再生稻高产稳产形成的生理生态特性及比较蛋白组学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
再生稻是利用水稻的再生特性,采用一定的栽培管理措施,在头季稻收割后利用稻桩上的休眠芽萌发生长成穗而收割的一季水稻,具有生育期短、日产量高、省种、省工、节水、调节劳力、生产成本低和经济效益高等优点,近几年来种植面积逐年扩大,单产逐年提高,成为南方稻区水稻种植的一种重要的轻简化耕作制度,在保障我国粮食安全中发挥着越来越重要的作用。但目前在不同地区再生稻产量水平差异悬殊,就是在光温分布不存在差异的同一地区不同田块间其产量水平也相差较大,可见,再生稻产量高低与栽培技术体系密切相关,因此,进一步阐明再生稻高产稳产的栽培调控机制,从而实现再生稻的高产稳产就成为当前发展和推广再生稻亟待研究解决的问题。本研究从生理水平探讨不同栽培模式下再生稻高产形成的生理机制及头季不同氮肥运筹方式对再生稻增产的影响机制;在此基础上应用差异蛋白质组学、生物信息学方法,研究不同促芽肥水平调控再生芽萌发的机理以及不同促芽肥水平调控头季稻籽粒灌浆的分子生理与级联因果,探讨不同栽培和农艺调控技术对再生稻产量的影响,主要结果如下:
     1、不同栽培模式早稻-再生稻高产形成的生理生态特性
     通过对超高产栽培模式和常规栽培模式秧苗、头季、再生季稻株生理生态特性的研究,结果表明:与常规栽培模式相比,超高产栽培模式的旱育秧苗具有矮壮、抗逆、吸收和同化力强四大优势,形成的带蘖壮秧有利于早稻的早播抗寒抗旱抗衰老和秧苗移栽后的返青发根;移栽后,在整个早稻-再生稻生育期内超高产栽培模式稻株的细胞膜过氧化程度低,抗逆性强,生育后期叶片不早衰,碳、氮代谢和物能转化与运转旺盛,具有更强的干物质、能量积累能力和更高的能量运转效率,群体能流更顺畅,保持着明显的生理生化优势,从而其头季稻株表现出分蘖早、分蘖节位低、有效分蘖期短、有效穗多、穗粒重的特性,再生季腋芽表现出萌发早、萌发快、前期萌发量大、茎蘖数高峰出现早、有效腋芽萌发期短、腋芽起始数量高、总茎蘖数和有效穗多的特性,为超高产栽培模式最终实现头季和再生季高产奠定了重要的生理生态基础;但超高产栽培模式头季、再生季稻株的N素生产效率较低。
     2、头季不同氮肥运筹对早稻-再生稻产量和氮素利用率影响的生理生态机制
     在头季施氮总量固定(225.00 kg·hm-2)的基础上,通过分析超高产栽培模式下头季基蘖肥与穗肥不同配比对再生稻光合生产、干物质积累运转及氮素利用率的影响,结果表明:适当减少再生稻头季基蘖肥施N比例,增加穗肥施N比例,显著提高了再生稻头季生长中、后期的叶片硝酸还原酶活性、叶绿素含量、净光合速率,也提高了能反映根系综合机能的伤流量,特别是在再生稻头季孕穗期,这为硝态N还原为铵态N,进一步合成为氨基酸提供了酶促条件,并确保了水分、养分的吸收和氨基酸及根源激素的合成,保证了分蘖盛期~孕穗期和头季穗发育期间的营养供应,减少了头季无效分蘖,优化了群体结构,提高了头季中、后期的净同化率和群体生长率,从而提高了头季中、后期的干物质积累,显著增加了每m2颖花数、每穗粒数及库容量,加上显著增加的库藏物质生产量,从而穗大粒多,提高了氮肥利用率,为高产、增产、高效生产奠定了基础,但对再生季产量和氮肥利用率的影响不显著。
     3、不同促芽肥水平对头季稻强弱势粒灌浆影响的比较蛋白组学分析
     采用比较蛋白质组学的方法和技术,并结合生物信息学技术及相关生理指标,研究不同促芽肥水平影响头季稻强弱势粒灌浆后期叶片蛋白质组差异表达的特性及相应的生理特性,结果表明,头季稻功能叶片中与光合作用和抗性抗衰老相关的蛋白在再生季施用促芽肥后发生了显著的变化,施用促芽肥能明显减缓头季稻后期剑叶中与光合作用相关蛋白的下调幅度,且能在施肥后不同时期明显提高头季稻后期剑叶中与抗性相关蛋白的表达量,从而提高了头季灌浆后期稻株的抗逆性,降低了功能叶片细胞膜的过氧化程度,延缓了灌浆后期剑叶的衰老速率,相对提高了头季稻灌浆后期水稻叶片的叶绿素含量和光合速率,延长了头季稻剑叶的功能期,增加了头季稻灌浆后期的源供应能力和干物质积累,提高了头季稻灌浆后期弱势粒的最大灌浆速率和平均灌浆速率,从而提高了头季稻弱势粒的灌浆强度,增加了弱势粒不同灌浆时期籽粒粒重的积累,从而显著提高了头季稻的结实率和产量。
     4、不同促芽肥水平调控再生芽萌发生长的比较蛋白组学研究
     采用比较蛋白质组学的方法和技术,并结合生物信息学技术及相关生理指标,研究不同促芽肥水平影响再生芽蛋白质组差异表达的特性及相应的生理特性,结果表明,再生芽中与能量代谢相关蛋白、生长相关蛋白和抗性相关蛋白在再生季施用促芽肥后不同时期及不同促芽肥处理不同时期发生了显著的变化,施用促芽肥能有效的降低再生芽中能量代谢相关蛋白核苷二磷酸激酶蛋白表达量的下调幅度,提高光系统Ⅱ放氧复合体和细胞色素b6/f复合体蛋白表达量上调幅度,从而使再生芽具有相对较强的能量合成能力和较强光合自养能力,更有利形成大量的光合能量用于碳同化,更好的满足再生芽分化生长对能量和物质的需求;还能相对降低再生芽中生长相关蛋白肌动蛋白解聚因子、脱落酸诱导蛋白和再生芽分化生长前期类萌发素蛋白的表达量,相对提高翻译控制肿瘤蛋白、再生芽萌发生长后期类萌发素蛋白的表达量,从而抑制了再生芽分化生长前期细胞壁的形成和加固,提高了再生芽内肌动蛋白含量,促进了再生芽分化过程的细胞分裂和伸长;此外,施用促芽肥还能提高再生芽中抗性相关蛋白的表达量,增强再生芽抵御外界生物和非生物胁迫的能力,提高对各种不良环境的适应性,因而其倒二茎至倒五茎各节位再生芽的活芽率和芽长显著高于未施用促芽肥的处理,从而显著提高了再生季的单位面积有效穗数、结实率和产量,实现了再生季的高产增产。
Ratooning rice is the reharvested crop from the first cropping plants, which is generated from sprouted dormancy buds and grows to produce effective panicles at rice stake after the first crop was harvested with the aid of a certain cultivation management. Because it has the advantages of short growth period, high output, saving labour and cost, the technology has become an important part of light and simplified farming system in rice planting region of Southern China. In recent years, the area of ratooning rice has been expanded and the yields of rationing rice have been improved year after year. So it is playing an increasingly important role in protecting our country food security. However, the production levels of ratooning rice in different regions are in great disparity. Even though under the condition without differences in light and temperature distribution in the same area, the large difference in the production levels can be observed . All these show that ratooning rice yields are closely related to cultivation technique system. Therefore, further to clarify the mechanisms of high and stable yield formation and its regulation has became an urgent problem for the development and promotion of ratooning rice. In this study, eco-physiological characteristics of high yield formation under different cultivation modes and different nitrogen application strategies for the first cropping rice and its nitrogen utilization efficiency were investigated. Accordingly, comparative proteomics and bioinformatics were applied to study the molecular physiological mechanisms of ratooning bud sprout and its growth at different levels of fertilizer applciation for ratooning bud development and grain filling of the first cropping rice at different levels of fertilizer application for rationing bud development, aiming at further understanding the effect of different cultivation and regulation technology on the graing yield of ratoon rice. The main results were summarized as follows:
     1. Eco-physiological characteristics of high yielding formation of early rice and its ratooning crop under different cultivation modes
     The result showed that compared with traditional cultivation mode, the dry-raising seedlings of super high-yielding cultivation patterns were more healthy and dwarf, higher resisttant ablity, greater absorptive and assimilative capacity. The strong tillering seedlings were helpful to improve the ablity resistant to cold stress and senescence in favor of early sowing, turning green and root germination earlier after transplanted. During the entire period of early rice and its ratooning crop growth, the rice crop under super high-yield cultivation mode possessed the obvious physiological biochemistry superiority, exhibiting its lower cell membrane peroxidation, stronger resistance to any stresses, longer duration of leaf function, more active metabolism of carbon and nitrogen, stronger ability of dry matter production and energy accumulation, higher energy operating efficiency, smoother energy flow than those under traditional cultivation mode. So the rice plants under super high-yield cultivation mode had the advantages as follows, early tillering, lower tillering node , shorter productive tiller stage, more productive panicles, heavier 1000-grain weight in the first cropping rice , and sprouting early and quckly, shortening productive axillary buds stage significantly, increasing the number of tiller and productive panicles in ratoon rice. All these had laid the important physiological ecological foundation for achieving high yield in the first cropping rice and its ratooning plants But the N production efficiency of super high-yield cultivation mode was lower than that of traditional cultivation mode.
     2.Eco-physiological machinery in terms of effects of different nitrogen application strategies on grain yield and nitrogen utilization efficiency in the first cropping rice and its ratooning plants
     To furter understand the effects of different fertilizer application regime on grain yield and nitrogen utilization efficiency of ratoon rice, photosynthetic production,dry matter accumulation and Nitrogen Utilization Efficiency( NUE )in early rice and its ratooning crop were studied at different nitrogen rates but in the same total nitrogen supply (225.00kg.hm-2 N-fertilizer ) applied in basal dressing, tiller dressing and panicle dressing respectively in the first cropping rice . The result indicated that nitrogen reductase (NR) activity and chlorophyll contents as well as net photosynthetic rate of leaf in the first cropping rice at the middle and late growth stage were significantly improved with properly increasing the proportion of N supplies in the same stage. At the same time, the rate of phloem sap was also enhanced, especially at the booting stage of the first cropping rice. These in turn resulted in improved enzymatic condition for nitric nitrogen to be deoxidized into ammonium one and synthesis of amino-acid, insured the absorption of moisture and nutrient,synthesis of amino-acid and rootstock hormone, and also ensured the nutrition supply from full-tillering stage to ripening stage.Thereby, properly decreasing the proportion of N supplies in the early growth stage and increasing the proportion of N supplies in the middle and late growth stages were favorable to decreasing the ineffective tillers, optimizing the population structure and significantly improving the net assimilation rate (NAR) and crop growth rate (CGR) in the middle and late growth stage of the first crop for ratoon rice.These in turn led to increased net dry matter accumulation and significantly increased spikelet number per m2, spikelet number per panicle and sink sizes. As a result, these factors engendered large sink size and plentiful source and made the yield and NUE(Nitrogen Utilization Efficiency)of the first crop significantly enhanced. But, to the NUE(Nitrogen Utilization Efficiency)and the yield of the ratoon crop, the effect is not significant.
     3.Compararive proteomic analysis of effects of different nitrogen application strategies on grain yield and nitrogen utilization efficiency in the first cropping rice and its ratooning plants
     The effects of different fertilizer treatments for ratooning bud development on differentially expressed proteins and the corresponding physiological characteristics of rice functional leaves in the late grain filling of early rice were studied by using comparative proteomics combined with bioinformatics and related physiological indicators. The results indicated that the proteins of early rice leaves related to photosynthesis and resistance showed obvious changes after the fertilizer treatment for rationing bud development. Fertilizer treatments for the bud development can not only significantly slow down the decreased amplitude of photosynthesis-related proteins in expression abundance, but also significantly increase the expression abundance of resistance-related protein. These in turn improved the resistance of first cropping rice, and reduced the membrane peroxidation of rice functional leaves, consequently delayed the senescence rate of flag leaf, relatively enhanced the chlorophyll content and photosynthetic rate of rice functional leaf, prolonged the function duration of rice flag leaf, thereby increased the source supply ability , dry matter accumulation, the largest and the averaged grain filling rate of inferior grains in the late filling phase of early rice. As a result, the dry matter accumulation of inferior grains was sigificantly increased at different grain filling phases of early rice, consequently, significantly enhanced the seed-setting rate and yield of early rice.
     4.Comparative proteomic analysis of the effect of different fertilizer treatments on sprout and growth of ratooning buds
     The effects of different fertilizer treatments for the promotion of ratooning bud development on differentially expressed proteins and the corresponding physiological characteristics of rationing rice were studied by using comparative proteomics combined with bioinformatics and related physiological indicators. The results indicated that the proteins of ratooning buds related to energy metabolism, germination and growth, resistance showed obvious changes after the fertilizer treatment for rationing bud development. Fertilizer treatment for rationing bud development can significantly slow down the decreased amplitude of NDPK proteins in expression abundance, and significantly improve the expression abundance of oxygen-evolving photosystemⅡcomplex protein and cytochrome b6 / F Complex protein. So that ratooning buds mediated by fertilizer treatment had relatively stronger energy synthesis and photolithoautotrophic capabilities, which were favorable to the formation of photosynthetic energy for carbon assimilation and better meet the energy and material needs of ratooning bud growth and differentiation. Fertilizer treatment for rationing bud development can also relatively reduced the expression abundance of actin-depolymerizing factor protein, abscisic acid-inducible protein and germin-like protein in the early germination and growth of ratooning buds, and relatively increased the expression abundance of translationally-controlled tumor protein homolog protein and germin-like protein in the late germination and growth of ratooning buds, which inhibited the cell wall formation and reinforcement in the early sprout and growth of ratooning buds, improved the actin content of ratooning buds and promoted cell division and elongation of ratooning buds. In addition,Fertilizer treatment for bud development can still improve the expression abundance of resistance-related protein, which enhanced the ability to resist external biotic and abiotic stress and the adaptability to adverse environment. Therefore, compared with non-fertilizer treatment for rationing bud development, the percentage of alive bud and the length of ratooning buds in fertilizer treatment for the promotion of bud development were significantly higher from the 2nd bud accounted from the top to the 5th bud from the top. As a result, fertilizer treatment for the promotion of bud development significantly improved effective panicle, seed setting rate and grain yield of rationing rice, aiming to get high yielding and large increment in rationing rice production.
引文
1.鲍士旦.土壤农化分析(第三版) [M].北京:中国农业出版社,2000:39-41.
    2.蔡建中,王余龙,何杰升,等.水稻产量构成因素与群体干物质生产的关系及其对产量的影响[J].江苏农学院学报,1989, 10 (4):9-l2.
    3.蔡金玉.再生稻不同施氮水平对分蘖成穗的影响[J].福建稻麦科技,2001,19(2):23-24.
    4.曹云,范晓荣,贾莉君,等.不同水稻品种对NO3-同化差异的比较[J].南京农业大学学报,2005,28(1):52-56.
    5.陈周前.再生稻栽培利用的初步研究[J].安徽农业科学,1986,(2):10-12.
    6.褚家艮,印保林.洪湖市再生稻“吨粮田”工程的关键措施[J].湖北农业科学,1993,(4):28-29.
    7.崔克辉,何之常.模拟N、P污水对水稻幼苗过氧化物酶和超氧化物歧化酶的影响[J].环境科学学报,2005,15(4):447-453
    8.邓凤仪.杂交稻再生利用高产规律研究[J].杂交水稻,1991,(3):8-11.
    9.方志伟,张荣铣,朱培仁.水稻叶片叶绿素含量的变化与光合作用的关系[J].南京农业大学学报, 1987,(4):17-22.
    10.封晋.湖南省杂交水稻再生稻栽培技术研究初报[J].湖南农业科学,1990,(2):15-16.
    11.傅金松.再生稻栽培试验示范初报[J].浙江农业科学,1987,(5):214-218.
    12.管康林,陈耀武,肖耀文.于生稻生理研究初报[J].中国农业科学,1979,(3):23-30.
    13.何花榕,翁国华,郭灵灵,等.影响再生稻腋芽萌发因素的研究进展[J].福建稻麦科技,2008,26(3):61-63.
    14.胡玉文译.植物衰老和调控[M].沈阳:辽宁科学技术出版社.I990:240-250.
    15.华东师范大学生物系植物生理教研组.植物生理学实验指导[M].人民教育出版社,1980:143-144.
    16.黄芳福.浅谈再生稻的生产实践[J].江西农业科技,1995,(2):2-3.
    17.黄品仁,郭上金.早稻-再生稻超高产栽培技术[J].作物种植,2002,(3):14-15.
    18.黄友钦,张洪松.汕优63生育中后期碳水化合物的转运及分布规律研究[J].西南农业大学学报,1989,11(3):378-381.
    19.黄友钦,张洪松.汕优63再生芽幼穗分化发育规律[J].西南农业大学学报,1989,11 (1): 97- 101.
    20.黄育民,李义珍,蔡亚港,等.再生稻丰产技术研究Ⅷ报-再生稻株对促芽肥的吸收积累[J].福建稻麦科技,1995,13(3):45-47.
    21.黄育民.水稻品种改良与库源结构研究[D].福州:福建农业大学,1997.
    22.江世华.四川省再生稻高产综合栽培技术研究[J].西南农业大学学报,1995, 17(3):189-192.
    23.姜华,陈静,高晓玲,等.ABA对水稻愈伤组织、不定胚发育及其植株再生的影响[J].作物学报,2006,32(9):1379-1383.
    24.姜华,高晓玲,万,佳,等.ABA对水稻愈伤组织糖类物质代谢及相关酶活性的影响[J].中国水稻科学,2006,20(4):406-410.
    25.姜照伟,林文雄,李义珍,等.不同氮肥施用量对再生稻氮素吸收和分配的影响[J].福建农业学报,2003,18(1):50-55.
    26.姜照伟,林文雄,李义珍,等.不同氮肥施用量对再生稻干物质积累运转的影响[J].福建农业学报,2004,19(2): 103 -107.
    27.蒋彭炎.高产水稻的若干生物学特性[J].中国稻米,1994,1(2):43-45.
    28.李柏林,梅慧生.燕麦叶片衰老与活性氧代谢的关系[J].植物生理学报,1989,15(1):6-12.
    29.李合生.植物生理生化实验原理和技术[M].北京:高等教育出版社,2000.
    30.李经勇,任天举,唐永群.赤霉素、植物细胞分裂素对再生稻的增产效应[J].西南农业学报,1997,10 (2) :26-31.
    31.李义珍,黄育民,陈子超,等.再生稻丰产技术研究[J].福建省农科院学报,1991,6(1):1-12.
    32.李志刚,叶正钱,杨肖娥,等.不同养分管理对杂交稻生育后期功能叶生理活性和籽粒灌浆的影响[J].浙江大学学报,2003,29(3):265-270.
    33.粱建生,曹显祖.杂交水稻叶片的若干生理指标与根系伤流强度关系[J].江苏农学院学报,l993,14(4):25-30.
    34.林瑞余,梁义元,林文雄,等.不同水稻品种产量形成过程的能量积累与热值特征[J].应用生态学报,2006,17(10):1899-1904.
    35.林文,李义珍,姜照伟,等.再生稻根系形态和机能的品种间差异及产量的关联性[J].福建农业学报,2000,16(1):1-4.
    36.林文雄,郭玉春,梁义元.杂交水稻产量与品质形成的发育生理与遗传生态学研究[J].福建农业学报,2006,21(1): 1-8.
    37.林文雄,梁康迳,郭玉春等.水稻高产形成的分子生态学基础及其应用研究[J].应用生态学报, 2003,14(12): 2316-2320.
    38.林文雄,吴志强,梁义元.气候条件对杂交水稻籽粒灌浆的影响[J].中国农业气象,1992,13(2): 4-8.
    39.林文雄,柯庆明,王松良,等.不同生态条件下杂交水稻后期保护酶活性研究[J].福建农业大学学报,1996,25(1):1-6
    40.林文雄,王松良,梁义元,等.水稻旱育稀植高产栽培的生理生态研究Ⅱ[J].应用生态学报,1998,9(4):395-399
    41.林文雄,王松良,梁义元,等.水稻旱育稀植高产栽培的生理生态研究I[J].应用生态学报,1997,8(6):566-570
    42.林植芳.水稻叶片衰老与超氧物歧化酶括性及酯质过氧化作物的关系[J].植物学报,1984,26(6):605-615.
    43.凌启鸿,苏祖芳,侯康平,等.水稻潜伏芽生长和穗分化形成规律及其应用研究[J].中国农业科学,1989,22(1):35-43.
    44.凌启鸿,张洪程,丁艳锋,等.水稻高产技术的新发展—精确定量栽培[J].中国稻米,2005,(1):3-7.
    45.凌启鸿.水稻不同叶龄期施用穗肥的研究[J].江苏农学院学报,1985,6(3):11-19.
    46.刘爱中,邹冬生,屠乃美,等.头季稻剑叶同化产物分配与再生稻产量的关系[J].广东农业科学,2007,(7): 29-32.
    47.刘保国,王光明,陈静,等.促芽肥影响水稻再生芽萌发的生理系列化基础[J].西南农业学报,1998,11 (水稻栽培专辑) :41-47.
    48.刘保国,王光明,张清修.头季稻后期光合产物与再生稻生长发育的关系[J].西南农业大学学报,1993,15 (5) : 383-385.
    49.罗玉水.施氮量与栽培密度对Ⅱ优航1号作再生稻产量的影响[J].中国农学通报,2007,48 (7):203-206
    50.马均,明东风,马文波,许凤英.不同施氮时期对水稻淀粉积累及淀粉合成相关酶类活性变化的研究[J].中国农业科学,2005,38(2):290-29.
    51.马风鸣.硝酸还原酶活性作为甜菜氮素营养诊断及其产量指标的研究[J].中国农业科学,1996,29(5):16-22.
    52.马均,王化新.促芽肥15N在再生稻中的分配及其作用研究[J].西南农业学报,1992,5(1):41-46.
    53.马均.赤霉素在再生稻上的应用初探[J].耕作与栽培,1992,(5):23-25.
    54.马旭俊,朱大海.植物超氧化物歧化酶的研究进展[J].遗传,2003,25(2):225-231.
    55.戚昌瀚,贺洁华.大穗型水稻产量形成特性的研究[J].江西农业大学学报,1988,10(专集):41-45.
    56.任昌福,刘保国.再生稻培植技术[M].北京:农业出版社,1993.
    57.任天举,李经勇.保芽及促芽肥15N对中稻—再生稻的生理效应初探[J].再生稻, 1995, (1- 2) : 25-29.
    58.任天举.头季后期营养器官碳水化合物含量对再生稻的影响[J].西南农业学报,1993,6(2): 32- 37.
    59.上海植物生理学会.现代植物生理学实验指南[M].北京:科学出版社,1999.
    60.施能浦.福建杂交中稻—再生稻亩产吨粮栽培技术[J].再生稻,1997,(7):1-6.
    61.施能浦.杂交中稻—再生稻超高产栽培技术[J].中国稻米,1997,(5):18-20.
    62.施能浦.杂交中稻—再生稻栽培特性与技术研究初报[J].杂交水稻,1995,(1):18-23.
    63.苏祖芳,李永丰,张洪程,等.水稻单茎茎鞘重与产量形成关系及其高产栽培途径的探讨[J].江苏农学院学报, 1993, 14 (1):1-10.
    64.孙国夫,郑志明,王兆骞.水稻热值的动态变化研究[J].生态学杂志,1993,12(1):1-4.
    65.孙晓辉,田彦华,任天举.促芽肥对杂交稻培育再生稻效果研究[J].四川农业科技,l982,(3):1-4.
    66.谭震波,沈利爽,袁祚廉,等.水稻再生能力和头季稻产量性状的QTL定位及其遗传效应分析[J].作物学报,1997, 23(3):289-295.
    67.唐浩.水稻再生特性及其头季稻体内营养物质含量的关系研究[D].长沙:湖南农业大学,2002.
    68.唐祖荫.再生稻高产栽培技术[J].耕作与栽培,1991,(3):6-7.
    69.田彦华.汕优63休眠芽幼穗分化发育规律初步研究[A].见:四川农业大学.1988年水稻研究年报[M].雅安:四川农业大学,1989,13-18.
    70.田永超,曹卫星,王绍华,等.不同水、氮条件下水稻不同叶位水、氮含量及光合速率的变化特征[J].作物学报,2004,30(11):1129-1134.
    71.万义清.汕优63再生利用的高产栽培技术[J].湖北农业科学,1992,(1):10-12.
    72.汪家政,范明主编.蛋白质技术手册[M].科学出版社(北京), 2000: 42-46.
    73.王爱国.植物的氧代主主括性氧对细胞的伤害[C].中国科学院华南植物研究所集刊,1989,5:11-24.
    74.王伯伦,刘新安.水稻产量潜力的研究[J].山东农业大学学报,1992,23(增刊):13-17.
    75.王昌华,张燕之,周毓珩,等.杂交水稻结实率问题综述[J].辽宁农业科学,2001,(1):41-43.
    76.王峰,王宏斌,王金发.水稻细胞质铜锌超氧化物歧化酶基因的序列和表达分析[J].热带亚热带植物学报2007,15(2): 101- 106
    77.王化新.水稻不同节位叶的光合强度和光合产物的运转与分配[J].四川农业大学学报, 1989,7(3):142-154.
    78.王绍华,吉志军,刘胜环,等.水稻氮素供需差与不同叶位叶片氮转运和衰老的关系[J].中国农业科学,2003,36(11):1261-1265.
    79.王彦荣,华泽田,陈温福,等.粳稻根系与叶片早衰的关系及其对籽粒灌浆的影响[J].作物学报,2003,29(6): 892-898.
    80.王志琴,杨建昌,朱庆森,等.亚种间杂交稻籽粒充实不良的原因探讨[J].作物学报,1998,24(6): 782-787
    81.魏丹,韩光,赵海滨,等.根外追肥在水稻灌浆过程中对子实养分和水分动态变化的影响[J].黑龙江农业科学,1996(2):1-4.
    82.翁晓燕,陆庆,郑炳松,等.超级稻培矮64S/E32开花结实期间的叶片衰老[J].浙江大学学报(农业与生命科学版),2001,27(2):169-172
    83.吴国胜.Ⅱ优航1号在武夷山作再生稻种植表现及高产栽培技术[J].福建稻麦科技,2005,23(3): 45-46.
    84.西北农业大学植物生理生化教研组.植物生理学实验指导[M].陕西科技出版社,1986:92-93.
    85.肖凯,张荣铣,钱维朴.氮素营养调控小麦旗叶衰老和光合功能衰退的生理机制[J].植物营养与肥料学报,1998,4(4):371-378.
    86.谢华安.中国特别是福建的超级稻研究进展[J].中国稻米,2004, (2):7-10.
    87.熊洪,方文,谭震波.杂交中稻不同时期收割对头季稻和再生稻产量的影响[J].杂交水稻,1990,(3):8-10.
    88.熊洪.土壤含水量与头季稻和再生稻产量的关系[J].生态学杂志, 1995,14(3):5-9.
    89.熊洪.杂交稻蓄留再生稻的增产技术分析[J].杂交水稻,1996,(5):2-4.
    90.徐富贤,熊洪,洪松.促芽肥与杂交中稻再生力关系及其作用机理[J].作物学报,1997,23(3):31 1-317.
    91.徐克章,黑田荣喜,平野贡.水稻开花后叶片含氮量与光合作用的动态变化及其关系[J].作物学报,1995, 21(2): 171-175.
    92.薛艳风,陆江锋,吕川根,等.两系亚种间杂交稻两优培九籽粒灌浆动态研究[J].江苏农业研究,2001,2(2:9-13.
    93.颜振德.杂交稻高产群体干物质生产与分配的研究[J].作物学报,1981,7(1):11-18.
    94.杨德光,蔡明历.杂交早稻旱育秧,水育秧和板田育秧方式秧苗素质比较[J].沈阳农业大学学报, 1999,30,(5): 485-489.
    95.杨建昌,彭少兵,顾世梁,等.水稻灌浆期籽粒中3个与淀粉合成有关的酶活性变化[J].作物学报,2001, 27(2): 157-164.
    96.杨建昌,苏宝琳,王志琴,等.亚种间杂交稻籽粒灌浆特性及其生理的研究[J].中国农业科学,1998,31(1): 7-14.
    97.杨京平,姜宁,陈杰.不同氮素水平下气象因子对两种水稻热值影响的分析[J].中国水稻科学,2001,15(3):233-236.
    98.杨开渠.再生水稻研究[J].农业学报,1958,9(2):286-329.
    99.叶发辉.超氧物自由基对花生幼苗生长及核酸含量的影响[C].中国科学院华南植物研究所集刊,1992,8:86-90.
    100.殷宏章.水稻器官的相对生长和经济产量[J].作物学报,1964,3(1):1-14.
    101.余伟秀,黄友钦.头季稻株营养物质与再生稻生育的关系[J].杂交水稻, 1994, (1) : 15-18.
    102.曾翔,李阳生,李达模,等.影响杂交水稻结实率的因素分析及其关键调控技术[J].湖南农业科学,2003,(4): 28-30.
    103.詹明德,苏迎平,王菊生.杂交中稻-再生稻年亩产吨粮栽培技术[J].中国稻米,1997,(2):19-21.
    104.张桂莲,屠乃美.再生稻研究现状与展望[J].作物研究,2001,(3):64-69.
    105.张海峰,黄育民,林文,等.再生稻的光合作用和物质生产[J].福建稻麦科技,1991(1):41-45.
    106.张洪松,岩田忠寿.梗型杂交稻与常规稻的物质生产及营养特性的比较[J].西南农业学报,1995,8(4):11-16.
    107.张经余,赵志虎,蔡民华. GroEL分子伴侣研究进展[J].生物技术通讯,2001,12(2):127-129
    108.张景国.四川省杂交中稻再生技术研究和应用[J].杂交水稻,1991,(4):6-8.
    109.张黎光.插秧根数与留桩高度对中稻及其再生稻产量的影响[J].湖南农业科学,1994,(2):21-22.
    110.张荣铣,程在全,方志伟,等.关于小麦叶片光合速率高值持续期的初步研究[J].南京师范大学学报, 1992 , 15 (增刊) : 76-86.
    111.张上守,卓传营,姜照伟,等.超高产再生稻产量形成和栽培技术分析[J],福建农业学报, 2003, 18(1): 1-6
    112.张上守.改革稻作制发展再生稻[J].福建农业科技,2006,(5):1-3.
    113.张玉秀,柴团耀. Hsp70分子伴侣系统研究进展[J].生物化学与生物物理进展,1999 ,26(6) :554
    114.张志刚,熊运海,王光明,等.活性氧代谢与再生芽萌发的关系[J].西南农业大学学报,2000,22(1):14-16.
    115.张志良.植物生理学实验指导[M].北京:高等教育出版社,2003.
    116.赵国平,敬金星,吴永样.水稻旱育秧技术机理研究[J].作物杂志,1994 (6):21-24
    117.赵世英,胡慧英.再生稻与主作性状相关性的研究[J].江西农业科学,1987,(7):3-5.
    118.郑景生,林文,卓传营,等.再生稻根干物质量及根系活力与产量的相关性研究[J].中国生态农业学报, 2004, 12(4):106-109.
    119.郑景生,林文雄,林义珍,等.再生稻头季不同施氮水平的双季氮素吸收及产量效应研究[J].中国生态农业学报,2004,12(3):78-82.
    120.郑景生.再生稻高产栽培特性与相关性状的基因定位研究[D].福州:福建农林大学,2004.
    121.郑荣和.Ⅱ优航1号作再生稻栽培的表现及高产栽培技术[J].福建稻麦科技,2004,22(2):21-22.
    122.重庆再生稻研究中心.冈优渝九在不同密肥条件下的中稻再生稻产量效应[J].再生稻,1997,(2):46-49.
    123.朱诚,傅亚萍,孙宗修.超高产水稻开花结实期间叶片衰老与活性氧代谢的关系[J].中国水稻科学, 200216(4):326-330.
    124.朱广兼,钟诲文,张爱琴.植物生理学实验[M].北京:北京大学出版社,1990:30-33.
    125.朱庆森,薛艳凤,景启坚,等.不同育秧方式对水稻机插秧苗素质的影响[J].南京农业大学学报,2003,26,(3):7-9.
    126.庄存山.21世纪中国水稻持续增产的途径[J].作物杂志,1997,(5):9-13.
    127.卓传营.Ⅱ优航1号作再生稻栽培的超高产特性及调控技术[J].福建农业学报,2006,21(2):89-94.
    128. Agrawal G K, Rakwal R, Yonekura M, Kubo A, Saji H. Proteome analysis of differentially displayed proteins as a tool for investigating ozone stress in rice (Oryza sativa L.) seedling [J]. Proteomics, 2002, 2(8):947-959.
    129. Ali M, Komatsu S. Proteomic analysis of rice leaf sheath during drought stress [J]. J Prote Res, 2006, 5: 396-403.
    130. Andrews TJ,Lorimer GH. RubisCO:Structurs, mechanism and prospects for improvement.In Hatch MD(ed),The Biochemistry of Plants. Academic Press.1987
    131. Asada K. Ascorbate peroxidase—a hydrogen peroxide scavenging enzyme in plants[J]. Physiol Plant,1992,85:235-241.
    132. Ayscough KR. In vivo functions of actin-binding proteins[J].Curr Opin Cell Biol,1998,10:102-111.
    133. Bangerth F., Response of cytokinin concentration in the xylem exudate of bean (Phaseolus-Vulgaris L.)plants to de—capitation an d aux in treatment, and relationship to apical dominance[J],Planta, 1994,194:439-442.
    134. Berna A,Bernier F.Regulated by biotic and abiotic of wheat germin gene encoding oxalate oxidase,a H2O2-producing enzyme[J].Plant M ol Biol,1999,39:539-549.
    135. Berna A,Bernier F.Regulation expression of a wheat germin gene in tobacco:oxalate oxidase activity and apoplastic localization of the heterologous protein[J].Plant Mol Biol, 1997,33:417-429.
    136. Boston RS, Viitanen PV, Vierling E. Molecular chaperones and protein folding in plants. Plant Mol Biol, 1996,32: 191-222.
    137. Bowler C, Van Montagu M, Inze D. Superoxide dismutase and stress tolerance [J]. Annu Rev Plant Physiol Plant Mol Biol, 1992,43:83- 116.
    138. Buchanan—Wollaston V.The molecular biology of leafsenescence[J].J Exp Bot.1997, 48: 181 - 199.
    139. Carlier MF,Laurent V,Santolinin J,Melki R,Didry D,Xia GX,Hong Y,Chua N-H,Pantaloni D.Actin depolymerizing factor(ADF/cofilin)enhances the rate of filament tIImoVer:implication in actin.based momity[J].J Cell Biol,1997,l36(6):1307-1323.
    140. Chauhan J S. Genetic analysis of ratooning ability in rice.Rice[J] Abstracts, 1990, 9(1):18.
    141. Chauhan J S. Genetic analysis of ratooning ability in rice[J]. Rice Abstracts, 1990,9(2):16.
    142. Chen CY, Wong EI, Vidali L, Estavillo A, Hepler PK, Wu H, Cheung AY (2002). The regulation of actin organization by actindepolymerizing factor in elongating pollen tubes[J].Plant Cell,14: 2175-2190.
    143. Chen GX.Asada K.Asorbate peroxidase in tea leaves oc currence of two isoenzymes and their differences in enzymatic and molecular properties[J].Plant Cell Physiol,l989,30:987-998.
    144. Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T. Proteomics Identification of Differentially Expressed Proteins Associated with Pollen Germination and Tube Growth Reveals Characteristics of Germinated Oryza sativa Pollen [J]. Mol Cell Prot,2007,6:207-230.
    145. Dong CH, Xia GX, Hong Y, Ramachandran S, Kost B, Chua NH(2001). ADF proteins are involved in the control of floweringand regulate F-actin organization, cell expansion, and organ
    146. Emery R.J.N., Longuecker N.E., Atkins C.A. Branch development in Lupinus angustifolius L.Ⅱ. Relationship with endogenous ABA, IAA and cytokinins in axillary and main stem buds[J]. J. Exp. Bo., 1998,49(320): 555-562.
    147. Fenn J B, Mann M, Meng C K, Wong S F, Whitehouse C M. Electrospray ionization for mass spectrometry of large biomoleculars [J]. Science, 1989, 246:64-71.
    148. Gan S, Amasino RM.Making sense of senescence:molecular gentic regulation an d manipulation of leaf senescence.Plant[J] Physiol,1997,113:313-319.
    149. Georgopoulos C, Welch WJ (1993). Role of the major heat shock proteins as molecular chaperones. Annu Rev Cell Biol, 9: 601-634.
    150. Gorg A, Weiss W, Dunn MJ. Current two-dimensional electrophoresis technology for proteomics [J]. Proteomics, 2004, (12): 3665-36854.
    151. Grzelczak ZF.Lane BG.Signal resistance of a solubleprotein to enzymic hydrolysis.An unorthodox approachto the isolation and purification of germin.a rare growth- related[J] . CanJBiochem ZZBio1,1984,62:135l-1353.
    152. Hartl FU, Hayer-Hartl M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science, 2002,295: 1852-1858
    153. Hasunuma K., Yabe N., Yoshida Y., etal. Putative Functions of Nucleoside Diphosphate Kinase in Plants and Fungi[J]. Journal of Bioenergetics and Biomembranes,2003,35(1):57-65
    154. Hhilleris Lambers D. Varietal improvement for rice ratooning: traits,procedures,collaboxation. rice rationing[J]. IRRI,Los Banos,Philippines. 1987,8:247-255.
    155. Hirano H. Screening of rice genes from the cDNA catalog using the data obtained by protein sequencing [J]. J Prot Chem, 1997, 16:533-536.
    156. Holtorf H, Guitton M C, Reski R. Plant functional genomics [J]. Naturwissenschaften, 2002, 89:235.
    157. Hurkman WJ,Tanaka CK.Germin gene expression is induced in wheat leaves by powdery mildew infection.P nt Physio1.1996,111:735-739.
    158. Imin N, Kerim T, Rolfe B G, Weinman J J. Effect of early cold stress on the maturation of rice Anthers [J]. Proteomics, 2004, 4:1873–1882.
    159. Imin N, Kerim T, Weinman J J, Rolfe B G. Characterisation of rice anther protein expressed at the youngmicrospore stage [J]. Proteomics, 2001, 1:1149-1161.
    160. Jiang CZ,Rodermel SR,Shibles RM.Photosynthesis,Rubisco activity an d amount,and their regulation by transcription in senescing soybean leaves[J].Plant Physiol,1993,101:105-112.
    161. Karas M, Hillenkamp F. Laser desorption ionization of proteins with molecular masses exceeding 10000 daltons [J]. Anal Chem, 1988, 60:1299-2301.
    162. Kimura1 N.. Nucleoside Diphosphate Kinases: Genes and Protein Functions[J]. Journal of Bioenergetics and Biomembranes,2003,35(1):3-4
    163. Klee H., Estele M., Molecular genetic approaches to plant hormone biology[J]. Allnu. Rev. Plant Physiol. Plant.Mo1. Bio1., 1991, 42:529-551.
    164. Koller A, Washburn M P, Markus L B. Proteomic survey of metabolic pathways in rice [J]. Proc Natl Acad Sci U S A, 2002, 99(18): 11969-11974.
    165. Komatsu S, Kajiwara T, Hirano H. A rice protein library: a data-file of rice proteins separated by two-dimensional electrophoresis [J]. Theor Appl Genet, 1993, 86:935-942.
    166. Kost B, Lemiche E, Chua NH. Cytoskeleton in plant development[J]. Curr Opin Plant Bio,1999,l2: 462-470.
    167. Lane BG,Dunwell JM,Ray JA,Schmitt MR,Cuming AC.Germin,a protein marker of early plant development,is an oxalate oxidase[J].J Biol Chem,1993,268:12239-12242.
    168. Lane BG . Oxalate oxidase and differentiating surface structure in wheat : germin[J] . Biochem J.2000,349:309-321.
    169. Lascu1 I., Gonin P.. The Catalytic Mechanism of Nucleoside Diphosphate Kinases[J]. Journal of Bioenergetics and Biomembranes, 2000,32(3):237-246
    170. Laskowski M J, Dreher K A, Gehring M A, Abel S, Gensler A L, Sussex I M. FQR1, a novel primary auxin-response gene, encodes a flavin mononucleotide-binding quinone reductase [J]. Plant Physiol, 2002, 128: 578-590
    171. Leung K.C., Li H.Y., Mishra G., Chye M.L.. ACBP4 and ACBP5, novel Arabidopsis acyl-CoA-binding proteins with kelch motifs that bind oleoyl-CoA[J], Plant Molecular Biology,2004,55:297-309
    172. Mayfield JA, Fiebig A, Johnstone SE, Preuss D. Genefamilies from the Arabidopsis thaliana pollen coat proteome[J].Science,2001,292:2482-2485.
    173. McCurdy DW, Kovar DR, Staiger CJ. Actin and actinbinding proteins in higher plants[J]. Protoplasma,2001,215:89-104.
    174. Medford J.I., Horgan R., El-Sawi Z., et al. 1989, Alterations of endogenous cytokinins in transgenic plantsusing a chimeric isopentenyl transferase gene[J]. Plant Cell, 1(4):403-4 l3.
    175. Miguel L.C., Longnecker N.E., Ma Q., et al. 1998, Branch development in Lupinus antifolius L_I. Not all branches have the same potential growth rate[J]. J. Exp. BoL,49:547-553.
    176. Nakano Y,Asada K.Purification of ascorbate peroxidase inspinach chloroplasts , its inactivation in ascorhatedepleted mediurn and reactivation by monode hydroascorbate radica1[J].Plant Cell Physiol,1987,28:131 l34.
    177. Nannipieri P, Muccini L, Ciardi C.Microbial biomass and enzyme activities,production and persistence[J]. Soil Biol Biochem, l983, l5(1):679-685.
    178. Oh SA,Park JH,Lee GI,Paek KH,Park SK,Nam HG(1997).Identification of three genetic loci controlling leaf senescence in Arabidopsis thaliana[J].J Plant,12(3):527-533.
    179. Pandey A, Mann M. Proteomics to study genes and genomes [J]. Nature, 2000, 405:837-846.
    180. Parker R, Flowers T J, Moore A L, Harpham N V. An accurate and reproducible method for proteome profiling of the effects of salt stress in the rice leaf lamina [J]. Journal of Experimental Botany, 2006, 57, 1109–1118.
    181. Pei Z.M., Ghassemian M., Kwak C. M., M cCourt P., et al. 1998, Role of famesyltransferase in ABA regulation of guard cell anion channels an d plan t water loss[J]. Science,282(5387):287-290.
    182. Ramani S, Apte S K. Transient expression of multiple genes in salinity-stressed young seedlings of rice (Oryza sativa L.) cv [J]. Bura Rata Biochem Biophys Res Comm, 1997, 223:663-667.
    183. Romano C.P., Cooper M.L., Klee H.J.,1993, Uncoupling auxin and ethylene effects in transgenic tobacco and Abidopsis plants[J], Plant Cell, 5(2):181-189.
    184. Salekdeh G H, Siopongco J, Wade L J. Proteomic analysis of rice leaves during drought stress and recovery [J]. Proteomics, 2002, 2:1131-1145.
    185. Shen S, Matsubae M, Takao T, Tanaka N, Komatsu S. A proteomic analysis of leaf-sheaths from rice [J]. J Biochem, 2002, 132:613-620.
    186. Sherman M Y, Goldberg A L. Heat shock of Escherichia coliincreases binding of dnaK(the hsp70 homolog) to polypeptides by promoting its phosphorylation[J]. Proc Natl Acad Sci USA, 1993, 90(18): 8648-8652。
    187. Singh S,Thakur M,Malik V,Goyal L,Pundir CS.Influence of NaC1 stress on oxalate oxidase activity in germinating seeds of forage sorghum hybrid.Indian J Plant Physiol,1998,3(4):317-319
    188. Takahashi R, Joshee N, Kitagawa Y. Induction of chilling resistance by water stress and cDNA sequence analysis and expression of water stress-regulated genes in rice [J]. Plant Molecular Biology.1994,26:339-352.
    189. Toshiyuki Takai, Yoshimichi Fukuta, Tatsuhiko Shiraiwa et al. Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.) [J]. Journal of Experimental Botany, 2005, 56: 2107-2118.
    190. Vergara BS, Lopez FSS, Chauhan JS, Chauhan JS. Morphology and physiology of ratoon rice[A]. In: IRRI. Rice Ratooning[C]. Los Banos: IRRI, 1987: 31- 40.
    191. Wasinger V C, Cordwell S J, Cerpa-Poljak A, et al. Progress with gene-product mapping of the Mollicutes: Mycoplasma genitalium [J]. Electrophoresis, 1995,16(7):1090-1094.
    192. Woo S H, Fukuda M, Markus L B, Andon N L. Efficient peptide mapping and its application to identify embryo proteins in rice proteome analysis. [J] Electrophoresis, 2002, 23:647-654.
    193. Yang J, Zhang J, Huang Z et al. Remobilization of carbon reserves is improved by controlled soil-drying during grain-filling of wheat[J]. Crop Science, 2000, 40: 1645–1655.
    194. Zang X, Komatsu S. A proteomics approach for identifying osmotic-stress-related proteins in rice [J]. Phytochemistry, 2007,68(4): 426~437.
    195. Zhang Z,Collinge DB,Thordal—Christensen H.Germin-like oxalate oxidase,a H2O2-producing enzyme,accumulates in barley attacked by the powdery mildew fungus.Plant J,1995,8(1):139-145.
    196. Zhao C, Wang J, Cao M, Zhao K. Proteomic changes in rice leaves during development of field-grown rice plants [J]. Proteomics, 2005, 5:961-972.
    197. Zhong B, Karibe H, Komatsu S, Ichimura H. Screening of rice genes from a cDNA catalog based on the sequence data-file of proteins separated by two-dimensional electrophoresis [J]. Breed Sci, 1997, 47:245-251.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700