小麦骨干亲本碧蚂4号的遗传效应分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在我国小麦育种和生产中,骨干亲本(Founder Parent或Foundation Genotypes)发挥了至关重要的作用。利用骨干亲本不仅直接培育了众多大面积推广品种,而且还由其衍生出许多具有广泛应用价值的亲本育种材料。但是,在育种过程中发挥重要作用的所有农作物骨干亲本均是根据利用以后的系谱分析总结出来的,而对于骨干亲本是如何从众多的种质资源中衍生出来的?利用骨干亲本能够培育出大量主栽品种的内在本质是什么?这两个事关骨干亲本研究和利用的核心问题,却缺乏系统的理论基础研究。
     本研究以小麦骨干亲本碧蚂4号及其衍生品种、衍生品种的其他亲本、碧蚂4号的6个姊妹系及其亲本共105个品种(系)为材料,通过表型和基因组扫描分析,试图阐明碧蚂4号之所以成为骨干亲本的内在本质,为探讨小麦骨干亲本形成与演变规律、创造候选骨干亲本提供理论指导。
     1、碧蚂4号之所以成为骨干亲本的表型特征。通过在陕西杨凌、山东泰安、河北石家庄、四川成都和江苏扬州等5个试验点(分别代表了我国小麦生产的主要生态区,每点3次重复)连续两年的田间种植,并对相关产量性状统计分析,发现碧蚂4号在株高、小穗数、穗粒数、千粒重和有效分蘖等主要产量性状上均优于主栽品种;骨干亲本在千粒重等主要产量因子上对其衍生后代品种具有突出的贡献,而且随着世代的增加,这些产量因子可以通过基因/QTL间的互作表现出超亲遗传。
     2、碧蚂4号之所以成为骨干亲本的特异位点。利用分布于小麦18对染色体(除了2A、1B和1D)的434对SSR引物(根据Somers遗传图谱,引物间平均距离为5.92 cM),对碧蚂4号、衍生品种及中间亲本进行扫描,发现368(84.8%)对引物在供试品种间表现多态。多态引物在碧蚂4号中共扩增出448个等位变异,其中12个在80个后代品种的分布频率为100%,7个未遗传给后代,其余等位变异的遗传频率变异范围为0.0125~0.9875。其中由157对引物产生的180个等位变异在碧蚂4号后代的遗传频率等于或高于60%。另外,分别与不同子代品种涉及的中间亲本相比较,发现43个碧蚂4号特异等位变异(中间亲本没有该等位变异)遗传了3代。如果以每杂交一次后代保留亲本50%的遗传信息为标准,发现在10个SSR位点碧蚂4号特异等位变异遗传了3代,且在每一代的分布频率均高于它们的理论比例。表明在以上位点碧蚂4号在衍生品种的遗传均受到了不同程度的选择作用。
     3、碧蚂4号之所以成为骨干亲本的特异基因组区段。在157对碧蚂4号等位变异高频率遗传(在80个后代的遗传频率等于或高于60%)的引物中,以相邻引物间遗传距离小于11 cM为标准,有56对引物在小麦15对染色体(除了3B、4D和7A)上形成20个重要的基因组区段,其中多数区段位于着丝粒附近。每个染色体区段的长度从0~16 cM,其中3D染色体上的Xgwm456和Xgwm341之间距离为0 cM,3A染色体上的Xgwm5~Xbarc67~Xcfa2234~Xwmc264为最长区段,达到16 cM。另外,比较43个产生碧蚂4号特异等位变异(中间亲本没有该等位变异)且3代遗传的引物在染色体上的分布,发现其中6对引物在2B、5B和3D染色体上分别形成Xgwm120~Xgwm47、Xgwm371~Xgwm499和Xgwm645~Xcfd49重要区段,相隔分别为4、2和1 cM。
     4、碧蚂4号之所以成为骨干亲本的特异位点、特异基因组区段与农艺性状的关联分析。利用228对引物与五个环境所获得的穗长、小穗数、穗粒数、千粒重、有效分蘖、产量和株高等7个重要农艺性状进行关联分析,在q<0.20,发现93对引物与性状相关联,标记对性状的贡献率变异范围为0.0125~0.2672,平均值为0.1219。有38对碧蚂4号等位变异高频率遗传引物与性状相关,等位变异效应比较发现,在其中13对引物碧蚂4号等位变异类型的性状值均不低于或明显高于其他等位变异类型,表现“增产效应”。另外,11对产生碧蚂4号特异等位变异(中间亲本没有该等位变异)且3代遗传的引物与性状相关,其中在Xbarc18位点,碧蚂4号特异等位变异与高的千粒重密切相关。此外,19对与农艺性状相关引物位于碧蚂4号等位变异高频率遗传所形成的重要染色体区段,其中5个区段上的引物与多种性状相关。对于不同位点之间或同一位点不同性状之间,碧蚂4号等位变异既存在正效应也表现负效应,可能与为了达到产量因素的协调发展,不同位点或性状之间存在一定的互作有关。
     5、碧蚂4号与其他5个骨干亲本的特异位点、特异基因组区段比较分析。碧蚂4号衍生系谱涉及了其他的5个骨干亲本(北京8号、欧柔、阿勃、早洋麦和洛夫林10号),发现它们具有40个共同的等位变异,其中38个在碧蚂4号衍生品种的分布频率大于86%,这些位点都包含于以上的157对碧蚂4号等位变异高频率遗传引物中。
     6、碧蚂4号与其他5个姊妹系的特异位点、特异基因组区段比较分析。对碧蚂1~6号SSR位点多态性比较分析发现,碧蚂4号具有13个特异位点,碧蚂1和碧蚂4号具有5个相同但与其他姊妹系不同的特异位点,其中2A染色体上的Xgwm425~Xgwm95和6D染色体上的Xcfd42~Xgwm469相隔均为1 cM。用产生碧蚂4号特异等位变异的18对引物对其衍生品种进行系谱追踪,发现在7对引物碧蚂4号特异等位变异在后代的遗传频率高于0.60。进一步的关联分析发现,10个特异染色体位点与株高、穗长、小穗数、穗粒数、千粒重和产量等重要性状相关。
     7、碧蚂4号之所以成为骨干亲本的遗传特征。综上所述,在主要产量因子上碧蚂4号对其衍生后代品种具有突出的贡献,而且随着世代的增加,产量因子可以通过基因/QTL间的互作表现出超亲遗传;同时,碧蚂4号中存在与重要农艺性状相关的特异染色体位点和区段。这可能是碧蚂4号成为骨干亲本的主要遗传特征。
Founder parents have played an important role for the development of wheat in China, which have produced many large-grown varieties or important breeding lines. But all founder parents in different crops were found as a result of summation of the pedigrees. How are founder parents produced from various germplasm? Why can many important varieties be bred through using them? The answers for the two questions are not clear.
     In order to understand the formation of founder parent Bima 4, explore the evolution law of founder parents and find new founder parents in future, the founder parent Bima 4, its 80 progeny, 17 intermediate parents in the pedigree derived from Bima 4, its 5 sister varieties and the parents (total 105 accessions) were analyzed in this study using agronomic traits and SSR markers.
     1. Phenotypic trait of founder parent Bima 4. Total accessions were grown in five ecological areas including Yangling in Shaanxi, Taian in Shandong, Shijiazhuang in Hebei, Chengdou in Sichuan and Yangzhou in Jiangsu in 2006-2007 and 2007-2008 seasons with 3 repeats per site and analyzed for seven important agronomic traits. The result indicated that the founder parent Bima 4 was attractive for plant height, spikelet number, grain number, 1000-grain weight and spike number per plant, and had produced prominent contribution to its progeny in main agronomic traits. With the increasing of the generations, there was an enhancement trend for 1000-grain weight. When comparing the change among Bima 4, intermediate parents and the accessions in different generations, transgressive inheritance was found for the agronomic traits, which might result from the interaction among different genes of QTL.
     2. Important chromosomal loci in founder parent Bima 4. Total ninety-eight varieties in the pedigree derived from Bima 4 were analyzed using 434 SSR markers which are distributed across eighteen chromosomes with the exception of 2A, 1B and 1D with average genetic distances of 5.92 cM among adjacent markers according to the reported literature by Somers et al., of which, 368 (84.2%) were polymorphic. Total 448 alleles were amplified in Bima 4 using the polymorphic markers, of which, 12 alleles could be found in its total progeny, 7 alleles could not be detected in any of them, and the remaining alleles were transmitted to the progeny with the frequencies of 0.0125 to 0.9875. One hundred and eighty alleles were amplified at 157 SSR loci in Bima 4 and could be found in equal or over 60% of the progeny. On the other hand, when compared with intermediate parents in different generations of the pedigree respectively, 43 alleles which were amplified in Bima 4 but absent in 16 intermediate parents could be tracked in the accessions from the first to third generation. If expected parental contribution with Mendelian inheritance is 0.5 for a F2 -derived inbred, the unique alleles of Bima 4 at 10 SSR loci could be tracked from the first to third generation with higher frequencies than theoretical varlues in each generation. This indicated that the chromosomal loci in Bima 4 underwent certain selection pressure during the breeding.
     3. Important chromosomal regions in founder parent Bima 4. Of 157 SSR markers, where the alleles of Bima 4 were inherited in equal or over 60% of the progeny, 56 markers which distribute 15 chromosomes with the exception of 3B, 4D and 7A formed 20 important chromosomal regions, whose genetic distance was less than 11 cM between adjacent markers, and most of them were round the centromere. The range of genetic distance in the chromosomal regions were from 0 to 16 cM, of which, the distance between Xgwm456 and Xgwm341 on the chromosome 3D is 0 cM, and Xgwm5~Xbarc67~Xcfa2234~Xwmc264 on the chromosome 3A had the longest genetic distance. On the other hand, of 43 markers which amplified unique alleles in Bima 4 and they could be tracked from the first to third generation, 6 markers formed three important chromosomal regions, namely Xgwm120~Xgwm47 on chromosome 2B, Xgwm371~Xgwm499 on chromosome 5B and Xgwm645~Xcfd49 on chromosome 3D with 4, 2 and 1 cM, respectively.
     4. Association between important chromosomal loci, regions and agronomic traits. Association were tested betweem 228 SSR markers and important agronomic traits (including spike length, spikelet number, grain number, 1000-grain weight, spike number per plant, yield and plant height). At q<0.20, 93 markers were found to connect with agronomic traits using association mapping, and the contribution rate of the markers for agronomic traits was from 0.0125 to 0.2672 with the average of 0.1219. Thirty-eitht markers which amplified the same alleles as Bima 4 in more than 60% of the progeny were connect with agronomic traits, and when comparing the means of agronomic traits among different alleles amplified by the same marker, we found that the values across total varieties which had the same alleles as Bima 4 were equeal or higher than those with other alleles at each of 13 SSR markers, that is to say, the alleles of Bima 4 increased the production of wheat. On the other hand, 11 markers, which amplified unique alleles in Bima 4 and the alleles could be tracked from the first to third generation, were connected with agronomic traits, of which, the allele of Bima 4 at the locus Xbarc18 was correlated with higher 1000-grain weight than other alleles amplified at the same locus. Nineteen markers which were connected with agronomic traits located on the important chromosomal regions mentioned above. The markers on 5 chromosomal regions were related with different traits. The alleles of Bima 4 presented positive or negative effects between different loci or on the same regions for different traits, which might result from certain interaction among different loci or traits in order to reach coordinated development in the breeding.
     5. Important chromosomal loci or regions in 6 founder parents. Six founder parents including Bima 4, Beijing 8, Orofen, Abbordanze, Early Piemium and Lovrin 10, which were in the pedigree from Bima 4, had 40 common alleles. Of them, the frequencies of 38 alleles were more than 86% in total progeny, and the markers were included in the 157 ones mentioned above.
     6. Important chromosomal loci or regions in Bima 4 compared with other 5 sister varieties. Through comparing the polymorphic patterns among the 6 sister varieties, we found that Bima 4 had 13 unique alleles, Bima 1 and Bima 4 had 5 common alleles which were different from the remaining 4 sister accessions. Moreover, the genetic distances between Xgwm425 and Xgwm95 on the chromosome 2A and between Xcfd42 and Xgwm469 on the chromosome 6D were 1 cM, respectively. The alleles, which were amplified only in Bima 4 or were common in Bima 4 and Bima 1 but absent in other sister varieties, were tracked in the progeny from Bima 4, and the result indicated that the alleles amplified in Bima 4 by 7 SSR markers accurred in over 60% progeny. What′s more, association test indicated that ten of these special SSR loci were connected with plant height, spike length, spikelet number, grain number, 1000-grain weight, spike number per plant or yield.
     7. Genetic features of Bima 4 as a founder parent. Through the analysis of this work, we found that Bima 4 had produced prominent contribution to its progeny in main agronomic traits. With the increasing of the generations, there was an enhancement trend for 1000-grain weight. When comparing the change among Bima 4, intermediate parents and the progeny in different generations, transgressive inheritance was found for the agronomic traits, which might result from the interaction among different genes of QTL; on the other hand, there existed important chromosomal loci and regions which were connected with important agronomic traits in Bima 4. This might be basic genetic features of Bima 4 as a founder parent.
引文
[1]刘刚,鲁绍雄.利用连锁不平衡进行QTL精细定位的策略.家畜生态学报,2006,27(6):197~201.
    [2]刘立峰,李自超,穆平.基于作物QTL的分子育种研究进展.分子植物育种,2004,2(1):77~83.
    [3]刘仁虎,孟金陵.MapDraw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317~321.
    [4]亓增军,刘大钧,陈佩度,王苏玲,李斯深,李晴祺.冬小麦种质“矮孟牛”中新型小麦-黑麦复杂易位的遗传传递分析.作物学报,2001,27(5):582~589.
    [5]秦君,陈维元,关荣霞,姜成喜,李英惠,付亚书,刘章雄,张孟臣,常汝镇,邱丽娟.国外种质拓宽中国大豆品种遗传基础的SSR标记分析.科学通报,2006,51(6):686~692.
    [6]沈裕琥,王海庆,杨天育,张怀刚,黄相国.甘、青两省春小麦遗传多样性演变.西北植物学报,2002,22(4):731~740.
    [7]司清林,刘新伦,刘智奎,王长有,吉万全.阿夫及其衍生小麦品种(系)的SSR分析.作物学报,2009,35(4):615~619.
    [8]王江春,于波,王荣,王丽,耿荣萍,陈永娜,李美玲.山东省小麦品种演变及产量性状的遗传分析.山东农业科学,2007,2:5~9.
    [9]王珊珊,李秀全,田纪春.利用SSR标记分析小麦骨干亲本“矮孟牛”及衍生品种(系)的遗传多样性.分子植物育种,2007,5(4):485~490.
    [10]熊冬金,赵团结,盖钧镒.中国大豆育成品种亲本分析.中国农业科学,2008,41(9):2589~2598.
    [11]杨小红,严建兵,郑艳萍,余建明,李建生.植物数量性状关联分析研究进展.作物学报,2007,33(4):523~530.
    [12]游光霞.小麦重要SSR位点的发现及其与农艺性状的关联分析.中国农业科学院博士学位论文,2006.
    [13]张军,赵团结,盖钧镒.大豆育成品种农艺性状QTL与SSR标记的关联分析.作物学报, 2008,34(12): 2059~2069.
    [14]张学勇,董玉琛,游光霞,王兰芬,李培,贾继增.中国小麦大面积推广品种及骨干亲本的高分子量谷蛋白亚基组成分析.中国农业科学,2001,34(4):355~362.
    [15]张学勇,童依平,游光霞,郝晨阳,盖红梅,王兰芬,李滨,董玉琛,李振声.选择牵连效应分析:发掘重要基因的新思路.中国农业科学,2006,39(8):1526~1535.
    [16]周阳,何中虎,陈新民,王德森,张勇,张改生.30余年来北部冬麦区小麦品种产量改良遗传进展.作物学报,2007,33(9):1530 ~1535.
    [17]周阳,何中虎,张改生,夏兰琴,陈新民,张立平,陈锋.用微卫星标记鉴定中国小麦品种中Rht8矮秆基因的分布.作物学报,2003,29(6):810~814.
    [18]庄巧生.中国小麦品种改良及系谱分析.北京:中国农业出版社,2002.
    [19] Abecasis G.R., Cardon L.R., Cookson W.O.C. A general test for association for quantitative traitsin nuclear families. American Journal of Human Genetics, 2000, 66: 279~292.
    [20] Agrama H.A., Eizenga G.C., Yan W. Association mapping of yield and its components in rice cultivars. Molecular Breeding, 2007, 19: 341~356.
    [21] Almasy L. Blangero J. Multipoint quantitative trait linkage analysis in general pedigrees. American Journal of Human Genetics, 1998, 62: 1198~1211.
    [22] An D., Su J., Liu Q., Zhu Y., Tong Y., Li J., Jing R., Li B., Li Z. Mapping QTL for nitrogen uptake in relation to the early growth of wheat (Triticum aestivum L.). Plant and Soil, 2006, 284: 73~84.
    [23] Andersen J.R., Schrag T., Melchinger A.E., Zein I. Lubberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L.), Theoretical and Applied Genetics, 2005, 111: 206~217.
    [24] Ardlie K.G., Kruglyak L., Seielstad M. Patterns of linkage disequilibrium in the human genome. Nature Reviews Genetics, 2002, 3: 299~309.
    [25] Ashikari M., Sakakibara H., Lin S.Y., Yamamoto T., Takashi T., Nishimura A., Angeles E.R., Qian Q., Kitano H., Matsuoka M. Cytokinin oxidase regulates rice grain production. Science, 2005, 309: 741~745.
    [26] Bernardo R., Murigneux A., Maisonneuve J.P., Johnsson C., Karaman Z. RFLP-based estimates of parental contribution to F2- and BC1-derived maize inbreds. Theoretical and Applied Genetics, 1997, 94: 652~656.
    [27] Bernardo R., Romero-Severson J., Ziegle J., Hauser J., Joe L., Hookstra G., Doerge R.W. Parental contribution and coefficient of coancestry among maize inbreds: pedigree, RFLP, and SSR data. Theoretical and Applied Genetics, 2000, 100: 552~556.
    [28] Breseghello F., Sorrells M.E. Association mapping of kernel size and milling quality in wheat (Triticum aestivum L.) cultivars. Genetics, 2006, 172: 1165~1177.
    [29] Buckler E.S. IV, Thornsberry J.M. Plant molecular diversity and applications to genomics. Current Opinion in Plant Biology, 2002, 5: 107~111.
    [30] Cai S., Bai G.H., Zhang D. Quantitative trait loci for aluminum resistance in Chinese wheat landrace FSW. Theoretical and Applied Genetics, 2008, 117: 49~56.
    [31] Camus-Kulandaivelu L., Veyrieras J.B., Madur D., Combes V., Fourmann M., Barraud S., Dubreuil P., Gouesnard B., Manicacci D., Charcosset A. Maize adaptation to temperate climate: relationship between population structure and polymorphism in the Dwarf8 gene. Genetics, 2006, 172: 49~63.
    [32] Castro A.M., Vasicek A., Ellerbrook C., Giménez D.O., Tocho E., Tacaliti M.S., Clúa A., Snape J.W. Mapping quantitative trait loci in wheat for resistance against greenbug and Russian wheat aphid. Plant Breeding, 2004, 123: 361~365.
    [33] Chen J., Griffey C.A., Saghai Maroof M.A., Stromberg E.L., Biyashev R.M., Zhao W., Chappell M.R., Pridgen T.H., Dong Y., Zeng Z. Validation of two major quantitative trait loci for Fusarium head blight resistance in Chinese wheat line W14. Plant Breeding, 2006, 125: 99~101.
    [34] Ching A., Caldwell K.S., Jung M., Dolan M., Smith O.S., Tingey S., Morgante M., Rafalski A.J. SNP frequency, haplotype structure and linkage disequilibrium in elite maize inbred lines. BMC genetics, 2002. 3: 19~32.
    [35] Cho R.J., Campbell M.J., Winzeler E.A., Steinmetz L., Conway A., Wodicka L., Wolfsberg T.G., Gabrielian A.E., Landsman D., Lockhart D.J., Davis R.W. A genome-wide transcriptional analysis of the mitotic cell cycle. Molecules and cells, 1998, 2: 65~73.
    [36] Christopher M., Mace E., Jordan D., Rodgers D., McGowan P., Delacy I., Banks P., Sheppard J., Butler D., Poulsen D. Applications of pedigree-based genome mapping in wheat and barley breeding programs. Euphytica, 2007, 154: 307~316.
    [37] Crepieux S., Lebreton C., Flament P., Charmet G. Application of a new IBD-based QTL mapping method to common wheat breeding population: analysis of kernel hardness and dough strength. Theoretical and Applied Genetics, 2005, 111: 1409~1419.
    [38] Crepieux S., Lebreton C., Servin B., Charmet G. IBD-based QTL detection in inbred pedigrees: a case study of cereal breeding programs. Euphytica, 2004b, 137: 101~109.
    [39] Crepieux S., Lebreton C., Servin B., Charmet G. QTL detection in multi-cross inbred designs: recovering QTL-IBD status information from marker data. Genetics, 2004a, 168: 1737~1749.
    [40] Devlin B. Roeder K. Genomic control for association studies. Biometrics, 1999, 55: 997~1004.
    [41] Dilbirligi M., Erayman M., Campbell B.T., Randhawa H.S., Baenziger P.S., Dweikat I., Gill K.S. High-density mapping and comparative analysis of agronomically important traits on wheat chromosome 3A. Genomics, 2006, 88: 74~87.
    [42] EI-Assal S.E.D., Alonso-Blanco C., Peeters A.J.M., Raz V., Koornneef M. A QTL for flowering in Arabidopsis reveals a novel allele of CRY2. Nature Genetics, 2001, 29: 435~440.
    [43] F?hr S., Messmer M.M., Melchinger A.E., Lee M., Woodman W.L. Graphical genotype of maize inbred B 86 revealed by RFLPs. Plant Breeding, 1993, 110: 29~34.
    [44] Falush D., Stephens M., Pritchard J.K. Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 2003, 164: 1567~1587.
    [45] Fehr W.R. Breeding methods for cultivar development. In: Caldwell BE (ed) Soybeans: Improvement, production, and uses. Agronomy, 1987, 16: 249~294.
    [46] Flint-Garcia S.A., Thornsberry J.M., Buckler E.S. Structure of linkage disequilibrium in plants. Annual Review of Plant Biology, 2003, 54: 357~374.
    [47] Flint-Garcia S.A., Thuillet Anne-Céline, Yu J., Pressoir G., Romero S.M., Mitchell S.E., Doebley J., Kresovich S., Goodman M.M., Buckler E.S. Maize association population: a high-resolution platform for quantitative trait locus dissection. The Plant Journal, 2005, 44: 1054~1064.
    [48] Frary A., Nesbitt T.C., Frary A., Grandillo S., Knaap E.V.D., Cong B., Liu J.P., Meller J., Elber R., Alpert K.B., Tanksley S.D. fw2.2: A quantitative trait locus key to the evolution of tomato fruit size. Science, 2000, 289: 85~88.
    [49] Fu Y.-B., Peterson G.W., Richards K.W., Somers D., DePauw R.M., Clarke J.M. Allelic reduction and genetic shift in the Canadian hard red spring wheat germplasm released from 1845 to 2004.Theoretical and Applied Genetics, 2005, 110: 1505~1516.
    [50] Gao L.F., Jing R.L., Huo N.X., Li Y., Li X.P., Zhou R.H., Chang X.P., Tang J.F., Ma Z.Y., Jia J.Z. One hundred and one new microsatellite loci derived from ESTs (EST-SSRs) in bread wheat. Theoretical and Applied Genetics, 2004, 108: 1392~1400.
    [51] Garris A.J., McCouch S.R., Kresovich S. Population structure and its effect on haplotype diversity and linkage disequilibrium surrounding the xa5 locus of rice (Oryza sativa L.). Genetics, 2003, 165: 759~769.
    [52] George A.W., Visscher P.M., Haley C.S. Mapping quantitative trait in complex pedigrees: a two-step variance component approach. Genetics, 2000, 156: 2081~2092.
    [53] Gervais L., Dedryver F., Morlais J.Y., Bodusseau V., Negre S., Bilous M., Groos C., Trottet M. Mapping of quantitative trait loci for field resistance to Fusarium head blight in an European winter wheat. Theoretical and Applied Genetics, 2003, 106: 961~970.
    [54] Gizlice Z., Carter T.E., Burton J. Genetic base for North American public soybean cultivars released between 1947 and 1988. Crop Science, 1994, 34: 1143~1151.
    [55] Gupta P.K., Balyan H.S., Edwards K.J., Isaac P., Korzun V., R?der M., Gautier M.F., Joudrier P., Schlatter A.R., Dubcovsky J., Delapena R.C., Khairallah M., Penner G., Hayden M.J., Sharp P., Keller B., Wang R.C.C., Hardouin J.P., Jack P., Leroy P. Genetic mapping of 66 new microsatellite (SSR) loci in bread wheat. Theoretical and Applied Genetics, 2002, 105: 413~422.
    [56] Gupta P.K., Rustgi S., Kulwal P.L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Molecular Biology, 2005, 57: 461~485.
    [57] Hagenblad J., Nordborg M. Sequence variation and haplotype structure surrounding the flowering time locus FRI in Arabidopsis thaliana. Genetics, 2002, 161: 289~298.
    [58] Hansen M., Kraft T., Ganestam S., S?ll T., Nilsson N.O. Linkage disequilibrium mapping of the bolting gene in sea beet using AFLP markers. Genetical Research, 2001, 77: 61~66.
    [59] Hardy O.J., Vekemans X. SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Molecular Ecology Notes, 2002, 2: 618~620.
    [60] Huang N., Domingo J., Magpantay G. Pyramiding of bacterial blight resistance genes in rice: marker assisted selection using RFLP and PCR. Theoretical and Applied Genetics, 1997, 95: 313~320.
    [61] Huang X.Q., Cloutier S., Lycar L., Radovanovic N., Humphreys D.G., Noll J.S., Somers D.J., Brown P.D. Molecular detection of QTL for agronomic and quality traits in a doubled haploid population derived from two Canadian wheats (Triticum aestivum L.). Theoretical and Applied Genetics, 2006, 113: 753~766.
    [62] Huang X.Q., C?ster H., Ganal M.W., R?der M.S. Advanced backcross QTL analysis for the identification of quantitative trait loci alleles from wild relatives of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2003, 106: 1379~1389.
    [63] Huang X.Q., Kempf H., Ganal M.W., R?der M.S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat(Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109: 933~943.
    [64] Huckett B.I., Botha F.C. Stability and potential use of RAPD markers in sugarcane genealogy. Euphytica, 1995, 86: 117~125.
    [65] Hulbert S.H., Webb C.A., Smith S.M., Sun Q. Resistance gene complexes: evolution and utilization. Annual review of phytopathology, 2001, 39: 285~312.
    [66] Igartua E., Casas A.M., Ciudad F., Montoya J.L., Romagosa I. RFLP markers associated with major genes controlling heading data evaluated in a barley germplasm pool. Heredity, 1999, 83: 551~559.
    [67] Ivandic V., Hackett C.A., Nevo E., Keith R., Thomas W.T.B., Forster B.P. Analysis of simple sequence repeats (SSRs) in wild barley from the Fertile Crescent: associations with ecology, geography and flowering time. Plant Molecular Biology, 2002, 48: 511~527.
    [68] Ivandic V., Thomas W.T.B., Nevo E., Zhang Z., Forster B.P. Associations of simple sequence repeats with quantitative trait variation including biotic and abiotic stress tolerance in Hordeum spontaneum. Plant Breeding, 2003, 122: 300~304.
    [69] Jakobson I., Peusha H., Timofejeva L., J?rve K. Adult plant and seedling resistance to powdery mildew in a Triticum aestivum×Triticum militinae hybrid line. Theoretical and Applied Genetics, 2006, 112: 760~769.
    [70] Jannink J., Bink M.C.A.M., Jansen R.C. Using complex plant pedigrees to map valuable genes. Trends in Plant Science, 2001, 6: 337~342.
    [71] Jean-Marcel Ribaut, Javier Betran, Kate Dreher. Marker-assisted selection in maize: strategies, examples and costs. Plant and Animal Genome IX Conference, 2001, 13~17.
    [72] Ji X.L., Xie C.J., Ni Z.F., Yang T.M., Nevo E., Fahima T., Liu Z.Y., Sun Q.X. Identification and genetic mapping of a powdery mildew resistance gene in wild emmer (Triticum dicoccoides) accession IW72 from Israel. Euphytica, 2008, 159: 385~390.
    [73] Jia G.F., Chen P.D., Qin G.J., Bai G.H., Wang X., Wang S.L., Zhou B., Zhang S.H., Liu D.J. QTL for Fusarium head blight response in a wheat DH population of Wangshuibai/Alondra‘s’. Euphytica, 2005, 146: 183~191.
    [74] Jorde J.B. Linkage disequilibrium and the search for complex disease gene. Genome Research, 2000, 10: 1435~1444.
    [75] Korzun V., R?der M.S., Ganal M.W., Worland A.J., Law C.N. Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 1998, 96: 1104~1109.
    [76] Kraakman A.T.W., Martínez F., Mussiraliev B., van Eeuwijk F.A., Niks R.E. Linkage disequilibrium mapping of morphological, resistance, and other agronomically relevant traits in modern spring barley cultivars. Molecular Breeding, 2006, 17: 41~58.
    [77] Kraakman A.T.W., Niks R.E., Van den Berg, P.M.M.M., Stam P., Van Eeuwijk F.A. Linkage disequilirium mapping of yield and yield stability in modern spring barley cultivars. Genetics, 2004, 168: 435~446.
    [78] Kuchel H., Hollamby G., Langridge P., Williams K., JeVeries S.P. Identification of genetic loci associated with ear-emergence in bread wheat. Theoretical and Applied Genetics, 2006, 113: 1103~1112.
    [79] Kumar N., Kulwal P.L., Balyan H.S., Gupta P.K. QTL mapping for yield and yield contributing traits in two mapping populations of bread wheat. Molecular Breeding, 2007, 19: 163~177.
    [80] Labate J.A., Lamkey K.R., Lee M., Woodman W. Hardy-Weinberg and linkage equilibrium estimates in the BSSS and BSCB1 random mated populations. Maydica, 2000, 45: 243~55.
    [81] Lee G.J., Boerma H.R., Villagarcia M.R., Zhou X., Carter Jr T.E., Li Z., Gibbs M.O. A major QTL conditioning salt tolerance in S-100 soybean and descendent cultivars. Theoretical and Applied Genetics, 2004, 109: 1610~1619.
    [82] Li J.X., Yu S.B., Xu C.G., Tan Y.F., Gao Y.J., Li X.H., Zhang Q. Analyzing quantitative trait loci for yield using a vegetatively replicated F2 population from a cross between the parents of an elite rice hybrid. Theoretical and Applied Genetics, 2000, 101: 248~254.
    [83] Li S.S., Jia J.Z., Wei X.Y., Zhang X.C., Li L.Z., Chen H.M., Fan Y.D., Sun H.Y., Zhao X.H., Lei T.D., Xu Y.F., Jiang F.S., Wang H.G., Li L.H. A intervarietal genetic map and QTL analysis for yield traits in wheat. Molecular Breeding, 2007, 20: 167~178.
    [84] Lin F., Kong Z.X., Zhu H.L., Xue S.L., Wu J.Z., Tian D.G., Wei J.B., Zhang C.Q., Ma Z.Q. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419×Wangshuibai population II: Type II resistance. Theoretical and Applied Genetics, 2004, 109: 1504~1511.
    [85] Lin F., Xue S.L., Zhang Z.Z., Zhang C.Q., Kong Z.X., Yao G.Q., Tian D.G., Zhu H.L., Li C.J., Cao Y., Wei J.B., Luo Q.Y., Ma Z.Q. Mapping QTL associated with resistance to Fusarium head blight in the Nanda2419 x Wangshuibai population. II. Type I resistance. Theoretical and Applied Genetics, 2006, 112: 528~535.
    [86] Liu R.H., Meng J.L. MapDraw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Heraditas, 2003, 25: 317~321.
    [87] Lorenzen L.L., Boutin S., Young N., Specht J.E., Shoemaker R.C. Soybean pedigree analysis using map-based molecular markers: I. tracking RFLP markers in cultivars. Crop Science, 1995, 35: 1326~1336.
    [88] Ma Z., Zhao D., Zhang C., Zhang Z., Xue S., Lin F., Kong Z., Tian D., Luo Q. Molecular genetic analysis of five spike-related traits in wheat using RIL and immortalized F2 populations. Molecular Genetics and Genomics, 2007, 277: 31~42.
    [89] Maccaferri M., Sanguineti M.C., Noli E. Tuberosa R. Population structure and long-range linkage disequilibrium in a durum wheat elite collection. Molecular Breeding, 2005, 15: 271~289.
    [90] Malosetti M., Voltas J., Romagosa I., Ullrich S.E., Eeuwijk F.A. Mixed models including environmental covariables for studying QTL by environment interaction. Euphytica, 2004, 137: 139~145.
    [91] McIntosh R.A., Hart G.E., Devos K.M., Gale M.D., Rogers W.J. Catalogue of gene symbols forwheat. In: Slinkard AE (ed) Proc 9th Int Wheat Gene Symp Vol 5. University Extension Press, University of Saskatchewan, Canada, 1998.
    [92] Meuwissen T.H., Karlsen A., Lien S., Olsaker I., Goddard M.E., Fine mapping of a quantitative trait locus for twinning rate using combined linkage and linkage diseuilibrium mapping. Genetics, 2002, 161: 373~379.
    [93] Narasimhamoorthy B., Gill B.S., Fritz A.K., Nelson J.C., Brown-Guedira G.L. Advanced backcross QTL analysis of a hard winter wheat×synthetic wheat population. Theoretical and Applied Genetics, 2006, 112: 787~796.
    [94] Nordborg M., Hu T.T., Ishino Y., Jhaveri J., Toomajian C., Zheng H.C., Bakker E., Calabrese P., Gladstone J., Goyal R., Jakobsson M., Kim S., Morozov Y., Padhukasahasram B., Plagnol V., Rosenberg N.A., Shah C., Wall J.D., Wang J., Zhao K.Y., Kalbfleisch T., Schulz V., Kreitman M., Bergelson J. The pattern of polymorphism in Arabidopsis thaliana. Plos Biology, 2005, 3: e196.
    [95] Olsen K.M., Halldorsdottir S.S., Stinchcombe J.R., Weinig C., Schmitt J., Purugganan M.D. Linkage disequilibrium mapping of Arabidopsis CRY2 flowering time alleles. Genetics, 167: 1361~1369.
    [96] Perretant M.R., Cadalen T., Charmet G., Sourdille P., Nicolas P., Boeuf C., Tixier M.H., Branlard G., Bernard S., Bernard M. QTL analysis of bread-making quality in wheat using a doubled haploid population. Theoretical and Applied Genetics, 2000, 100: 1167~1175.
    [97] Perry M.W., D’Antuono M.F. Yield improvement and associated characteristics of some Australian spring wheat cultivars introduced between 1860 and 1982. Australian Journal of Agricultural Research, 1989, 40: 457~472.
    [98] Pestsova E., Ganal M.W., R?der M.S. Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome, 2000, 43: 689~697.
    [99] Pestsova E., R?der M. Microsatellite analysis of wheat chromosome 2D allows the reconstruction of chromosomal inheritance in pedigrees of breeding programmes. Theoretical and Applied Genetics, 2002, 106: 84~91.
    [100] Pritchard J.K. Przeworski M. Linkage disequilibrium in humans: models and data. American Journal of Human Genetics, 2001, 69: 1~14.
    [101] Pritchard J.K., Rosenberg N.A. Use of unlinked genetic markers to detect population stratification in association studies. American Journal of Human Genetics, 1999, 65: 220~228.
    [102] Pritchard J.K., Stephens M., Donnelly P. Inference of population structure using multilocus genotype data. Genetics, 2000, 155: 945~959.
    [103] Przeworski M., Wall J.D. Why is there so little intragenic linkage disequilibrium in humans? Genetical Research, 2001, 77: 143~151.
    [104] Rafalski A. Applications of single nucleotide polymorphisms in crop genetics. Curr. Opin. Plant Biology, 2002, 5: 94~100.
    [105] Ramburan V.P., Pretorius Z.A., Louw J.H., Boyd L.A., Smith P.H., Boshoff W.H.P, Prins R. A genetic analysis of adult plant resistance to stripe rust in the wheat cultivar Kariega. Theoreticaland Applied Genetics, 2004, 108: 1426~1433.
    [106] Reffay N., Jackson P.A., Aitken K.S., Hoarau J.Y., D'Hont A., Besse P., McIntyre C.L. Characterisation of genome regions imcorporated from an important wild relative into Australian sugarcane. Molecular Breeding, 2005, 15: 367~381.
    [107] Reich D.E., Cargill M., Bolk S., Ireland J., Sabeti P.C., Richter D.J., Lavery T., Kouyoumjian R., Farhadian S.F., Ward R., Lander E.S. Linkage disequilibrium in the human genome. Nature, 2001, 411: 199~204.
    [108] Reif J.C., Hamrit S., Heckenberger M., Schipprack W., Maurer H.P., Bohn M., Melchinger A.E. Trends in genetic diversity among European maize cultivars and their parental components during the past 50 years. Theoretical and Applied Genetics, 2005, 111: 838~845.
    [109] Remington D.L., Thornsberry J.M., Matsuoka Y., Wilson L.M., Whitt S.R., Doebley J., Kresovich S. Goodman M.M., Buckler IV E.S. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proceedings of the National Academy of Sciences USA, 2001, 98: 11479~11484.
    [110] Reynolds M.P., Rajaram S., Sayre K.D. Physiological and genetic changes of irrigated wheat in the post-green revolution period and approaches for meeting projected global demand. Crop Science, 1999, 39: 1611~1621.
    [111] Risch N., Merikangas K. The future of genetic studies of complex human diseases. Science, 1996, 273: 1516~1517.
    [112] R?der M.S, Korzun V., Wendehake K., Plaschke J., Tixier M.H., Leroy P., Ganal M.W. A microsatellite map of wheat. Genetics, 1998, 149: 2007~2023.
    [113] Royo C.,álvaro F., Martos V., Ramdani A., Isidro J., Villegas D., García del Moral L.F. Genetic changes in durum wheat yield components and associated traits in Italian and Spanish varieties during the 20th century. Euphytica, 2007, 155: 259~270.
    [114] Russell J.R., Ellis R.P., Thomas W.T.B., Waugh R., Provan J., Booth A., Fuller J., Lawrence P., Young G., Powell W. A retrospective analysis of spring barley germplasm development from‘foundation genotypes’to currently successful cultivars. Molecularl breeding, 2000, 6: 553~568.
    [115] Saghai Maroof M.A., Soliman K.M., Jorgensen R.A., Allard R.W. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics. Proceedings of the National Academy of Sciences USA, 1984, 81: 8014~8018.
    [116] Schneider K.A., Brothers M.E., Kelly J.D. Marker-assisted selection to improve drought resistance in common bean. Crop Science, 1997, 37: 51~60.
    [117] Shi A.N., Leath S., Murphy J.P. A major gene for powdery mildew resistance transferred to common wheat from wild einkorn wheat. Phytopathology, 1998, 88: 144~147.
    [118] Shi J.R., Xu D.H., Yang H.Y., Lu Q.X., Ban T. DNA marker analysis for pyramided of Fusarium head blight (FHB) resistance QTL from different germplasm. Genetica, 2008, 133: 77~84.
    [119] Shoemaker R.C., Guffy R.D., Lorenzen L.L., Specht J.E. Molecular genetic mapping of soybean: Map utilization. Crop Science, 1992, 32: 1091~1098.
    [120] Simko I., Costanzo S., Haynes K.G., Christ B.J., Jones R.W. Linkage disequilibrium mapping of a Verticillium dahliae resistance quantitative trait locus in tetraploid potato (Solanum tuberosum) through a candidate gene approach. Theoretical and Applied Genetics, 2004, 108: 217~224.
    [121] Simko I., Haynes K.G., Jones R.W. Mining data from potato pedigrees: tracking the origin of susceptibility and resistance to Verticillium dahliae in North American cultivars through molecular marker analysis. Theoretical and Applied Genetics, 2004, 108: 225~230.
    [122] Sjakste T.G., Rashal I., R?der M.S. Inheritance of microsatellite alleles in pedigrees of Latvian barley varieties and related European ancestors. Theoretical and Applied Genetics, 2003, 106: 539~549.
    [123] Sk?t L., Humphreys J., Humphreys M.O., Thorogood D., Gallagher J., Sanderson R., Armstead I.P., Thomas I.D. Association of Candidate genes with flowering time and water-soluble carbohydrate content in lolium perenne (L.). Genetics, 2007, 177: 535~547.
    [124] Slafer G.A., Andrade F.H. Genetic improvement in bread wheat (Triticum aestivum) yield in Argentina. Field Crops Research, 1989, 21: 289~296.
    [125] Smith O.S., Smith J.S.C., Bowen S.L., Tenborg R.A., Wall S.j. Similarities among a group of elite maize inbreds as measured by pedigree, F1 grain yield, grain yield, heterosis, and RFLPs. Theoretical and Applied Genetics, 1997, 80: 833~840.
    [126] Sneath P.H.A., Sokal R.R. Numerical Taxonomy. W.H. Freeman and Co, San Francisco, CA, USA, 1973.
    [127] Somers D.J., Isaac P., Edwards K. A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 2004, 109: 1105~1114.
    [128] Song Q.J., Shi J.R., Singh S., Fickus E.W., Costa J.M., Lewis J., Gill B.S., Ward R., Cregan P.B. Development and mapping of microsatellite (SSR) markers in wheat. Theoretical and Applied Genetics, 2005, 110: 550~560.
    [129] Spielman R.S., McGinnis R.E., Ewens W.J. Transmission test for linkage disequilibrium, the insulin gene region and insulin-dependent diabetes mellitus (IDDM)[J].American Journal of Human Genetic, 1993, 52: 506~516.
    [130] St. Martin S.K. Effective population size for the soybean improvement program in maturity groups OO to IV. Crop Science, 1982, 22: 151~152.
    [131] Storey J.D. A direct approach to false discovery rates. Journal of the Royal Statistical Society Series B, 2002, 64: 479~498.
    [132] Su J., Xiao Y., Li Ming., Liu Q., Li B., Tong Y., Jia J., Li Z. Mapping QTL for phosphorus-deficiency tolerance at wheat seedling stage. Plant and Soil, 2006, 281: 25~36.
    [133] Sun D.J., He Z.H., Xia X.C., Zhang L.P., Morris C.F., Appels R, Ma W.J., Wang H. A novel STS marker for polyphenol oxidase activity in bread wheat. Molecular Breeding, 2005, 16: 209~218.
    [134] Szalma S.J., Buckler E.S. 4th, Snook M.E., McMullen M.D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theoretical and Applied Genetics, 2005, 110: 1324~33.
    [135] Taillon-Miller P., Bauer-Sardifia I., Saceone N.L., Putzel J., Laitinen T., Cao A., Kere J., Pilia G., Rice J.P., Kwok P.K. Juxtaposed regions of extensive and minimal linkage disequilibrium in human Xq25 and Xq28. Nature Genetics, 2000, 25: 324~328.
    [136] Tan Y.F., Xing Y.Z., Li J.X., Yu S.B., Xu C.G., Zhang Q., Genetic bases of appearance quality of rice grains in Shanyou 63, an elite rice hybrid. Theoretical and Applied Genetics, 2000, 101: 823~829.
    [137] Tanksley S.D., Young N.D., Paterson A.H. RFLP mapping in plant breeding: new tools for old sciences. Biotechnology, 1989, 7: 257~264.
    [138] Tenaillon M.I., Sawkins M.C., Anthony D., Long A.D., Gaut R.L., Doebley J.F., Gaut B.S. Patterns of DNA sequence polymorphism along chromosome 1 of maize (Zea mays ssp. mays L.). Proceedings of the National Academy of Sciences USA, 2001, 98: 9161~9166.
    [139] Terzi V., Morcia C., Stanca A.M., Kucera L., Fares C., Codianni P., Fonzo N.D., Faccioli P. Assessment of genetic diversity in emmer (Triticum dicoccon Schrank)×durum wheat (Triticum durum Desf.) derived lines and their parents using mapped and unmapped molecular markers. Genetic Resours and Crop Evolution, 2007, 54: 1613~1621.
    [140] Thornsberry J.M., Goodman M.M., Doebley J., Kresovich S., Nielsen D., Buckler E.S. Dwarf8 polymorphisms associated with variation in flowering time. Nature Genetics, 2001, 28: 286~289.
    [141] Tian F., Li D.J., Fu Q., Zhu Z.F., Fu Y.C., Wang X.K., Sun C.Q. Construction of introgression lines carrying wild rice (Oryza rufipogon Griff.) segments in cultivated rice (Oryza sativa L.) background and characterization of introgressed segments associated with yield-related traits. Theoretical and Applied Genetics, 2006, 112: 570~580.
    [142] Tian Q.Z, Zhou R.H., Jia J.Z. Genetic diversity trend of common wheat (Triticum turgidum L.) in China revealved with AFLP markers. Genetic Resours and Crop Evolution, 2005, 52: 325~331.
    [143] Wang H., Nussbaum-Wagler T., Li B.L., Zhao Q., Vigourous Y., Faller M., Omblies K., Lukens L., Doebley J.F. The origin of the naked grains of maize. Nature, 2005, 436: 714~719.
    [144] Werner J.D., Borevitz J.O., Warthmann N., Trainer G.T., Ecker J.R., Chory J., Weigel D. Quantitative trait locus mapping and DNA array hybridization identify an FLM deletion as a cause for natural flowering time variation. Proceedings of the National Academy of Sciences USA, 2005, 102: 2460~2465.
    [145] Wilson L.M., Whitt S.R., Ibá?ez A.M., Rocheford T.R., Goodman M.M., Buckler IV E.S. Dissection of Maize Kernel Composition and Starch Production by Candidate Gene Association. Plant Cell, 2004, 16: 2719~2733.
    [146] Worland A.J., B?rner A., Korzun V., Li W.M., Petrovic S., Sayers E.J. The influence of photoperiod genes on the adaptability of European winter wheats. Euphytica, 1998, 100: 385~394.
    [147] Worland A.J., Law C.N. Genetic analysis of chromosome 2D of wheat. I. The location of genes affecting height, day length insensitivity, hybrid dwarfism and yellow-rust resistance. Zuchtbuch Pflanzenzucht, 1986, 96: 331~345.
    [148] Xie C., Gessler D.D.G., Xu S. Combining different line crosses for mapping quantitative trait loci using the identical by descent-based variance component method. Genetics, 1998, 149: 1139~1146.
    [149] Xu D.H., Wahyuni S., Sato Y., Yamaguchi M., Tsunematsu H., Ban T. Genetic diversity and relationships of Japanese peach (Prunus persica L.) cultivars revealed by AFLP and pedigree tracing. Genetic Resources and Crop Evolution, 2006, 53: 883~889.
    [150] Yan H., Jin W., Nagaki K., Tian S., Ouyang S., Buell C.R., Talbert P.B., Henikoff S., Jiang J. Transcription and histone modifications in the recombination-free region spanning a rice centromere. The Plant Cell, 2005, 17: 3227~3238.
    [151] Yano M., Katayose Y., Ashikari M., Yamanouchi U., Monna L., Fuse T., Baba T., Yamamoto K., Umehara Y., Nagamura Y., Sasaki T. Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the arabidopsis flowering time gene CONSTANS. Plant Cell, 2000, 12: 2473~2483.
    [152] Yao J., Wang L., Liu L., Zhao C., Zheng Y. Association mapping of agronomic traits on chromosome 2A of wheat. Genetica, 2009, DOI 10.1007/s10709-009-9351-5.
    [153] Yu J., Buckler E.S. Genetic association mapping and genome organization of maize. Current Opinion in Biotechnology, 2006, 17: 155~160.
    [154] Yu J., Pressoir G., Briggs W.H., Bi I.V., Yamasaki M., Doebley J.F., McMullen M.D., Gaut B.S., Nielsen D.M., Holland J.B., Kresovich S. Buckler E. A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nature Genetics, 2006, 38: 203~208.
    [155] Zhang J., Zhang W. Tracing sources of dwarfing genes in barley breeding in China. Euphytica, 2003, 131: 285~292.
    [156] Zhang Y., Mao Y., Xie C., Smith H., Luo L., Xu S. Mapping quantitative trait loci using naturally occurring genetic variance among commercial inbred lines of maize (Zea mays L.). Genetics, 2005, 169: 2267~2275.
    [157] Zhuang J.Y., Lin H.X., Lu J., Qian H.R., Hittalmani S., Huang N., Zheng K.L. Analysis of QTL 3 environment interaction for yield components and plant height in rice. Theoretical and Applied Genetics, 1997, 95: 799~808.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700