中国野生华东葡萄抗白粉病株系白河-35-1转录因子基因(WRKY)表达与功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
植物抗病反应被多种信号途径所调控,抗病基因激活表达是植物对多种病原菌产生响应至关重要的部分。WRKY转录因子是主要参与免疫反应转录调控大基因家族。世界葡萄生产中主栽品种欧洲葡萄(Vitis vinifera)大多不抗病,中国原产野生葡萄抗病性好,但其果实品质不及欧洲葡萄。为有效利用中国野生葡萄抗病相关基因改良欧洲葡萄抗病性,本研究从中国野生华东葡萄高抗白粉病株系白河-35-1中分离获得两个WRKY转录因子基因,并对其表达及功能进行了研究,主要取得以下结果:
     1、采用RACE技术对中国野生华东葡萄抗白粉病株系白河-35-1叶片文库两个推定WRKY ESTs进行全长克隆,并命名为中国野生华东葡萄高抗白粉病株系白河-35-1转录因子基因VpWRKY1和VpWRKY2。其中,VpWRKY1 mRNA全长1157bp,开放阅读框969bp,编码322个AA,GenBank登录号为:GQ884198。VpWRKY2 mRNA全长1607bp,开放阅读框为1500bp,编码499个AA,GenBank登录号为GU565706。氨基酸序列同源性分析结果表明,VpWRKY1、VpWRKY2分属于WRKY大家族第III、I类。
     2、采用实时荧光定量PCR技术分析VpWRKY1和VpWRKY2在11个葡萄种质(中国野生华东葡萄抗白粉病株系抗病株系‘白河-35-1’、‘白河-13’、‘白河-13-1’、‘广西-1’与感病株系‘白河-35-2’、‘广西-2’、‘商南-2’、‘湖南-1’,感病的欧洲葡萄品种佳利酿及其中国野葡萄华东葡萄抗白粉病株系‘白河-35-1’和感病的欧洲葡萄品种佳利酿杂交F1代抗病和感病代表植株‘6-12-6’和‘6-12-2’)叶片中受白粉菌诱导的表达。结果表明,VpWRKY1和VpWRKY2在这11个葡萄种质叶片中都受白粉菌诱导先上调表达,再回到原始水平,上调表达最大值出现在接种后12h。此外,VpWRKY1表达在白河-35-1中被抗病信号分子SA诱导,而VpWRKY2则被三种抗病信号分子SA、JA和Eth诱导。半定量PCR分析VpWRKY1和VpWRKY2在中国野葡萄华东葡萄抗白粉病株系白河-35-1组织特异性表达结果表明,VpWRKY1在根中几乎不表达,在茎中表达最强,叶片和卷须次之。VpWRKY2在茎中表达最强,叶片中表达次之,在根和卷须中表达最弱。
     3、采用基因枪介导的瞬时转化技术检测VpWRKY1和VpWRKY2在洋葱表皮细胞内定位。结果表明,这两个转录因子都定位在核内。此外,酵母单杂交和瞬时共表达研究结果证实,VpWRKY1在酵母菌株AH109及中国野生华东葡萄抗白粉病株系白河-35-1叶片中都具有转录激活活性,而VpWRKY2仅在白河-35-1叶片中有转录激活活性。
     4、采用农杆菌介导的花序浸沾法获得转化VpWRKY1和VpWRKY2基因拟南芥株系,进一步分析结果表明,转基因株系对白粉病抵抗力增强。此外,转化VpWRKY2基因拟南芥幼苗对烟草疫霉菌抵抗提高,但转化VpWRKY1基因拟南芥幼苗对烟草疫霉病抗性未发生变化。
     5、实时荧光定量PCR检测转基因拟南芥株系中抗病相关基因AtPR1、AtPR10、AtNPR1、AtCOR1和AtPDF1.2表达结果表明,多数抗病相关基因在转基因株系中的表达发生变化。同时,葡萄抗病相关基因VpPR1、VpPR10及VvNPR1的表达在瞬时转化VpWRKY1和VpWRKY2的中国野生华东葡萄抗白粉病株系白河-35-1组培苗叶片中也显著发生变化。说明抗病基因表达可能受VpWRKY1和VpWRKY2调控。
     6、采用同源序列法设计引物克隆获得VpWRKY1和VpWRKY2基因启动子PvpWRKY1和PvpWRKY2。PvpWRKY1长694bp,GenBank登录号为GU565705。PvpWRKY2长643bp,GenBank登录号为HQ174899。在瞬时转化的中国野生华东葡萄抗白粉病株系白河-35-1组培苗叶片中,PvpWRKY1::GUS和PvpWRKY2::GUS融合蛋白的表达被葡萄白粉菌诱导上调,属病原菌诱导型启动子。
Disease responses of plants are regulated by multiple signaling pathways. Transcription control of the expression of disease-resistance genes is a crucial part of plant response to a range of disease. WRKY transcription factors are a large family which is mainly involved in transcriptional regulation associated with immune response. Cultivated grapevine (Vitis vinifera) is susceptible to many pathogens, while Chinese wild grapevines are often resistant to pathogens. To utilize the valuable wild recourse, exploring for promising genes from wild grapevines is the first step for generating transgenic resistant varieties of V. vinifera. In this research, two genes encoding WRKY transcription factors were isolated from Chinese wild V. pseudoreticulata W. T. Wang‘Baihe-35-1’. The expression and function of the two genes were studied. The main results were as follows:
     1. Full lengths of the two WRKY genes were cloned from Chinese wild V. pseudoreticulata W. T. Wang‘Baihe-35-1’by using RACE technique based on the EST sequences, and were designated as VpWRKY1 (GenBank accession no. GQ884198) and VpWRKY2 (GenBank accession no. GU565706). VpWRKY1 cDNA was 1157 bp, encoding a polypeptide of 322 amino acids, while VpWRKY2 was 1607 bp, encoding a polypeptide of 499 amino acids. Phylogenetic analysis showed that VpWRKY1 and VpWRKY2 belong to group III and I, respectively, of the WRKY superfamily.
     2. Results of qRT-PCR showed that expression of VpWRKY1 and VpWRKY2 was induced by Erysiphe necator infection during 6 to 12 hpi in eleven grapevine (The five E. necator-resistant grapevines are Chinese wild V. pseudoreticulata W. T. Wang‘Baihe-35-1’,‘Baihe-13’,‘Baihe-13-1’,‘Guangxi-1’, and‘6-12-6’that is a cross between Chinese wild V. pseudoreticulata W. T. Wang‘Baihe-35-1’and V. vinifera L. cv. Carignane. The six E. necator-susceptible grapevines were V. vinifera L. cv. Carignane, Chinese wild V. pseudoreticulata W. T. Wang‘Guangxi-2’,‘Hunan-1’,‘Shangnan-2’,‘Baihe-35-2’, and‘6-12-2’that is another cross between Chinese wild V. pseudoreticulata W. T. Wang‘Baihe-35-1’and V. vinifera L. cv. Carignane). In addition, basal VpWRKY1 transcript level in‘Baihe-35-1’was not significantly induced by Eth and MeJA but was slightly induced by SA at 3 hpt (Fig. 1c, d, e). In contrast, VpWRKY2 was induced rapidly by these three signaling molecules with SA as the strongest inducer. Furthermore, results of semi-quantitative RT-PCR showed that expression of VpWRKY1 was strong in stems, followed by in tendrils and leaves, and was almost undetectable in roots, while expression of VpWRKY2 was also strong in stems, but followed by in leaves, and was weak in roots and tendrils.
     3. Transient expression of VpWRKY1 and VpWRKY2 showed that both proteins are localized in the nucleus of onion epidermal cells by using particle bombardment. Besides, VpWRKY1 and VpWRKY2 can activate reporter GUS expression by binding to the 140-bp promoter fragment that contains three W-boxes by using Agra-bacteria infiltration. Moreover, VpWRKY1 can activate reporter genes expression in yeast by using yeast one hybrid.
     4. Ectopic over-expression of VpWRKY1 or VpWRKY2 in Arabidopsis results in enhanced resistance to Erysiphe cichoracearum. What’s more, ectopic over-expression of VpWRKY2 in Arabidopsis results in enhanced tolerance to Phytophthora parasitica.
     5. Over-expression of VpWRKY1 and VpWRKY2 regulate the expression of defense maker genes AtPR1、AtPR10、AtNPR1、AtCOR1 and AtPDF1.2 in Arabidopsis, and transient expression of VpWRKY1 and VpWRKY2 regulate the expression of defense maker genes VpPR1、VpPR10 and VvNPR1 in grapevine leaves, suggesting that expression of defense maker genes is regulated by VpWRKY1 and VpWRKY2.
     6. Promoter regions of VpWRKY1 and VpWRKY2 were cloned from Chinese wild V. pseudoreticulata W. T. Wang‘Baihe-35-1’. The sequences were designated as PvpWRKY1 (GenBank accession no. GU565705) and PvpWRKY2 (GenBank accession no. HQ174899). PvpWRKY1 was 694bp in length, while PvpWRKY2 was 643bp in length. The activity of PvpWRKY1 and PvpWRKY2 was induced by E. necator in leaves of Chinese wild V. pseudoreticulata W. T. Wang‘Baihe-35-1’.
引文
陈霞,罗世巧,段翠芳,曾日中. 2008.高等植物转录因子研究进展.安徽农学通报, 14(9): 48-52 本杰明卢因. 2007.基因VIII精要(赵寿元译),北京:科学出版社: 542
    陈清,汤浩茹,董晓莉,侯艳霞,罗娅,蒋艳,黄琼瑶. 2009.植物Myb转录因子的研究进展.基因组学与应用生物学, 28(2): 365-372
    黄吉祥,任丽平,曹明富. 2008.植物抗胁迫类转录因子研究进展.杭州师范学院学报(自然科学版), 7(1): 55-59
    李洁. 2004.植物转录因子与基因调控.生物学通报, 39 (3): 9-11
    李宁,樊守金,张增艳. 2007.植物抗病相关启动子及其研究进展.植物遗传资源学报, 8 (2): 234-239
    刘强,张贵友,陈受宜. 2000.植物转录因子的结构与调控作用.科学通报, 45 (14): 1465-1474
    罗国光. 2010.中国葡萄产业面临的历史任务:加快由数量型向质量型转变.果树学报, 27(3): 431-435
    孔庆山. 2004.中国葡萄志.北京:中国农业科学技术出版社: 9-11
    邱德运. 2007.水稻WRKY转录因子OsWRKY13的功能鉴定和调控机理研究. [博士学位论文].湖北: 华中农业大学
    王计平,史华平,毛雪,李润植. 2007.转录因子网络与植物对环境胁迫的响应.应用生态学报, 17(9): 1740-1746
    王沛雅,王跃进,张建文,朱自果,张朝红. 2009.华东葡萄白河-35-1株系抗霜霉病基因cDNA文库构建及EST分析.农业生物技术学报, 29 (2): 294-300
    王西平,王跃进,周鹏,郑学勤. 2002.葡萄种间杂交F1代的RAPD分析.西北农林科技大学学报(自然科学版), 30 (6): 80-84
    王育娜. 2008.辣椒WRKY转录因子cDNA的分离与功能鉴定. [博士学位论文].福建:福建农林大学
    王跃进,贺普超, . 1997.中国葡萄属野生种叶片抗白粉病遗传研究.中国农业科学, 30(1): 19-25.
    王跃进,徐炎,张剑侠,周鹏. 2002.中国野生葡萄果实抗炭疽病基因的RAPD标记.中国农业科学, 35 (5): 536-540
    万怡震. 2003.中国葡萄属野生种抗病性及抗病基因RAPD标记作图研究. [博士学位论文].陕西:西北农林科技大学
    徐炎,王跃进,周鹏,张剑侠,王西平. 2002.中国野生葡萄果实抗白腐病基因RAPD标记的克隆及序列分析.西北农林科技大学学报(自然科学版), 30(6): 85-88
    徐炎. 2006.中国原产华东葡萄抗白粉病基因cDNA文库构建及其EST序列分析. [博士学位论文].陕西:西北农林科技大学
    杨英军,王跃进,周鹏,王西平,张剑侠. 2002.葡萄无核基因的SCAR标记及Southern blot分析.西北农林科技大学学报(自然科学版), 30 (6): 77-80
    杨颖,高世庆,唐益苗,冶晓芳,王永波,刘美英,赵昌平. 2009.植物bZIP转录因子的研究进展.麦类作物学报, 29(4): 730-737
    张建文,王跃进,朱自果,王沛雅,张朝红. 2009.中国野生华东葡萄抗霜霉病抑制消减文库构建及初步分析.中国农业科学, 42 (3): 960-966
    张剑侠,王跃进,徐炎. 2001.中国野生葡萄及其F1代抗白粉病的遗传表现.中国农业科学, 34 (6): 610-614
    张剑侠. 2006.中国野生葡萄抗病基因标记及辅助育种应用研究. [博士学位论文].陕西:西北农林科技大学
    张剑侠,王跃进,周邦军,徐伟荣,张艳艳. 2008a.中国野生葡萄抗白粉病基因RAPD标记的克隆及序列分析.农业生物技术学报, 16 (3): 481-485
    张剑侠,王跃进,徐伟荣,张艳艳. 2008b.葡萄感白粉病基因的RAPD标记及其序列分析.西北农林科技大学学报(自然科学版), 36 (02): 111-118
    张剑侠,王跃进,张艳艳,周邦军. 2009.中国野生葡萄抗黑痘病基因RAPD标记的克隆、序列分析及辅助育种应用.果树学报, 26(4): 456-460
    张剑侠,熊燕,王跃进,朱自果. 2010.中国野生葡萄抗寒基因的RAPD标记及其序列分析.中国农学通报, 26 (10): 30-37
    张军科,王静,王跃进,张朝红,徐炎. 2008a.中国野生葡萄白粉菌诱导cDNA文库中抗病基因的筛选.西北农林科技大学学报(自然科学版), 36(2): 119-123
    张军科,桑春果,王跃进,张朝红,史江莉,粟霞,罗世杏. 2008b.应用基因芯片检测中国野生葡萄抗白粉病基因表达.园艺学报, 35 (7): 1053-1058
    张艳艳,张剑侠,王跃进. 2008.中国野生葡萄抗霜霉病基因RAPD标记的筛选.果树学报, 25(6): 816-820
    朱自果,王跃进,史江莉,王沛雅,张朝红. 2009.华东葡萄抗白粉病杂种后代cDNA文库的构建及EST序列分析.果树学报, 26 (2): 151-157
    Alexandrova K S, Conger B V. 2002. Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Science, 162 (2): 301-307
    Belhadj A, Telef N, Cluzet S, Bouscaut J, Corio-Costet M F, Merillon J M. 2008. Ethephon elicits protection against Erysiphe necator in grapevine. Journal of Agricultural and Food Chemistry, 56 (14): 5781-5787
    Bellin D, Peressotti E, Merdinoglu D, Wiedemann-Merdinoglu S, Adam-Blondon A, Cipriani G, Morgante M, Testolin R, Di Gaspero G. 2009. Resistance to Plasmopara viticola in grapevine‘Bianca’is controlled by a major dominant gene causing localised necrosis at the infection site. TAG Theoretical and Applied Genetics, 120 (1): 163-176
    Bezier A, Lambert B, Baillieul F. 2002. Study of defense-related gene expression in grapevine leaves and berries infected with Botrytis cinerea. European Journal of Plant Pathology, 108 (2): 111-120
    Birnbaum K, Shasha D E, Wang J Y, Jung J W, Lambert G M, Galbraith D W, Benfey P N. 2003. A gene expression map of the Arabidopsis root. Science, 302 (5652): 1956-1960
    Bogs J, Jaffe F W, Takos A M, Walker A R, Robinson S P. 2007. The grapevine transcription factor VvMYBPA1 regulates proanthocyanidin synthesis during fruit development. Plant Physiology, 143 (3): 1347-1361
    Boulikas T. 1994. Putative nuclear localization signals (NLS) in protein transcription factors. Journal of Cellular Biochemistry, 55 (1): 32-58
    Bradford M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical biochemistry, 72 (1-2): 248-254
    Buttner M, Singh K B. 1997. Arabidopsis thaliana ethylene-responsive element binding protein (AtEBP), an ethylene-inducible, GCC box DNA-binding protein interacts with an cis-element binding protein. Proceedings of the National Academy of Sciences of the United States of America, 94 (11): 5961-5966
    Cai M, Qiu D Y, Yuan T, Ding X H, Li H J, Duan L, Xu C G, Li X H, Wang S P. 2008. Identification ofnovel pathogen-responsive cis-elements and their binding proteins in the promoter of OsWRKY13, a gene regulating rice disease resistance. Plant Cell and Environment, 31 (1): 86-96
    Cedroni M L, Cronn R C, Adams K L, Wilkins T A, Wendel J F. 2003. Evolution and expression of MYB genes in diploid and polyploid cotton. Plant Molecular Biology, 51 (3): 313-325
    Chen C H, Chen Z X. 2002. Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen-induced Arabidopsis transcription factor. Plant Physiology, 129 (2): 706-716
    Chen S C, Peng S Q, Huang G X, Wu K X, Fu X H, Chen Z Q. 2003. Association of decreased expression of a Myb transcription factor with the TPD (tapping panel dryness) syndrome in Hevea brasiliensis. Plant Molecular Biology, 51 (1): 51-58
    Cheong Y, Chang H, Gupta R, Wang X, Zhu T, Luan S. 2002. Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiology, 129 (2): 661-677
    Chujo T, Kawamoto K, Yamada K, Shimizu T, Haga K, Iino M, Minami E, Shibuya N, Okada K, Nojiri H, Yamane H. 2007. Characterization of the elicitor-responsive transcription factor OsWRKY53 in rice and identification of an elicitor/jasmonate-responsive region of the OsWRKY53 promoter. Plant and Cell Physiology, 48: 246
    Chujo T, Takai R, Minami E, Nagamura Y, Kaku H, Shibuya N, Yasuda M, Nakashita H, Okada K, Nojiri H, Yamane H. 2006. Characterization of elicitor-responsive WRKY transcription factor, OsWRKY71, from rice. Plant and Cell Physiology, 47 S82-S82
    Ciolkowski I, Wanke D, Birkenbihl R P, Somssich I E. 2008. Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Molecular Biology, 68 (1-2): 81-92
    Clough S J, Bent A F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. The Plant Journal, 16 (6): 735-743
    Coleman C, Copetti D, Cipriani G, Hoffmann S, Kozma P, Kovács L, Morgante M, Testolin R, Di Gaspero G. 2009. The powdery mildew resistance gene REN1 co-segregates with an NBS-LRR gene cluster in two Central Asian grapevines. BMC Genetics, 10 (1): 89
    Cormack R S, Eulgem T, Rushton P J, Kochner P, Hahlbrock K, Somssich I E. 2002. Leucine zipper-containing WRKY proteins widen the spectrum of immediate early elicitor-induced WRKY transcription factors in parsley. Biochimica Et Biophysica Acta-Gene Structure and Expression, 1576 (1-2): 92-100
    Dalbo M, Weeden N, Reisch B. 2000. QTL analysis of disease resistance in interspecific hybrid grapes. Acta Horticulturae, 528: 217-222
    De Pater S, Greco V, Pham K, Memelink J, Kijne J. 1996. Characterization of a zinc-dependent transcriptional activator from Arabidopsis. Nucleic Acids Research, 24 (23): 4624
    Deluc L, Barrieu F, Marchive C, Lauvergeat V, Decendit A, Richard T, Carde J P, Merillon J M, Hamdi S. 2006. Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway. Plant Physiology, 140 (2): 499-511
    Deluc L, Bogs J, Walker A R, Ferrier T, Decendit A, Merillon J M, Robinson S P, Barrieu F. 2008. The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidinbiosynthesis in developing grape berries. Plant Physiology, 147 (4): 2041-2053
    Deslandes L, Olivier J, Theulieres F, Hirsch J, Feng D X, Bittner-Eddy P, Beynon J, Marco Y. 2002.
    Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proceedings of the National Academy of Sciences of the United States of America, 99 (4): 2404-2409
    Devaiah B N, Karthikeyan A S, Raghothama K G. 2007. WRKY75 transcription factor is a modulator of phosphate acquisition and root development in arabidopsis. Plant Physiology, 143 (4): 1789-1801
    Dilkes B P, Spielman M, Weizbauer R, Watson B, Burkart-Waco D, Scott R J, Comai L. 2008. The maternally expressed WRKY transcription factor TTG2 controls lethality in interploidy crosses of Arabidopsis. Plos Biology, 6 (12): 2707-2720
    Doddapaneni H, Lin H, Walker M A, Yao J, Civerolo E L. 2008. VitisExpDB: A database resource for grape functional genomics. BMC Plant Biology, 8: 23
    Dong J X, Chen C H, Chen Z X. 2003. Expression profiles of the Arabidopsis WRKY gene superfamily during plant defense response. Plant Molecular Biology, 51 (1): 21-37
    Doster M, Schnathorst W. 1985. Effects of leaf maturity and cultivar resistance on development of the powdery mildew fungus on grapevines. Phytopathology, 75 (3): 318-321
    Encinas-Villarejo S, Maldonado A M, Amil-Ruiz F, De Los Santos B, Romero F, Pliego-Alfaro F, Munoz-Blanco J, Caballero J L. 2009. Evidence for a positive regulatory role of strawberry (Fragaria×ananassa) FaWRKY1 and Arabidopsis AtWRKY75 proteins in resistance. Journal of Experimental Botany, 60 (11): 3043-3065
    Eulgem T. 2005. Regulation of the Arabidopsis defense transcriptome. Trends in Plant Science, 10 (2): 71-78
    Eulgem T. 2006. Dissecting the WRKY web of plant defense regulators. PLoS Pathogens, 2 1028-1030
    Eulgem T, Rushton P, Schmelzer E, Hahlbrock K, Somssich I. 1999. Early nuclear events in plant defence signalling: rapid gene activation by WRKY transcription factors. The EMBO Journal, 18 (17): 4689
    Eulgem T, Rushton P J, Robatzek S, Somssich I E. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science, 5 (5): 199-206
    Eulgem T, Somssich I E. 2007. Networks of WRKY transcription factors in defense signaling. Current Opinion in Plant Biology, 10: 366-371
    Fan W H, Dong X N. 2002. In vivo interaction between NPR1 and transcription factor TGA2 leads to salicylic acid-mediated gene activation in Arabidopsis. Plant Cell, 14 (6): 1377-1389
    Feechan A, Jermakow A, Dry I. 2009. Grapevine MLO candidates required for powdery mildew pathogenicity? Plant Signaling & Behavior, 4(6): 522-523
    Ficke A, Gadoury D, Seem R. 2002. Ontogenic resistance and plant disease management: A case study of grape powdery mildew. Phytopathology, 92 (6): 671-675
    Fung R, Gonzalo M, Fekete C, Kovacs L, He Y, Marsh E, Mcintyre L, Schachtman D, Qiu W. 2008. Powdery mildew induces defense-oriented reprogramming of the transcriptome in a susceptible but not in a resistant grapevine. Plant Physiology, 146 (1): 236
    Gelvin S B. 2009. Agrobacterium in the genomics age. Plant Physiology, 150 (4): 1665-1676 Glazebrook J. 2005. Contrasting mechanisms of defense against biotrophic and necrotrophic pathogens.Annual Review of Phytopathology, 43: 205-227
    Grierson C, Du J, Zabala M, Beggs K, Smith C, Holdsworth M, Bevan M. 1994. Separate cis-sequences and trans-factors direct metabolic and developmental regulation of a potato-tuber storage protein gene. The Plant Journal, 5 (6): 815-826
    Grunewald W, Karimi M, Wieczorek K, Van De Cappelle E, Wischnitzki E, Grundler F, Inze D, Beeckman T, Gheysen G. 2008. A role for AtWRKY23 in feeding site establishment of plant-parasitic nematodes. Plant Physiology, 148 (1): 358-368
    Gu Y, Wildermuth M, Chakravarthy S, Loh Y, Yang C, He X, Han Y, Martin G. 2002. Tomato transcription factors Pti4, Pti5, and Pti6 activate defense responses when expressed in Arabidopsis. Plant Cell, 14 (4): 817-831
    Guan X, Zhao H, Xu Y, Wang Y. 2010. Transient expression of glyoxal oxidase from the Chinese wild grape Vitis pseudoreticulata can suppress powdery mildew in a susceptible genotype. Protoplasma, DOI: 10.1007/s00709-010-0162-4
    Guillaumie S, Mzid R, Mechin V, Leon C, Hichri I, Destrac-Irvine A, Trossat-Magnin C, Delrot S, Lauvergeat V. 2010. The grapevine transcription factor WRKY2 influences the lignin pathway and xylem development in tobacco. Plant Molecular Biology, 72 (12): 215-234
    Guo A, Chen X, Gao G, Zhang H, Zhu Q, Liu X, Zhong Y, Gu X, He K, Luo J. 2008. PlantTFDB: a comprehensive plant transcription factor database. Nucleic Acids Research, 36: 966-969
    Guo Y, Cai Z, Gan S. 2004. Transcriptome of Arabidopsis leaf senescence. Plant Cell and Environment, 27 (5): 521-549
    Hara K, Yagi M, Kusano T, Sano H. 2000. Rapid systemic accumulation of transcripts encoding a tobacco WRKY transcription factor upon wounding. Molecular and General Genetics, 263 (1): 30-37
    Higashi K, Ishiga Y, Inagaki Y, Toyoda K, Shiraishi T, Ichinose Y. 2008. Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Molecular Genetics and Genomics, 279 (3): 303-312
    Hu J, Barlet X, Deslandes L, Hirsch J, Feng D X, Somssich I, Marco Y. 2008. Transcriptional Responses of Arabidopsis thaliana during wilt disease caused by the soil-borne phytopathogenic bacterium, ralstonia solanacearum. PLoS One, 3 (7): e2589
    Huang T, Duman J. 2002. Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Molecular Biology, 48 (4): 339-350
    Ishiguro S, Nakamura K. 1994. Characterization of a cdna-encoding a novel dna-binding protein, spf1, that recognizes sp8 sequences in the 5' upstream regions of genes-coding for sporamin and beta-amylase from sweet-potato. Molecular & General Genetics, 244 (6): 563-571
    Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C, Vezzi A, Legeai F, Hugueney P, Dasilva C, Horner D, Mica E, Jublot D, Poulain J, Bruyere C, Billault A, Segurens B, Gouyvenoux M, Ugarte E, Cattonaro F, Anthouard V, Vico V, Del Fabbro C, Alaux M, Di Gaspero G, Dumas V, Felice N, Paillard S, Juman I, Moroldo M, Scalabrin S, Canaguier A, Le Clainche I, Malacrida G, Durand E, Pesole G, Laucou V, Chatelet P, Merdinoglu D, Delledonne M, Pezzotti M, Lecharny A, Scarpelli C, Artiguenave F, Pe M E, Valle G, Morgante M, Caboche M, Adam-Blondon A F, Weissenbach J, Quetier F, Wincker P, French-Italian P. 2007. Thegrapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature, 449 (7161): 463-465
    Jakoby M, Weisshaar B, Droge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F, Bzipr G. 2002. bZIP transcription factors in Arabidopsis. Trends in Plant Science, 7 (3): 106-111
    Jang M, Cai E, Udeani G, Slowing K, Thomas C, Beecher C, Fong H, Farnsworth N, Kinghorn A, Mehta R, Moon R, Pezzuto J. 1997. Cancer chemopreventive activity of resveratrol, a natural product derived from grapes. Science, 275 (5297): 218-220
    Jefferson R. 1987. Assaying chimeric genes in plants: the GUS gene fusion system. Plant Molecular Biology Reporter, 5 (4): 387-405
    Jiang W, Yu D. 2009. Arabidopsis WRKY2 transcription factor mediates seed germination and postgermination arrest of development by abscisic acid. BMC Plant Biology, 9
    Jiang Y, Deyholos M K. 2009. Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Molecular Biology, 69 (1-2): 91-105
    Jing S, Zhou X, Song Y, Yu D. 2009. Heterologous expression of OsWRKY23 gene enhances pathogen defense and dark-induced leaf senescence in Arabidopsis. Plant Growth Regulation, 58 (2): 181-190
    Johnson C, Kolevski B, Smyth D. 2002. Transparent testaglabra2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell, 14 (6): 1359-1375
    Journot-Catalino N, Somssich I, Roby D, Kroj T. 2006. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell, 18 (11): 3289-3302
    Kalde M, Barth M, Somssich I, Lippok B. 2003. Members of the Arabidopsis WRKY group III transcription factors are part of different plant defense signaling pathways. Molecular Plant-Microbe Interactions, 16 (4): 295-305
    Kato N, Dubouzet E, Kokabu Y, Yoshida S, Taniguchi Y, Dubouzet J, Yazaki K, Sato F. 2007. Identification of a WRKY protein as a transcriptional regulator of benzylisoquinoline alkaloid biosynthesis in Coptis japonica. Plant and Cell Physiology, 48 (1): 8-18
    Keller H, Pamboukdjian N, Ponchet M, Poupet A, Delon R, Verrier J, Roby D, Ricci P. 1999. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell, 11 (2): 223-235
    Kim K, Fan B, Chen Z. 2006. Pathogen-induced Arabidopsis WRKY7 is a transcriptional repressor and enhances plant susceptibility to Pseudomonas syringae. Plant Physiology, 142 (3): 1180-1192
    Kim K, Lai Z, Fan B, Chen Z. 2008. Arabidopsis WRKY38 and WRKY62 transcription factors interact with histone deacetylase 19 in basal defense. Plant Cell, 20 (9): 2357-2371
    Knoth C, Ringler J, Dangl J, Eulgem T. 2007. ArabidopsisWRKY70 is required for full RPP4-mediated disease resistance and basal defense against Hyaloperonospora parasitica. Molecular Plant-Microbe Interactions, 20 (2): 120-128
    Kobayashi S, Ishimaru M, Ding C, Yakushiji H, Goto N. 2001. Comparison of UDP-glucose: flavonoid 3-O-glucosyltransferase (UFGT) gene sequences between white grapes (Vitis vinifera) and their sports with red skin. Plant Science, 160 (3): 543-550
    Kobayashi S, Ishimaru M, Hiraoka K, Honda C. 2002. Myb-related genes of the Kyoho grape (Vitislabruscana) regulate anthocyanin biosynthesis. Planta, 215 (6): 924-933
    Kohli A, Griffiths S, Palacios N, Twyman R, Vain P, Laurie D, Christou P. 1999. Molecular characterization of transforming plasmid rearrangements in transgenic rice reveals a recombination hotspot in the CaMV 35S promoter and confirms the predominance of microhomology mediated recombination. The Plant Journal, 17 (6): 591-601
    Kortekamp A. 2006. Expression analysis of defence-related genes in grapevine leaves after inoculation with a host and a non-host pathogen. Plant Physiology and Biochemistry, 44 (1): 58-67
    Kunkel B, Brooks D. 2002. Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology, 5 (4): 325-331
    Lagace M, Matton D. 2004. Characterization of a WRKY transcription factor expressed in late torpedo-stage embryos of Solanum chacoense. Planta, 219 (1): 185-189
    Lai Z, Vinod K, Zheng Z, Fan B, Chen Z. 2008. Roles of Arabidopsis WRKY3 and WRKY4 transcription factors in plant responses to pathogens. BMC Plant Biology, 8: 68
    Le Henanff G, Heitz T, Mestre P, Mutterer J, Walter B, Chong J. 2009. Characterization of Vitis vinifera NPR1 homologs involved in the regulation of Pathogenesis-Related gene expression. BMC Plant Biology, 9: 54
    Lee S, Choi H, Hwang I, Choi D, Hwang B. 2006. Functional roles of the pepper pathogen-induced bZIP transcription factor, CAbZIP1, in enhanced resistance to pathogen infection and environmental stresses. Planta, 224 (5): 1209-1225
    Li J, Brader G, Palva E. 2004. The WRKY70 transcription factor: A node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell, 16 (2): 319-331.
    Li S, Fu Q, Huang W, Yu D. 2009. Functional analysis of an Arabidopsis transcription factor WRKY25 in heat stress. Plant Cell Reports, 28 (4): 683-693
    Lipka V, Dittgen J, Bednarek P, Bhat R, Wiermer M, Stein M, Landtag J, Brandt W, Rosahl S, Scheel D. 2005. Pre-and post-invasion defenses both contribute to nonhost resistance in Arabidopsis. Science, 310 (5751): 1180-1183
    Liu X, Bai X, Qian Q, Wang X, Chen M, Chu C. 2005. OsWRKY03, a rice transcriptional activator that functions in defense signaling pathway upstream of OsNPR1. Cell Research, 15 (8): 593-603
    Liu X, Bai X, Wang X, Chu C. 2007. OsWRKY71, a rice transcription factor, is involved in rice defense response. Journal of Plant Physiology, 164 (8): 969-979
    Luo M, Dennis E S, Berger F, Peacock W, Chaudhury A. 2005. MINISEED3 (MINI3), a WRKY family gene, and HAIKU2 (IKU2), a leucine-rich repeat (LRR) KINASE gene, are regulators of seed size in Arabidopsis. Proceedings of the National Academy of Sciences of the United States of America, 102 (48): 17531-17536
    Maleck K, Levine A, Eulgem T, Morgan A, Schmid J, Lawton K, Dangl J, Dietrich R. 2000. The transcriptome of Arabidopsis thaliana during systemic acquired resistance. Nature Genetics, 26 (4): 403-410
    Mao P, Duan M, Wei C, Li Y. 2007. WRKY62 transcription factor acts downstream of cytosolic NPR1 and negatively regulates jasmonate-responsive gene expression. Plant and Cell Physiology, 48: 833-842
    Marchive C, Mzid R, Deluc L, Barrieu F, Pirrello J, Gauthier A, Corio-Costet M F, Regad F, Cailleteau B,Hamdi S, Lauvergeat V. 2007. Isolation and characterization of a Vitis vinifera transcription factor, VvWRKY1, and its effect on responses to fungal pathogens in transgenic tobacco plants. Journal of Experimental Botany, 58 (8): 1999-2010
    Mare C, Mazzucotelli E, Crosatti C, Francia E, Stanca A, Cattivelli L. 2004. Hv-WRKY38: a new transcription factor involved in cold- and drought-response in barley. Plant Molecular Biology, 55 (3): 399-416
    Marsh E, Alvarez S, Hicks L, Barbazuk W, Qiu W, Kovacs L, Schachtman D. 2010. Changes in protein abundance during powdery mildew infection of leaf tissues of Cabernet Sauvignon grapevine (Vitis vinifera L.). Proteomics, 10 (10): 2057-2064
    Miao Y, Laun T, Zimmermann P, Zentgraf U. 2004. Targets of the WRKY53 transcription factor and its role during leaf senescence in Arabidopsis. Plant Molecular Biology, 55 (6): 853-867
    Monteiro S, Barakat M, Pi?arra-Pereira M, Teixeira A, Ferreira R. 2003. Osmotin and thaumatin from grape: A putative general defense mechanism against pathogenic fungi. Phytopathology, 93 (12): 1505-1512
    Mukhtar M, Deslandes L, Auriac M, Marco Y, Somssich I. 2008. The Arabidopsis transcription factor WRKY27 influences wilt disease symptom development caused by Ralstonia solanacearum. The Plant Journal, 56 (6): 935-947
    Murray S, Ingle R, Petersen L, Denby K. 2007. Basal resistance against pseudomonas syringae in Arabidopsis involves WRKY53 and a protein with homology to a nematode resistance protein. Molecular Plant-Microbe Interactions, 20: 1431-1438
    Mzid R, Marchive C, Blancard D, Deluc L, Barrieu F, Corio-Costet M, Drira N, Hamdi S, Lauvergeat V. 2007. Overexpression of VvWRKY2 in tobacco enhances broad resistance to necrotrophic fungal pathogens. Physiologia Plantarum, 131: 434-447
    Nakano T, Suzuki K, Fujimura T, Shinshi H. 2006. Genome-wide analysis of the ERF gene family in Arabidopsis and rice. Plant Physiology, 140 (2): 411-432
    Naoumkina M, He X, Dixon R. 2008. Elicitor-induced transcription factors for metabolic reprogramming of secondary metabolism in Medicago truncatula. BMC Plant Biology, 8: 132
    Oh S, Bek K, Park J, Yi S, Yu S, Kamoun S, Choi D. 2008. Capsicum annuum WRKY protein CaWRKY1 is a negative regulator of pathogen defense. New Phytologist, 177 (4): 977-989
    Oh S, Yi S, Yu S, Moon J, Park J, Choi D. 2006. CaWRKY2, a chili pepper transcription factor, is rapidly induced by incompatible plant pathogens. Molecules and Cells, 22 (1): 58-64
    Pan Y, Cho C, Kao Y, Sun C. 2009. A Novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in giardia lamblia. Journal of Biological Chemistry, 284 (27): 17975-17988
    Pandey S, Somssich I. 2009. The Role of WRKY transcription factors in plant immunity. Plant Physiology, 150 (4): 1648-1655
    Park C, Shin Y, Lee B, Kim K, Kim J, Paek K. 2006. A hot pepper gene encoding WRKY transcription factor is induced during hypersensitive response to tobacco mosaic virus and Xanthomonas campestris. Planta, 223 (2): 168-179
    Park C, Lee J, Yoo J, Moon B, Choi M, Kang Y, Lee S, Kim H, Kang K, Chung W, Lim C, Cho M. 2005. WRKY group IId transcription factors interact with calmodulin. FEBS Letters, 579 (6): 1545-1550
    Pauquet J, Bouquet A, This P, Adam-Blondon A. 2001. Establishment of a local map of AFLP markersaround the powdery mildew resistance gene Run1 in grapevine and assessment of their usefulness for marker assisted selection. Theoretical and Applied Genetics, 103 (8): 1201-1210
    Petersen M, Brodersen P, Naested H, Andreasson E, Lindhart U, Johansen B, Nielsen H, Lacy M, Austin M, Parker J E, Sharma S, Klessig D, Martienssen R, Mattsson O, Jensen A, Mundy J. 2000.
    Arabidopsis MAP kinase 4 negatively regulates systemic acquired resistance. Cell, 103 (7): 1111-1120
    Pnueli L, Hallak-Herr E, Rozenberg M, Cohen M, Goloubinoff P, Kaplan A, Mittler R. 2002. Molecular and biochemical mechanisms associated with dormancy and drought tolerance in the desert legume Retamaraetam. The Plant Journal, 31 (3): 319-330
    Polagruto J, Gross H, Kamangar F, Kosuna K, Sun B, Fujii H, Keen C, Hackman R. 2007. Platelet reactivity in male smokers following the acute consumption of a flavanol-rich grapeseed extract. Journal of Medicinal Food, 10 (4): 725-730
    Qiu D, Xiao J, Ding X, Xiong M, Cai M, Cao C, Li X, Xu C, Wang S. 2007. OsWRKY13 mediates rice disease resistance by regulating defense-related genes in salicylate- and jasmonate-dependent signaling. Molecular Plant-Microbe Interactions, 20 (5): 492-499
    Qiu D, Xiao J, Xie W, Liu H, Li X, Xiong L, Wang S. 2008. Rice gene network inferred from expression profiling of plants overexpressing OsWRKY13, a positive regulator of disease resistance. Molecular Plant, 1 (3): 538-551
    Qiu Y P, Jing S J, Fu J, Li L, Yu D Q. 2004. Cloning and analysis of expression profile of 13 WRKY genes in rice. Chinese Science Bulletin, 49 (20): 2159-2168
    Qiu Y P, Yu D Q. 2009. Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany, 65 (1): 35-47
    Rabinowicz P D, Braun E L, Wolfe A D, Bowen B, Grotewold I. 1999. Maize R2R3 Myb genes: Sequence analysis reveals amplification in the higher plants. Genetics, 153 (1): 427-444
    Repka V, Fischerova I, Silharova K. 2004. Methyl jasmonate is a potent elicitor of multiple defense responses in grapevine leaves and cell-suspension cultures. Biologia Plantarum, 48 (2): 273-283
    Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha R R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu C L. 2000. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. Science, 290 (5499): 2105-2110
    Riechmann J L, Meyerowitz E M. 1998. The AP2/EREBP family of plant transcription factors. Biological Chemistry, 379 (6): 633-646
    Rizhsky L, Liang H J, Mittler R. 2002. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology, 130 (3): 1143-1151
    Robatzek S, Somssich I E. 2002. Targets of AtWRKY6 regulation during plant senescence and pathogen defense. Genes & Development, 16 (9): 1139-1149
    Rushton P J, Bokowiec M T, Han S C, Zhang H B, Brannock J F, Chen X F, Laudeman T W, Timko M P. 2008. Tobacco transcription factors: Novel insights into transcriptional regulation in the Solanaceae. Plant Physiology, 147 (1): 280-295
    Rushton P J, Macdonald H, Huttly A K, Lazarus C M, Hooley R. 1995. Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes.Plant Molecular Biology, 29 (4): 691-702
    Rushton P J, Somssich I E. 1998. Transcriptional control of plant genes responsive to pathogens. Current Opinion in Plant Biology, 1 (4): 311-315
    Rushton P J, Somssich I E, Ringler P, Shen Q J. 2010. WRKY transcription factors. Trends Plant Sci, 15 (5): 247-258
    Rushton P J, Torres J T, Parniske M, Wernert P, Hahlbrock K, Somssich I E. 1996. Interaction of elicitor-induced DNA-binding proteins with elicitor response elements in the promoters of parsley PR1 genes. Embo Journal, 15 (20): 5690-5700
    Sakuma Y, Liu Q, Dubouzet J G, Abe H, Shinozaki K, Yamaguchi-Shinozaki K. 2002. DNA-binding specificity of the ERF/AP2 domain of Arabidopsis DREBs, transcription factors involved in dehydration- and cold-inducible gene expression. Biochemical and Biophysical Research Communications, 290 (3): 998-1009
    Sanchez-Ballesta M T, Lluch Y, Gosalbes M J, Zacarias L, Granell A, Lafuente M T. 2003. A survey of genes differentially expressed during long-term heat-induced chilling tolerance in citrus fruit. Planta, 218 (1): 65-70
    Santos-Rosa M, Poutaraud A, Merdinoglu D, Mestre P. 2008. Development of a transient expression system in grapevine via agro-infiltration. Plant Cell Reports, 27 (6): 1053-1063
    Savitch L V, Subramaniam R, Allard G C, Singh J. 2007. The GLK1 'regulon' encodes disease defense related proteins and confers resistance to Fusarium graminearum in Arabidopsis. Biochemical and Biophysical Research Communications, 359 (2): 234-238
    Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, Satou M, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K. 2002. Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. The Plant Journal, 31(3): 279-292
    Shen Q H, Saijo Y, Mauch S, Biskup C, Bieri S, Keller B, Seki H, Ulker B, Somssich I E, Schulze-Lefert P. 2007. Nuclear activity of MLA immune receptors links isolate-specific and basal disease-resistance responses. Science, 315 (5815): 1098-1103
    Shimono M, Sugano S, Nakayama A, Jiang C J, Ono K, Toki S, Takatsuji H. 2007. Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell, 19: 2064-2076
    Shin R, Park J, An J, Paek K. 2002. RESEARCH-Ectopic Expression of TISl in transgenic hot pepper plants enhances host resistance to viral, bacterial, and oomycete pathogens. MPMI-Molecular Plant Microbe Interactions, 15 (10): 983-989
    Singh K B, Foley R C, Onate-Sanchez L. 2002. Transcription factors in plant defense and stress responses. Current Opinion in Plant Biology, 5 (5): 430-436
    Skibbe M, Qu N, Galis I, Baldwin I T. 2008. Induced plant defenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell, 20 (7): 1984-2000.
    Song Y, Jing S J, Yu D Q. 2009. Overexpression of the stress-induced OsWRKY08 improves osmotic stress tolerance in Arabidopsis. Chinese Science Bulletin, 54 (24): 4671-4678
    Stein M, Dittgen J, Sanchez-Rodriguez C, Hou B, Molina A, Schulze-Lefert P, Lipka V, Somerville S. 2006. Arabidopsis PEN3/PDR8, an ATP binding cassette transporter, contributes to nonhost resistance toinappropriate pathogens that enter by direct penetration. The Plant Cell, 18 (3): 731-746
    Stewart J R, Artime M C, O'brian C A. 2003. Resveratrol: A candidate nutritional substance for prostate cancer prevention. Journal of Nutrition, 133 (7): 2440-2443
    Stracke R, Werber M, Weisshaar B. 2001. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion in Plant Biology, 4 (5): 447-456
    Sun C X, Palmqvist S, Olsson H, Boren M, Ahlandsberg S, Jansson C. 2003. A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell, 15 (9): 2076-2092
    Suzuki M, Ketterling M, Li Q, Mccarty D. 2003. Viviparous1 alters global gene expression patterns through regulation of abscisic acid signaling. Plant Physiology, 132 (3): 1664
    Tao Z, Liu H B, Qiu D Y, Zhou Y, Li X H, Xu C G, Wang S P. 2009. A pair of allelic wrky genes play opposite roles in rice-bacteria interactions. Plant Physiology, 151 (2): 936-948
    Thomas C, Harrison K, Jones J, Lane C. 1996. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 84: 451-459
    Thomma B, Penninckx I, Broekaert W F, Cammue B P A. 2001. The complexity of disease signaling in Arabidopsis. Current Opinion in Immunology, 13 (1): 63-68
    Ulker B, Mukhtar M S, Somssich I E. 2007. The WRKY70 transcription factor of Arabidopsis influences both the plant senescence and defense signaling pathways. Planta, 226 (1): 125-137
    Ulker B, Somssich I E. 2004. WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology, 7 (5): 491-498
    Vailleau F, Daniel X, Tronchet M, Montillet J L, Triantaphylides C, Roby D. 2002. A R2R3-MYB gene, AtMYB30, acts as a positive regulator of the hypersensitive cell death program in plants in response to pathogen attack. Proceedings of the National Academy of Sciences of the United States of America, 99 (15): 10179-10184
    Van Verk M C, Pappaioannou D, Neeleman L, Bol J F, Linthorst H J M. 2008. A novel WRKY transcription factor is required for induction of PR-1a gene expression by salicylic acid and bacterial elicitors. Plant Physiology, 146 (4): 1983-1995
    Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inze D, Van Breusegem F. 2003. A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proceedings of the National Academy of Sciences of the United States of America, 100 (26): 16113-16118
    Velasco R, Zharkikh A, Troggio M, Cartwright D A, Cestaro A, Pruss D, Pindo M, Fitzgerald L M, Vezzulli S, Reid J, Malacarne G, Iliev D, Coppola G, Wardell B, Micheletti D, Macalma T, Facci M, Mitchell J T, Perazzolli M, Eldredge G, Gatto P, Oyzerski R, Moretto M, Gutin N, Stefanini M, Chen Y, Segala C, Davenport C, Dematte L, Mraz A, Battilana J, Stormo K, Costa F, Tao Q, Si-Ammour A, Harkins T, Lackey A, Perbost C, Taillon B, Stella A, Solovyev V, Fawcett J A, Sterck L, Vandepoele K, Grando S M, Toppo S, Moser C, Lanchbury J, Bogden R, Skolnick M, Sgaramella V, Bhatnagar S K, Fontana P, Gutin A, Van De Peer Y, Salamini F, Viola R. 2007. A high quality draft consensus sequence of the genome of a heterozygous grapevine variety. PLoS One, 2: e1326
    Vranova E, Atichartpongkul S, Villarroel R, Van Montagu M, Inze D, Van Camp W. 2002. Comprehensiveanalysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Proceedings of the National Academy of Sciences of the United States of America, 99: 10870-10875
    Wang D, Amornsiripanitch N, Dong X. 2006. A small number of WRKY transcription factors mediate defense responses downstream of NPR1. Plant Biology (Rockville): 173
    Wang H H, Hao J J, Chen X J, Hao Z N, Wang X, Lou Y G, Peng Y L, Guo Z J. 2007a. Overexpression of rice WRKY89 enhances ultraviolet B tolerance and disease resistance in rice plants. Plant Molecular Biology, 65: 799-815
    Wang L J, Li S H. 2006. Thermotolerance and related antioxidant enzyme activities induced by heat acclimation and salicylic acid in grape (Vitis vinifera L.) leaves. Plant Growth Regulation, 48 (2): 137-144
    Wang X P, Wang Y J, Zhang C H, Zhang J K. 2007b. Isolation and characterization of cDNA encoding stilbene synthases from Chinese wild Vitis pseudoreticulata. Vitis, 46 (3): 104-109
    Wang Y, Liu Y, He P, Chen J, Lamikanra O, Lu J. 1995. Evaluation of foliar resistance to uncinula necator in Chinese wild Vitis species. Vitis, 34 (3): 159-164
    Wang Z, Zhu Y, Wang L L, Liu X, Liu Y X, Phillips J, Deng X. 2009. A WRKY transcription factor participates in dehydration tolerance in Boea hygrometrica by binding to the W-box elements of the galactinol synthase (BhGolS1) promoter. Planta, 230 (6): 1155-1166
    Wu X L, Shiroto Y, Kishitani S, Ito Y, Toriyama K. 2009. Enhanced heat and drought tolerance in transgenic rice seedlings overexpressing OsWRKY11 under the control of HSP101 promoter. Plant Cell Reports, 28 (1): 21-30
    Xiao S, Calis O, Patrick E, Zhang G, Charoenwattana P, Muskett P, Parker J, Turner J. 2005. The atypical resistance gene, RPW8, recruits components of basal defence for powdery mildew resistance in Arabidopsis. The Plant Journal, 42 (1): 95-110
    Xiao S Y, Ellwood S, Findlay K, Oliver R P, Turner J G. 1997. Characterization of three loci controlling resistance of Arabidopsis thaliana accession Ms-O to two powdery mildew diseases. The Plant Journal, 12 (4): 757-768
    Xie Z, Ruas P, Shen Q X J. 2005a. Regulatory networks of the phytohormone abscisic acid. Plant Hormones, 72: 235-269
    Xie Z, Zhang Z L, Hanzlik S, Cook E, Shen Q X J. 2007. Salicylic acid inhibits gibberellin-induced alpha-amylase expression and seed germination via a pathway involving an abscisic-acid-inducible WRKY gene. Plant Molecular Biology, 64 (3): 293-303
    Xie Z, Zhang Z L, Zou X L, Huang J, Ruas P, Thompson D, Shen Q J. 2005b. Annotations and functional analyses of the rice WRKY gene superfamily reveal positive and negative regulators of abscisic acid signaling in aleurone cells. Plant Physiology, 137 (1): 176-189
    Xie Z, Zhang Z L, Zou X L, Yang G X, Komatsu S, Shen Q X J. 2006. Interactions of two abscisic-acid induced WRKY genes in repressing gibberellin signaling in aleurone cells. The Plant Journal, 46 (2): 231-242
    Xing D H, Lai Z B, Zheng Z Y, Vinod K M, Fan B F, Chen Z X. 2008. Stress- and pathogen-induced Arabidopsis WRKY48 is a transcriptional activator that represses plant basal defense. Molecular Plant, 1 (3): 459-470
    Xu W, Yu Y, Ding J, Hua Z, Wang Y. 2010. Characterization of a novel stilbene synthase promoter involved in pathogen- and stress-inducible expression from Chinese wild Vitis pseudoreticulata. Planta (Berlin), 231 (2): 475-487
    Xu X P, Chen C H, Fan B F, Chen Z X. 2006. Physical and functional interactions between pathogen-induced Arabidopsis WRKY18, WRKY40, and WRKY60 transcription factors. Plant Cell, 18 (5): 1310-1326
    Xu Y, Zhu Z, Xiao Y, Wang Y. 2009. Construction of a cDNA library of Vitis pseudoreticulata native to china inoculated with uncinula necator and the analysis of potential defence-related expressed sequence tags (ESTs). South African Journal of Enology and Viticulture, 30 (1): 65-71
    Xu Y H, Wang J W, Wang S, Wang J Y, Chen X Y. 2004. Characterization of GaWRKY1, a cotton transcription factor that regulates the sesquiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiology, 135 (1): 507-515
    Yamasaki K, Kigawa T, Inoue M, Tateno M, Yamasaki T, Yabuki T, Aoki M, Seki I, Matsuda T, Tomo Y, Hayami N, Terada T, Shirouzu M, Tanaka A, Seki M, Shinozaki K, Yokoyama S. 2005. Solution structure of an Arabidopsis WRKY DNA binding domain. Plant Cell, 17 (3): 944-956
    Yanhui C, Xiaoyuan Y, Kun H, Meihua L, Jigang L, Zhaofeng G, Zhiqiang L, Yunfei Z, Xiaoxiao W, Xiaoming Q, Yunping S, Li Z, Xiaohui D, Jingchu L, Xing-Wang D, Zhangliang C, Hongya G, Li-Jia Q. 2006. The MYB transcription factor superfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family. Plant Mol Biol, 60 (1): 107-124
    Yu D Q, Chen C H, Chen Z X. 2001. Evidence for an important role of WRKY DNA binding proteins in the regulation of NPR1 gene expression. Plant Cell, 13 (7): 1527-1539
    Zentella R, Zhang Z L, Park M, Thomas S G, Endo A, Murase K, Fleet C M, Jikumaru Y, Nambara E, Kamiya Y, Sun T P. 2007. Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell, 19 (10): 3037-3057
    Zhang J, Peng Y L, Guo Z J. 2008a. Constitutive expression of pathogen-inducible OsWRKY31 enhances disease resistance and affects root growth and auxin response in transgenic rice plants. Cell Research, 18 (4): 508-521
    Zhang Y J, Wang L J. 2005. The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evolutionary Biology, 5:1
    Zhang Z L, Xie Z, Zou X L, Casaretto J, Ho T H D, Shen Q X J. 2004. A rice WRKY gene encodes a transcriptional repressor of the gibberellin signaling pathway in aleurone cells. Plant Physiology, 134 (4): 1500-1513
    Zhang Z X, Wei L Y, Zou X L, Tao Y S, Liu Z J, Zheng Y L. 2008b. Submergence-responsive microRNAs are potentially involved in the regulation of morphological and metabolic adaptations in maize root cells. Annals of Botany, 102 (4): 509-519
    Zheng Z Y, Abu Qamar S, Chen Z X, Mengiste T. 2006. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. The Plant Journal, 48 (4): 592-605
    Zheng Z Y, Mosher S L, Fan B F, Klessig D F, Chen Z X. 2007. Functional analysis of Arabidopsis WRKY25 transcription factor in plant defense against Pseudomonas syringae. BMC Plant Biology, 7:2
    Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y.2008a. Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal, 6 (5): 486-503
    Zhou X F, Wang G D, Sutoh K, Zhu J K, Zhang W X. 2008b. Identification of cold-inducible microRNAs in plants by transcriptome analysis. Biochimica Et Biophysica Acta-Gene Regulatory Mechanisms, 1779 (11): 780-788
    Zou X L, Seemann J R, Neuman D, Shen Q X J. 2004. A WRKY gene from creosote bush encodes an activator of the abscisic acid signaling pathway. Journal of Biological Chemistry, 279 (53): 55770-55779

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700