gastritis patients with or without peptic ulcer. Eur J Immunol 1997;27:1751-5.
    24. Smythies LE, Waites KB, Lindsey JR, Harris PR, Ghiara P, Smith PD. Helicobacter pylori-induced mucosal inflammation is Th1 mediated and exacerbated in IL-4, but not IFN-gamma, gene-deficient mice. J Immunol 2000;165:1022-9.
    25. Weigert N, Schaffer K, Schusdziarra V, Classen M, Schepp W. Gastrin secretion from primary cultures of rabbit antral G cells: stimulation by inflammatory cytokines. Gastroenterology 1996;110:147-54.
    26. Ernst PB, Pappo J. T-cell-mediated mucosal immunity in the absence of antibody: lessons from Helicobacter pylori infection. Acta Odontol Scand 2001;59:216-21.
    27. Karttunen RA, Karttunen TJ, Yousfi MM, el-Zimaity HM, Graham DY, el-Zaatari FA. Expression of mRNA for interferon-gamma, interleukin-10, and interleukin-12 (p40) in normal gastric mucosa and in mucosa infected with Helicobacter pylori. Scand J Gastroenterol 1997;32:22-7.
    28. Meyer F, Wilson KT, James SP. Modulation of innate cytokine responses by productsof Helicobacter pylori. Infect Immun 2000;68:6265-72.
    29. Tomita T, Jackson AM, Hida N, Hayat M, Dixon MF, Shimoyama T, Axon AT, Robinson PA, Crabtree JE. Expression of Interleukin-18, a Th1 cytokine, in human gastric mucosa is increased in Helicobacter pylori infection. J Infect Dis 2001;183:620-7.
    30. Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 1999;103:11-24.
    31. Zavros Y, Rathinavelu S, Kao JY, Todisco A, Del Valle J, Weinstock JV, Low MJ, Merchant JL. Treatment of Helicobacter gastritis with IL-4 requires somatostatin. Proc Natl Acad Sci U S A 2003;100:12944-9.
    32. Del Giudice G, Michetti P. Inflammation, immunity and vaccines for Helicobacter pylori. Helicobacter 2004;9 Suppl 1:23-8.
    33. Mohammadi M, Nedrud J, Redline R, Lycke N, Czinn SJ. Murine CD4 T-cell response to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology 1997;113:1848-57.
    34. Caruso R, Fina D, Paoluzi OA, Del Vecchio Blanco G, Stolfi C, Rizzo A, Caprioli F, Sarra M, Andrei F, Fantini MC, Macdonald TT, Pallone F, Monteleone G. IL-23-mediated regulation of IL-17 production in Helicobacter pylori-infected gastric mucosa. Eur J Immunol 2008;38:470-478.
    35. Eaton KA, Mefford M, Thevenot T. The role of T cell subsets and cytokines in the pathogenesis of Helicobacter pylori gastritis in mice. J Immunol 2001;166:7456-61.
    36. Nagai S, Mimuro H, Yamada T, Baba Y, Moro K, Nochi T, Kiyono H, Suzuki T, Sasakawa C, Koyasu S. Role of Peyer's patches in the induction of Helicobacter pylori-induced gastritis. Proc Natl Acad Sci U S A 2007;104:8971-6.
    37. Svennerholm AM, Lundgren A. Progress in vaccine development against Helicobacter pylori. FEMS Immunol Med Microbiol 2007;50:146-56.
    38. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001;194:519-27.
    39. Aujla SJ, Chan YR, Zheng MQ, Fei MJ, Askew DJ, Pociask DA, Reinhart TA, McAllister F, Edeal J, Gaus K, Husain S, Kreindler JL, Dubin PJ, Pilewski JM, Myerburg MM, Mason CA, Iwakura Y, Kolls JK. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nature Medicine 2008;14:275-281.
    40. Ye P, Garvey PB, Zhang P, Nelson S, Bagby G, Summer WR, Schwarzenberger P, Shellito JE, Kolls JK. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol 2001;25:335-40.
    41. Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, Odden AR, Shellito JE, Bagby GJ, Nelson S, Kolls JK. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 2005;202:761-9.
    42. Kelly MN, Kolls JK, Happel K, Schwartzman JD, Schwarzenberger P, Combe C, Moretto M, Khan IA. Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear response against Toxoplasma gondii infection. Infect Immun 2005;73:617-21.
    43. Kleinschek MA, Muller U, Brodie SJ, Stenzel W, Kohler G, Blumenschein WM, Straubinger RK, McClanahan T, Kastelein RA, Alber G. IL-23 enhances the inflammatory cell response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J Immunol 2006;176:1098-106.
    44. Huang W, Na L, Fidel PL, Schwarzenberger P. Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis 2004;190:624-31.
    45. Burchill MA, Nardelli DT, England DM, DeCoster DJ, Christopherson JA, Callister SM, Schell RF. Inhibition of interleukin-17 prevents the development of arthritis in vaccinated mice challenged with Borrelia burgdorferi. Infection and Immunity 2003;71:3437-3442.
    46. Vorobjova T, Watanabe T, Chiba T. Helicobacter pylori immunology and vaccines. Helicobacter 2008;13:18-22.
    47. Shiomi S, Toriie A, Imamura S, Konishi H, Mitsufuji S, Iwakura Y, Yamaoka Y, Ota H, Yamamoto T, Imanishi J, Kita M. IL-17 is Involved in Helicobacter pylori-Induced Gastric Inflammatory Responses in a Mouse Model. Helicobacter 2008;13:518-524.
    48. Nakae S, Iwakura Y, Suto H, Galli SJ. Phenotypic differences between Th1 and Th17 cells and negative regulation of Th1 cell differentiation by IL-17. Journal of LeukocyteBiology 2007;81:1258-1268.
    49. Umemura M, Yahagi A, Hamada S, Begum MD, Watanabe H, Kawakami K, Suda T, Sudo K, Nakae S, Iwakura Y, Matsuzaki G. IL-17-mediated regulation of innate and acquired immune response against pulmonary Mycobacterium bovis bacille Calmette-Guerin infection. Journal of Immunology 2007;178:3786-3796.
    50. Khader SA, Bell GK, Pearl JE, Fountain JJ, Rangel-Moreno J, Cilley GE, Shen F, Eaton SM, Gaffen SL, Swain SL, Locksley RM, Haynes L, Randall TD, Cooper AM. IL-23 and IL-17 in the establishment of protective pulmonary CD4(+) T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nature Immunology 2007;8:369-377.
    51. Iwakura Y, Nakae S, Saijo S, Ishigame H. The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunological Reviews 2008;226:57-79.
    52. Correa P, Houghton J. Carcinogenesis of Helicobacter pylori. Gastroenterology 2007;133:659-72.
    53. Zhang B, Rong GH, Wei HF, Zhang M, Bi JW, Ma LY, Xue XC, Wei G, Liu XK, Fang GE. The prevalence of Th17 cells in patients with gastric cancer. Biochemical and Biophysical Research Communications 2008;374:533-537.
    54. Dong C. IL-23/IL-17 biology and therapeutic considerations. Journal of Immunotoxicology 2008;5:43-46.
    55. Vorburger SA, Hunt KK. Adenoviral gene therapy. Oncologist 2002;7:46-59.
    56. Graham FL, Prevec L. Adenovirus-based expression vectors and recombinant vaccines. Biotechnology 1992;20:363-90.
    57. Imperiale MJ, Kochanek S. Adenovirus vectors: biology, design, and production. Curr Top Microbiol Immunol 2004;273:335-57.
    58. Lean JM, Murphy C, Fuller K, Chambers TJ. CCL9/MIP-1gamma and its receptor CCR1 are the major chemokine ligand/receptor species expressed by osteoclasts. Journal of Cellular Biochemistry 2002;87:386-93.
    59. Ohno T, Okahashi N, Kawai S, Kato T, Inaba H, Shibata Y, Morisaki I, Abiko Y, Amano A. Proinflammatory gene expression in mouse ST2 cell line in response to infection by Porphyromonas gingivalis. Microbes and Infection 2006;8:1025-34.
    60. Oliveira MJ, Costa AC, Costa AM, Henriques L, Suriano G, Atherton JC, Machado JC, Carneiro F, Seruca R, Mareel M, Leroy A, Figueiredo C. Helicobacter pylori induces gastric epithelial cell invasion in a c-Met and type IV secretion system-dependent manner. Journal of Biological Chemistry 2006;281:34888-34896.
    61. Kundu P, Mukhopadhyay AK, Patra R, Banerjee A, Berg DE, Swarnakar S. Cag pathogenicity island-independent up-regulation of matrix metalloproteinases-9 and -2 secretion and expression in mice by Helicobacter pylori infection. Journal of Biological Chemistry 2006;281:34651-34662.
    62. Kubben FJGM, Sier CFM, Schram MT, Witte AMC, Veenendaal RA, Van Duijn W, Verheijen JH, Hanemaaijer R, Lamers CBHW, Verspaget HW. Eradication of Helicobacter pylori infection favourably affects altered gastric mucosal MMP-9 levels. Helicobacter 2007;12:498-504.
    63. G??z M GP, Smolka AJ. Epithelial and bacterial metalloproteinases and their inhibitors in H. pylori infection of human gastric cells. Am J Physiol Gastrointest Liver Physiol. 2001;281:G823-32.
    64. Gooz M, Shaker M, Gooz P, Smolka AJ. Interleukin 1 beta induces gastric epithelial cell matrix metalloproteinase secretion and activation during Helicobacter pylori infection. Gut 2003;52:1250-1256.
    65. Tomita M, Ando T, Minami M, Watanabe O, Ishiguro K, Hasegawa M, Miyake N, Kondo S, Kato T, Miyahara R, Ohmiya N, Niwa Y, Goto H. Potential role for matrix metalloproteinase-3 in gastric ulcer healing. Digestion 2009;79:23-9.
    66. Burke B. The role of matrix metalloproteinase 7 in innate immunity. Immunobiology 2004;209:51-6.
    67. Bergin PJ, Anders E, Sicheng W, Erik J, Jennie A, Hans L, Pierre M, Qiang PH, Marianne QJ. Increased production of matrix metalloproteinases in Helicobacter pylori-associated human gastritis. Helicobacter 2004;9:201-210.
    68. Beklen A, Ainola M, Hukkanen M, Gurgan C, Sorsa T, Konttinen YT. MMPs, IL-1, and TNF are regulated by IL-17 in periodontitis. Journal of Dental Research 2007;86:347-351.
    69. Sylvester J, Liacini A, Li WQ, Zafarullah M. Interleukin-17 signal transduction pathways implicated in inducing matrix metalloproteinase-3,-13 and aggrecanase-1genes in articular chondrocytes. Cellular Signalling 2004;16:469-476.
    70. Koshy PJ, Henderson N, Logan C, Life PF, Cawston TE, Rowan AD. Interleukin 17 induces cartilage collagen breakdown: novel synergistic effects in combination with proinflammatory cytokines. Annals of the Rheumatic Diseases 2002;61:704-13.
    71. Agarwal S, Misra R, Aggarwal A. Interleukin 17 levels are increased in juvenile idiopathic arthritis synovial fluid and induce synovial fibroblasts to produce proinflammatory cytokines and matrix metalloproteinases. Journal of Rheumatology 2008;35:515-519.
    72. Inatomi O, Andoh A, Yagi Y, Ogawa A, Hata K, Shiomi H, Tani T, Takayanagi A, Shimizu N, Fujiyama Y. Matrix metalloproteinase-3 secretion from human pancreatic periacinar myofibroblasts in response to inflammatory mediators. Pancreas 2007;34:126-132.
    73. Yagi Y, Andoh A, Inatomi O, Tsujikawa T, Fujiyama Y. Inflammatory responses induced by interleukin-17 family members in human colonic subepithelial myofibroblasts. Journal of Gastroenterology 2007;42:746-753.
    74. Bamba S, Andoh A, Yasui H, Araki Y, Bamba T, Fujiyama Y. Matrix metalloproteinase-3 secretion from human colonic subepithelial myofibroblasts: role of interleukin-17. Journal of Gastroenterology 2003;38:548-554.
    75. Liu W, Feng WW, Wang F, Li WM, Gao C, Zhou BG, Ma ML. Osteoprotegerin/ RANK/RANKL axis in cardiac remodeling due to immuno-inflammatory myocardial disease. Experimental and Molecular Pathology 2008;84:213-217.
    76. Prause O, Bozinovski S, Anderson GP, Linden A. Increased matrix metalloproteinase-9 concentration and activity after stimulation with interleukin-17 in mouse airways. Thorax 2004;59:313-317.
    77. Koenders MI, Kolls JK, Oppers-Walgreen B, van den Bersselaar L, Joosten LA, Schurr JR, Schwarzenberger P, van den Berg WB, Lubberts E. Interleukin-17 receptor deficiency results in impaired synovial expression of interleukin-1 and matrix metalloproteinases 3, 9, and 13 and prevents cartilage destruction during chronic reactivated streptococcal cell wall-induced arthritis. Arthritis and Rheumatism 2005;52:3239-47.
    78. Liu ZF, Chen CY, Tang W, Zhang JY, Gong YQ, Jia JH. Gene-expression profiles ingastric epithelial cells stimulated with spiral and coccoid Helicobacter pylori. J Med Microbiol 2006;55:1009-15.
    79. Yamaoka Y, Kita M, Kodama T, Sawai N, Tanahashi T, Kashima K, Imanishi J. Chemokines in the gastric mucosa in Helicobacter pylori infection. Gut 1998;42:609-17.
    80. Ohtani N, Ohtani H, Nakayama T, Naganuma H, Sato E, Imai T, Nagura H, Yoshie O. Infiltration of CD8+ T cells containing RANTES/CCL5+ cytoplasmic granules in actively inflammatory lesions of human chronic gastritis. Lab Invest 2004;84:368-75.
    81. Suzuki H, Mori M, Sakaguchi AA, Suzuki M, Miura S, Ishii H. Enhanced levels of C-X-C chemokine, human GROalpha, in Helicobacter pylori-associated gastric disease. J Gastroenterol Hepatol 1998;13:516-20.
    82. Sato Y, Sugimura K, Mochizuki T, Honma T, Suriki H, Tashiro K, Ishizuka K, Narisawa R, Ichida T, Van Thiel DH, Asakura H. Regional differences on production of chemokines in gastric mucosa between Helicobacter pylori-positive duodenal ulcer and gastric ulcer. Dig Dis Sci 1999;44:2390-6.
    83. Tomimori K, Uema E, Teruya H, Ishikawa C, Okudaira T, Senba M, Yamamoto K, Matsuyama T, Kinjo F, Fujita J, Mori N. Helicobacter pylori induces CCL20 expression. Infect Immun 2007;75:5223-32.
    84. Yoshida A, Isomoto H, Hisatsune J, Nakayama M, Nakashima Y, Matsushima K, Mizuta Y, Hayashi T, Yamaoka Y, Azuma T, Moss J, Hirayama T, Kohno S. Enhanced expression of CCL20 in human Helicobacter pylori-associated gastritis. Clin Immunol 2009;130:290-7.
    85. Nishi T, Okazaki K, Kawasaki K, Fukui T, Tamaki H, Matsuura M, Asada M, Watanabe T, Uchida K, Watanabe N, Nakase H, Ohana M, Hiai H, Chiba T. Involvement of myeloid dendritic cells in the development of gastric secondary lymphoid follicles in Helicobacter pylori-infected neonatally thymectomized BALB/c mice. Infect Immun 2003;71:2153-62.
    86. Jovanovic DV, Di Battista JA, Martel-Pelletier J, Jolicoeur FC, He Y, Zhang M, Mineau F, Pelletier JP. IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol 1998;160:3513-21.
    87. Laan M, Cui ZH, Hoshino H, Lotvall J, Sjostrand M, Gruenert DC, Skoogh BE, Linden A. Neutrophil recruitment by human IL-17 via C-X-C chemokine release in the airways. J Immunol 1999;162:2347-52.
    88. Witowski J, Pawlaczyk K, Breborowicz A, Scheuren A, Kuzlan-Pawlaczyk M, Wisniewska J, Polubinska A, Friess H, Gahl GM, Frei U, Jorres A. IL-17 stimulates intraperitoneal neutrophil infiltration through the release of GRO alpha chemokine from mesothelial cells. J Immunol 2000;165:5814-21.
    89. Cheung PF, Wong CK, Lam CW. Molecular mechanisms of cytokine and chemokine release from eosinophils activated by IL-17A, IL-17F, and IL-23: implication for Th17 lymphocytes-mediated allergic inflammation. J Immunol 2008;180:5625-35.
    90. Hartupee J, Liu C, Novotny M, Li X, Hamilton T. IL-17 enhances chemokine gene expression through mRNA stabilization. J Immunol 2007;179:4135-41.
    91. Albanesi C, Cavani A, Girolomoni G. IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes: synergistic or antagonist effects with IFN-gamma and TNF-alpha. J Immunol 1999;162:494-502.
    92. Maertzdorf J, Osterhaus AD, Verjans GM. IL-17 expression in human herpetic stromal keratitis: modulatory effects on chemokine production by corneal fibroblasts. J Immunol 2002;169:5897-903.
    93. Andoh A, Fujino S, Bamba S, Araki Y, Okuno T, Bamba T, Fujiyama Y. IL-17 selectively down-regulates TNF-alpha-induced RANTES gene expression in human colonic subepithelial myofibroblasts. J Immunol 2002;169:1683-7.
    94. Jones CE, Chan K. Interleukin-17 stimulates the expression of interleukin-8, growth-related oncogene-alpha, and granulocyte-colony-stimulating factor by human airway epithelial cells. Am J Respir Cell Mol Biol 2002;26:748-53.
    95. Prause O, Laan M, Lotvall J, Linden A. Pharmacological modulation of interleukin-17-induced GCP-2-, GRO-alpha- and interleukin-8 release in human bronchial epithelial cells. Eur J Pharmacol 2003;462:193-8.
    96. Chabaud M, Page G, Miossec P. Enhancing effect of IL-1, IL-17, and TNF-alpha on macrophage inflammatory protein-3alpha production in rheumatoid arthritis: regulation by soluble receptors and Th2 cytokines. J Immunol 2001;167:6015-20.
    97. Zrioual S, Toh ML, Tournadre A, Zhou Y, Cazalis MA, Pachot A, Miossec V, Miossec P. IL-17RA and IL-17RC receptors are essential for IL-17A-induced ELR+ CXC chemokine expression in synoviocytes and are overexpressed in rheumatoid blood. J Immunol 2008;180:655-63.
    98. Kao CY, Huang F, Chen Y, Thai P, Wachi S, Kim C, Tam L, Wu R. Up-regulation of CC chemokine ligand 20 expression in human airway epithelium by IL-17 through a JAK-independent but MEK/NF-kappaB-dependent signaling pathway. J Immunol 2005;175:6676-85.
    99. Lee JW, Wang P, Kattah MG, Youssef S, Steinman L, DeFea K, Straus DS. Differential regulation of chemokines by IL-17 in colonic epithelial cells. J Immunol 2008;181:6536-45.
    100. Rao DA, Eid RE, Qin L, Yi T, Kirkiles-Smith NC, Tellides G, Pober JS. Interleukin (IL)-1 promotes allogeneic T cell intimal infiltration and IL-17 production in a model of human artery rejection. J Exp Med 2008;205:3145-58.
    101. Mori N, Sato H, Hayashibara T, Senba M, Geleziunas R, Wada A, Hirayama T, Yamamoto N. Helicobacter pylori induces matrix metalloproteinase-9 through activation of nuclear factor kappa B. Gastroenterology 2003;124:983-992.
    102. Malik M, Bakshi CS, McCabe K, Catlett SV, Shah A, Singh R, Jackson PL, Gaggar A, Metzger DW, Melendez JA, Blalock JE, Sellati TJ. Matrix metalloproteinase 9 activity enhances host susceptibility to pulmonary infection with type A and B strains of Francisella tularensis. J Immunol 2007;178:1013-20.
    103. Mastroianni CM, Liuzzi GM. Matrix metalloproteinase dysregulation in HIV infection: implications for therapeutic strategies. Trends Mol Med 2007;13:449-59.
    1. Weaver CT, Harrington LE, Mangan PR et al.Th17:an effector CD4 T cell lineage with regulatory T cell ties. Immunity, 2006; 24(6):677-680.
    2. LaanM, Lotvall J, Chung KF et al. IL-17-induced cytokine release in human bronchial epithelial cells in vitro: role of mitogen-activated protein (MAP) kinases. B r J Pharmacol, 2001 ;133(1):200-206.
    3. Chen Y, Langrish CL, McKenzie B et al. Anti-IL-23 therapy inhibits multiple inflammatory pathways and ameliorates and ameliorates autoimmune encephalomyelitis. J Clin Invest, 2006 ;116 (5):1317-1321.
    4. Langrish C L, Chen Y, Blumenschein W M et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med,2005 ;201(2): 233-237.
    5. Koenders MI, Lubberts E, Oppers-Walgreen B et al. Blocking of interleukin-17 during reactivation of experimental arthritis prevents joint inflammation and bone erosion by decreasing RANKL and interleukin-1. Am J Pathol, 2005 ;167(1):141-148.
    6. Koenders MI, Lubberts E, Oppers-Walgreen B et al. Induction of cartilage damage by overexpression of T cell interleukin-17A in experimental arthritis in mice deficient in interleukin-1. Arthritis Rheum, 2005 ;52(3):975- 978.
    7. Nakae S, Nambu A, Sudo K et al. Suppression of immune induction of collagen-induced arthritis in IL-17- deficient mice. J Immunol,2003 ;171(11): 6173-6177.
    8. Aggarwal S , Gurney AL. IL-17 : prototype member of an emerging cytokine family. J Leukoc Bio ,2002;71 (1): 1-8.
    9. Li H ,Chen J ,Huang A et al . Cloning and characterization of IL-17B and IL-17C , two new members of the IL-17 cytokine family. Proc Natl Acad Sci USA ,2000;97 (2) :773-778.
    10. Lee J , How WH , Maruoka M et al . A novel proinflammatory ligand for the IL-17receptor homolog IL17Rh1. J Biol Chem ,2001;276 (2) :1660-1664.
    11. Shi Y, Ullrich SJ , ZHang J et al . A novel cytokine receptor-ligand pair. Identification, molecular characterization, and in vivo immunomodulatory activity. Biol Chem , 000 ;275 (25) :19167-19176.
    12. Hymowitz SG, Fllvaroff EH , Yin J P et al . IL-17s adopt acystine knot fold : structure and activity of a novel cytokine , IL-17F , and implications for receptor binding. MBO,2001 ;20(19) :1-10.
    13. Woltman AM ,de Haij S ,Boonst ra J G et al . Interleukin-17 and CD40-ligand synergistically enhance cytokine and chemokine production by renal epit helial cells. J Am Soc Nephrol ,2000 ;11(11) :2044-2055.
    14. Witowski J ,Pawlaczyk K,Breborowicz A et al . IL-17 stimulates intraperitoneal neutrophil infilt ration through the release of GRO alpha chemokine f rom mesot helial cells. Immunol ,2000 ;165 (10) :5814-5821.
    15. Albanesi C ,Cavani A ,Girolomonl G et al . IL-17 is produced by nickel-specific T lymphocytes and regulates ICAM-1 expression and chemokine production in human keratinocytes : synergistic or antagonist effects with IFN -gamma and TNF-alpha. J Immunol ,1999;162 (1) :494-502.
    16. Dubin, PJ, Kolls, JK. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. Am. J. Physiol. Lung Cell. Mol. Physiol. 2007 ;292: L519–L528.
    17. Shibata K., Yamada H., Hara, H et al . Resident Vδ1+γδT cells control early infiltration of neutrophils after Escherichia coli infection via IL-17 production. J Immunol. 2007 ;178: 4466–4472.
    18. Miyamoto M, Prause O ,Sjostrand M et al . Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol ,2003 ;170 (9) :4665-4672.
    19. Ye P , Garvey PB , Zhang P et al . Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. . Am J Respir Cell Mol Biol ,2001 ;25 (3) :335-340.
    20. Shellito J E , Guan Zheng M , Ye P et al . Effect of alcohol consumption on host release of interleukin-17 during pulmonary infection wit h Klebsiella pneumoniae. Alchohol Clin Exp Res ,2001 ;25 (6) :872-881.
    21. Ye P , Rodriguez FH , Kanaly S et al . Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med , 2001 ;194 (4) :519-527.
    22. Caruso R, Fina D, Paoluzi AO et al . IL-23 enhances IL-17 production in H pylori infected gastric mucosa. Gastroenterology, 2007 ; 4 Suppl 2: A-219.
    23. Luzza F, Parrello T, Monteleone G et al .Up-regulation of IL-17 is associated with bioactive IL-8 expression in Helicobacter pylori infected human gastric mucosa. J Immunol,2000 ;165 (9): 5332-5337.
    24. Mizuno T, Ando T, Nobata K et al .Interleukin-17 levels in Helicobacter pylori-infected gastric mucosa and pathologic sequelae of colonization. World J Gastroenterol, 2005 ;11(40): 6305-6311.
    25. Sebkova L, Pellicano A, Monteleone G et al . Extracellular signal-regulated protein kinase mediates interleukin 17 (IL-17)-induced IL-8 secretion in Helicobacter pylori-infected human gastric epithelial cells. Infect Immun,2004 ;72(9): 5019-5026.
    26. Jovanovic DV, Di Battista JA, Martel-Pelletier J et al .IL-17 stimulates the production and expression of proinflammatory cytokines, IL-beta and TNF-alpha, by human macrophages. J Immunol,1998 ;160(7): 3513-3521.
    27. Bamba S, Andoh A, Yasui H et al . Matrix metalloproteinase-3 secretion from human colonic subepithelial myofibroblasts: role of interleukin-17. Gastroenterol,2003 ; 38(6): 548-554.
    28. Cooper AM., Kipnis A, Turner J et al .Mice lacking bioactive IL-12 can generate protective, antigen-specific cellular responses to mycobacterial infection only if the IL-12 p40 subunit is present. J. Immunol. 2002;168: 1322–1327.
    29. Khader SA, Pearl JE, Sakamoto K et al .IL-23 compensates for the absence of IL-12p70 and is essential for the IL-17- response during tuberculosis but is dispensable for protection and antigenspecific IFN-γresponse if IL-12 p70 is available. J.Immunol. 2005 ;175: 788–795.
    30. Cruz A, Khader SA., Torrado E et al .Cutting edge: IFN-γregulates the induction and expansion of IL-17- producing CD4 T cells during mycobacterial infection. J.Immunol. 2006 ;177: 1416– 1420.
    31. Khader SA, Bell GK, Pearl JE, et al. IL-23and IL-17 in the establishment of protectivepulmonary CD4+T cell responses after vaccination and during Mycobacterium tuberculosis challenge. Nat Immunl,2007 ;8(4):369-377.
    32. Wu Q, Martin R J, Rino J G et al . IL-23-dependent IL-17 production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect ,2007 ;9 (1):78-86.
    33. Kleinschek MA, Muller U, Brodie SJ et al . IL-23 enhances the inflammatory response in Cryptococcus neoformans infection and induces a cytokine pattern distinct from IL-12. J Immunol. 2006 ;176: 1098–1106.
    34. Rudner XL, Happel KI, Young EA et al .Interleukin-23(IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infect Immun,2007 ;75(6): 3055-3061.
    35. Heninger E, Hogan LH, Karman J et al. Characterization of the Histoplasma capsulatum-induced granuloma. J Immunol,2006 ;177(5): 3303-3313.
    36. Huang W, Na L, Fidel PL et al . Requirement of interleukin-17A for systemic anti-Candida albicans host defense in mice. J Infect Dis,2004 ;190(3): 624-631.
    37. Zelante T, De Luca A, Bonifazi P et al. IL-23and the Th17 pathway promote inflammation and impair antifungal immune resistance. Eur J Immunol,2007 ; 37(10):2695-2706.
    38. Acosta-Rodoriguez EV, Rivino L, Geginat J et al . Surface phenotype and antigenic specificity of human interleukin 17-producing T helper memory cells . Nat. Immunol. 2007 ;8: 639–646.
    39. Bozza S, Fallarino F, Pitzurra L et al. A crucial role for tryptophan catabolism at the host/Candida albicans interface. Immunol,2005; 174(5): 2910-2918.
    40. Montagnoli C, Fallarino F, Gaziano R et al. Immunity and tolerance to Aspergillus involve functionally distinct regulatory T cells and tryptophan catabolism. J Immunol,2006 ;176(3): 1712-1723.
    41. Romani L, Puccetti P. Controlling pathogenic inflammation to fungi. Expert Rev Anti Infect Ther,2007 ;5(6): 1007-1017.
    42. Romani L, Fallarino F, De Luca A et al. Defective tryptophan catabolism underlies inflammation in mouse chronic granulomatous diseases. Nature,2008 ; 451(7175): 211-5.
    43. Kelly MN, Kolls J K, Happel K et al . Interleukin-17/interleukin-17 receptor-mediated signaling is important for generation of an optimal polymorphonuclear responseagainst Toxoplasma gondii infection. Infect Immun, 2005 ;73(1):617-21.
    44. Rutitzky LI, Lopes da Rosa, JR., Stadecker, M J. Severe CD4 T Cell-Mediated Immunopathology in Murine Schistosomiasis Is Dependent on IL-12p40 and Correlates with High Levels of IL-17. J Immunol., 2005 ;175: 3920-3926
    45. Yao Z, Fanslow WC, Seldin MF, et al .Herpesvirus Saimiri encodes a new cytokine, IL-17,which binds to a novel cytokine receptor. Immunity, 1995 ;3:811–821
    46. Knappe A, Hiller C, Niphuis H et al . The interleukin-17 gene of herpesvirus Saimiri . J. Virol, 1998 ;72: 5797–5801.
    47. Patera AC, Pesnicak L, Bertin J et al . Interleukin-17 modulates the immune response to vaccina virus infection. Virology,2002 ;299: 56–63.
    1. Ermak TH, Giannasca PJ, Nichols R, Myers GA, Nedrud J, Weltzin R, Lee CK, Kleanthous H, Monath TP. Immunization of mice with urease vaccine affords protection against Helicobacter pylori infection in the absence of antibodies and is mediated by MHC class II-restricted responses. J Exp Med 1998;188:2277-88.
    2. Pappo J, Torrey D, Castriotta L, Savinainen A, Kabok Z, Ibraghimov A. Helicobacter pylori infection in immunized mice lacking major histocompatibility complex class I and class II functions. Infect Immun 1999;67:337-41.
    3. D'Elios MM, Manghetti M, De Carli M, Costa F, Baldari CT, Burroni D, Telford JL, Romagnani S, Del Prete G. T helper 1 effector cells specific for Helicobacter pylori in the gastric antrum of patients with peptic ulcer disease. J Immunol 1997;158:962-7.
    4. Bamford KB, Fan X, Crowe SE, Leary JF, Gourley WK, Luthra GK, Brooks EG, Graham DY, Reyes VE, Ernst PB. Lymphocytes in the human gastric mucosa during Helicobacter pylori have a T helper cell 1 phenotype. Gastroenterology 1998;114: 482-92.
    5. D'Elios MM, Manghetti M, Almerigogna F, Amedei A, Costa F, Burroni D, Baldari CT, Romagnani S, Telford JL, Del Prete G. Different cytokine profile and antigen-specificity repertoire in Helicobacter pylori-specific T cell clones from the antrum of chronic gastritis patients with or without peptic ulcer. Eur J Immunol 1997;27:1751-5.
    6. Smythies LE, Waites KB, Lindsey JR, Harris PR, Ghiara P, Smith PD. Helicobacter pylori-induced mucosal inflammation is Th1 mediated and exacerbated in IL-4, but not IFN-gamma, gene-deficient mice. J Immunol 2000;165:1022-9.
    7. Karttunen RA, Karttunen TJ, Yousfi MM, el-Zimaity HM, Graham DY, el-Zaatari FA. Expression of mRNA for interferon-gamma, interleukin-10, and interleukin-12 (p40) in normal gastric mucosa and in mucosa infected with Helicobacter pylori. Scand J Gastroenterol 1997;32:22-7.
    8. Meyer F, Wilson KT, James SP. Modulation of innate cytokine responses by products of Helicobacter pylori. Infect Immun 2000;68:6265-72.
    9. Tomita T, Jackson AM, Hida N, Hayat M, Dixon MF, Shimoyama T, Axon AT,Robinson PA, Crabtree JE. Expression of Interleukin-18, a Th1 cytokine, in human gastric mucosa is increased in Helicobacter pylori infection. J Infect Dis 2001;183:620-7.
    10. Dinarello CA. IL-18: A TH1-inducing, proinflammatory cytokine and new member of the IL-1 family. J Allergy Clin Immunol 1999;103:11-24.
    11. Zavros Y, Rathinavelu S, Kao JY, Todisco A, Del Valle J, Weinstock JV, Low MJ, Merchant JL. Treatment of Helicobacter gastritis with IL-4 requires somatostatin. Proc Natl Acad Sci U S A 2003;100:12944-9.
    12. Del Giudice G, Michetti P. Inflammation, immunity and vaccines for Helicobacter pylori. Helicobacter 2004;9 Suppl 1:23-8.
    13. Mohammadi M, Nedrud J, Redline R, Lycke N, Czinn SJ. Murine CD4 T-cell response to Helicobacter infection: TH1 cells enhance gastritis and TH2 cells reduce bacterial load. Gastroenterology 1997;113:1848-57.
    14. Auja SJ, Dubin PJ, Kolls JK. Th17 cells and mucosal host defense. Seminars in Immunology 2007;19:377-382.
    15. Ye P, Rodriguez FH, Kanaly S, Stocking KL, Schurr J, Schwarzenberger P, Oliver P, Huang W, Zhang P, Zhang J, Shellito JE, Bagby GJ, Nelson S, Charrier K, Peschon JJ, Kolls JK. Requirement of interleukin 17 receptor signaling for lung CXC chemokine and granulocyte colony-stimulating factor expression, neutrophil recruitment, and host defense. J Exp Med 2001;194:519-27.
    16. Aujla SJ, Chan YR, Zheng MQ, Fei MJ, Askew DJ, Pociask DA, Reinhart TA, McAllister F, Edeal J, Gaus K, Husain S, Kreindler JL, Dubin PJ, Pilewski JM, Myerburg MM, Mason CA, Iwakura Y, Kolls JK. IL-22 mediates mucosal host defense against Gram-negative bacterial pneumonia. Nature Medicine 2008;14:275-281.
    17. Ye P, Garvey PB, Zhang P, Nelson S, Bagby G, Summer WR, Schwarzenberger P, Shellito JE, Kolls JK. Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol 2001;25:335-40.
    18. Happel KI, Dubin PJ, Zheng M, Ghilardi N, Lockhart C, Quinton LJ, Odden AR, Shellito JE, Bagby GJ, Nelson S, Kolls JK. Divergent roles of IL-23 and IL-12 in host defense against Klebsiella pneumoniae. J Exp Med 2005;202:761-9.
    19. Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, Chu HW. IL-23-dependent IL-17production is essential in neutrophil recruitment and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect 2007;9:78-86.
    20. Rudner XL, Happel KI, Young EA, Shellito JE. Interleukin-23 (IL-23)-IL-17 cytokine axis in murine Pneumocystis carinii infection. Infection and Immunity 2007;75:3055-3061.
    21. Zelante T, De Luca A, Bonifazi P, Montagnoli C, Bozza S, Moretti S, Belladonna ML, Vacca C, Conte C, Mosci P, Bistoni F, Puccetti P, Kastelein RA, Kopf M, Romani L. IL-23 and the Th17 pathway promote inflammation and impair antifungal immune resistance. European Journal of Immunology 2007;37:2695-2706.
    22. Dubin PJ, Kolls JK. IL-23 mediates inflammatory responses to mucoid Pseudomonas aeruginosa lung infection in mice. American Journal of Physiology-Lung Cellular and Molecular Physiology 2007;292:L519-L528.
    23. Rutitzky LI, da Rosa JRL, Stadecker MJ. Severe CD4 T cell-mediated immunopathology in murine schistosomiasis is dependent on IL-12p40 and correlates with high. levels of IL-17. Journal of Immunology 2005;175:3920-3926.
    24. Rutitzky LI, Stadecker MJ. CD4 T cells producing pro-inflammatory interleukin-17 mediate high pathology in schistosomiasis. Memorias Do Instituto Oswaldo Cruz 2006;101:327-330.
    25. Chung DR, Kasper DL, Panzo RJ, Chtinis T, Grusby MJ, Sayegh MH, Tzianabos AO. CD4(+) T cells mediate abscess formation in intra-abdominal sepsis by an IL-17-dependent mechanism. (vol 170, pg 1958, 2003). Journal of Immunology 2003;170:4411-4411.
    26. Caruso R, Fina D, Paoluzi OA, Del Vecchio Blanco G, Stolfi C, Rizzo A, Caprioli F, Sarra M, Andrei F, Fantini MC, Macdonald TT, Pallone F, Monteleone G. IL-23-mediated regulation of IL-17 production in Helicobacter pylori-infected gastric mucosa. Eur J Immunol 2008;38:470-478.
    27. Luzza F, Parrello T, Monteleone G, Sebkova L, Romano M, Zarrilli R, Imeneo M, Pallone F. Up-regulation of IL-17 is associated with bioactive IL-8 expression in Helicobacter pylori-infected human gastric mucosa. J Immunol 2000;165:5332-7.
    28. Algood HM, Gallo-Romero J, Wilson KT, Peek RM, Jr., Cover TL. Host response to Helicobacter pylori infection before initiation of the adaptive immune response. FEMSImmunol Med Microbiol 2007;51:577-86.
    29. Mizuno T, Ando T, Nobata K, Tsuzuki T, Maeda O, Watanabe O, Minami M, Ina K, Kusugami K, Peek RM, Goto H. Interleukin-17 levels in Helicobacter pylori-infected gastric mucosa and pathologic sequelae of colonization. World J Gastroenterol 2005;11:6305-11.
    30. Shiomi S, Toriie A, Imamura S, Konishi H, Mitsufuji S, Iwakura Y, Yamaoka Y, Ota H, Yamamoto T, Imanishi J, Kita M. IL-17 is Involved in Helicobacter pylori-Induced Gastric Inflammatory Responses in a Mouse Model. Helicobacter 2008;13:518-524.
    31. Lundgren A, Suri-Payer E, Enarsson K, Svennerholm AM, Lundin BS. Helicobacter pylori-specific CD4+ CD25high regulatory T cells suppress memory T-cell responses to H. pylori in infected individuals. Infect Immun 2003;71:1755-62.
    32. Rad R, Brenner L, Bauer S, Schwendy S, Layland L, da Costa CP, Reindl W, Dossumbekova A, Friedrich M, Saur D, Wagner H, Schmid RM, Prinz C. CD25+/Foxp3+ T cells regulate gastric inflammation and Helicobacter pylori colonization in vivo. Gastroenterology 2006;131:525-37.
    33. Lundgren A, Stromberg E, Sjoling A, Lindholm C, Enarsson K, Edebo A, Johnsson E, Suri-Payer E, Larsson P, Rudin A, Svennerholm AM, Lundin BS. Mucosal FOXP3-expressing CD4+ CD25high regulatory T cells in Helicobacter pylori-infected patients. Infect Immun 2005;73:523-31.
    34. Kaparakis M, Laurie KL, Wijburg O, Pedersen J, Pearse M, van Driel IR, Gleeson PA, Strugnell RA. CD4+ CD25+ regulatory T cells modulate the T-cell and antibody responses in helicobacter-infected BALB/c mice. Infect Immun 2006;74:3519-29.
    35. Raghavan S, Fredriksson M, Svennerholm AM, Holmgren J, Suri-Payer E. Absence of CD4+CD25+ regulatory T cells is associated with a loss of regulation leading to increased pathology in Helicobacter pylori-infected mice. Clin Exp Immunol 2003;132:393-400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700