IGF-1调控β-catenin信号参与糖尿病角膜上皮细胞创伤愈合的机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分:
     IGF-1在高糖培养的角膜上皮细胞创伤愈合中的作用研究
     目的:
     研究高糖培养的人永生化角膜上皮细胞(Human telomerase-immortalized corneal epithelial cells, THCE)及糖尿病大鼠角膜上皮中,高糖对创伤刺激的IGF-1及IGF-1R表达的影响,探讨外源性IGF-1对高糖培养的THCE细胞增殖、迁移、凋亡的影响及相关分子机制,阐明IGF-1在高糖培养的角膜上皮细胞创伤愈合中的作用。
     方法:
     1.根据文献报道的THCE高糖干预模型,分别用5mM-45mM浓度的葡萄糖处理THCE细胞24h或48h,MTT法检测THCE细胞存活率,筛选合适的高糖浓度及作用时间。根据文献报道的外源性IGF-1干预浓度,分别用10-200ng/ml的IGF-1处理THCE细胞48h,MTT法检测THCE细胞存活率,筛选合适的IGF-1浓度。
     2.分别用5mM、25mM浓度的葡萄糖预处理THCE细胞48h,经生长因子饥饿12h后,收集未划伤及划伤后不同时间点的两组细胞及细胞培养上清,利用real-time PCR法检测IGF-1及IGF-1R mRNA表达,酶联免疫吸附试验(ELISA)测定IGF-1蛋白水平,western blot分析IGF-1R蛋白表达,免疫荧光细胞化学法检测IGF-1、IGF-1R蛋白分布及表达。
     3.比较正常及糖尿病大鼠角膜上皮创伤愈合情况,研究创伤后角膜上皮中IGF-1、IGF-1R mRNA及蛋白的表达。
     4.高糖预处理THCE细胞且生长因子饥饿后,外源性添加IGF-1(50ng/ml)。于刺激后不同时间点分别对5mM葡萄糖、25mmM葡萄糖、25mmM葡萄糖+IGF-1处理的三组细胞,利用MTT法检测细胞增殖能力;细胞划痕实验检测细胞迁移能力;Annexin V-FITC/PI双荧光染色法+流式细胞仪检测细胞凋亡。
     5.高糖预处理THCE细胞且生长因子饥饿后,外源性添加IGF-1(50ng/ml)。于刺激后不同时间点分别收集5mM葡萄糖、25mM葡萄糖、25mM葡萄糖+IGF-1处理的三组细胞,利用real-time PCR法、western blot及免疫荧光细胞化学法检测增殖、迁移及凋亡相关因子ki-67、MMP-2、bax、bcl-2mRNA及蛋白的表达。
     结果:
     1.制作高糖干预模型的合适条件为25mM浓度的葡萄糖处理THCE细胞48h。外源性添加IGF-1的合适浓度为50ng/ml。
     2.在正常或高糖培养的两组THCE细胞中,划伤可刺激IGF-1及IGF-1R mRNA表达上调;划伤后12及24h,高糖组IGF-1及IGF-1R mRNA表达显著低于正常组;划伤后24及48h,高糖组IGF-1及IGF-1R蛋白表达显著低于正常组;划伤后48h,高糖组IGF-1及IGF-1R荧光染色强度低于正常组。
     3.与正常大鼠相比,糖尿病大鼠角膜上皮创伤愈合显著延迟。伤后1,2,3天,糖尿病大鼠角膜上皮中IGF-1、IGF-1R mRNA表达显著低于正常大鼠。伤后2,3天,糖尿病大鼠角膜上皮中IGF-1、IGF-1R荧光染色强度低于正常大鼠。
     4.高糖抑制THCE细胞存活率,下调增殖相关因子ki-67mRNA及蛋白表达。高糖+IGF-1组的细胞存活率、ki-67mRNA及蛋白表达显著高于高糖组,与正常组无显著差异。
     5.高糖抑制THCE细胞迁移能力,下调迁移相关因子MMP-2mRNA及蛋白表达。高糖+IGF-1组的细胞迁移能力、MMP-2mRNA及蛋白表达显著高于高糖组,与正常组无显著差异。
     6.高糖诱导THCE细胞凋亡,上调促凋亡因子bax mRNA及蛋白表达,下调凋亡抑制因子bcl-2mRNA及蛋白表达。添加IGF-1可改善高糖诱导的细胞凋亡及bax、bcl-2表达变化,但与正常组相比,仍存在显著差异。
     结论:
     在THCE细胞及糖尿病大鼠角膜上皮中,高糖抑制创伤刺激的IGF-1及IGF-1R表达。高糖通过抑制IGF-1表达,引起ki-67、MMP-2、bcl-2表达下调、bax表达上调,从而降低THCE细胞增殖、迁移,诱导THCE细胞凋亡,这可能是导致角膜上皮细胞创伤愈合延迟的原因之一。
     第二部分:
     β-catenin信号在高糖培养的角膜上皮细胞创伤愈合中的作用研究
     目的:
     研究高糖培养的THCE划伤后β-catenin信号的表达,探讨激活β-catenin信号对高糖培养的THCE细胞增殖、迁移、凋亡的影响及相关分子机制,阐明β-catenin信号在高糖培养的角膜上皮细胞创伤愈合中的作用。
     方法:
     1.高糖预处理THCE细胞且生长因子饥饿后,外源性添加β-catenin信号激活剂Licl(0.5mM)。对5mM葡萄糖、25mM葡萄糖、25mM葡萄糖+Licl处理的三组细胞,进行划伤刺激,于不同时间点利用real-time PCR法检测P-catenin、 cyclinD1、c-myc mRNA表达,western blot分析β-catenin、cyclin D1、c-Myc蛋白表达。
     2.高糖预处理THCE细胞且生长因子饥饿后,外源性添加0.5mM Licl。于刺激后不同时间点分别对5mM葡萄糖、25mM葡萄糖、25mM葡萄糖+Licl处理的三组细胞,利用MTT法检测细胞增殖能力;细胞划痕实验检测细胞迁移能力;Annexin V-FITC/PI双荧光染色法+流式细胞仪检测细胞凋亡。
     3.高糖预处理THCE细胞且生长因子饥饿后,外源性添加0.5mM Licl。于刺激后不同时间点分别收集5mM葡萄糖、25mM葡萄糖、25mM葡萄糖+Licl处理的三组细胞,利用real-time PCR法、western blot及免疫荧光细胞化学法检测增殖、迁移及凋亡相关因子ki-67、MMP-2、bax、bcl-2mRNA及蛋白的表达。
     结果:
     1.高糖抑制P-catenin cyclin D1、c-Myc mRNA及蛋白表达,外源性添加Licl可上调P-catenin、cyclin D1、c-Myc mRNA及蛋白表达,激活P-catenin信号。
     2.高糖抑制THCE细胞存活率,下调增殖相关因子ki-67mRNA及蛋白表达。高糖+Licl组的细胞存活率、ki-67mRNA及蛋白表达显著高于高糖组,与正常组无显著差异。
     3.高糖抑制THCE细胞迁移能力,下调迁移相关因子MMP-2mRNA及蛋白表达。高糖+Licl组的细胞迁移能力、MMP-2mRNA及蛋白表达显著高于高糖组,但与正常组相比,仍存在差异。
     4.高糖诱导THCE细胞凋亡,上调促凋亡因子bax mRNA及蛋白表达,下调凋亡抑制因子bcl-2mRNA及蛋白表达。添加Lic1可改善高糖诱导的细胞凋亡及bax、bcl-2表达变化,但与正常组相比,存在显著差异。
     结论:
     在THCE细胞中,高糖通过抑制β-catenin及下游靶基因cyclin D1、c-Myc的表达,引起ki-67、MMP-2、bcl-2表达下调、bax表达上调,从而降低THCE细胞增殖、迁移,诱导THCE细胞凋亡,这可能是导致角膜上皮细胞创伤愈合延迟的原因之一。
     第三部分:
     IGF-1调控β-catenin信号参与高糖培养的角膜上皮细胞创伤愈合的研究
     目的:
     研究高糖培养的THCE划伤后,外源性IGF-1对P-catenin信号表达的影响,明确IGF-1是否通过调控β-catenin信号共同参与高糖损害的角膜上皮细胞创伤愈合。
     方法:
     高糖预处理THCE细胞且生长因子饥饿后,外源性添加IGF-1。对5mM葡萄糖、25mM葡萄糖、25mM葡萄糖+IGF-1处理的三组细胞,进行划伤刺激,于不同时间点利用real-time PCR法检测P-catenin cyclin D1mRNA表达,western blot分析β-catenin、cyclin D1蛋白表达。
     结果:
     高糖抑制β-catenin、cyclin D1mRNA及蛋白表达,外源性添加IGF-1可显著上调高糖抑制的β-catenin、cyclin D1mRNA及蛋白表达。
     结论:
     IGF-1可调控β-catenin信号共同参与糖尿病角膜上皮创伤愈合。
Part I:
     Role of IGF-1in high-glucose impaired corneal epithelial cells wound healing
     Purpose
     To investigate the expression and role of insulin-like growth factor-1(IGF-1) in high glucose-impaired corneal epithelial cells wound healing.
     Methods
     1. THCE cells were treated with glucose solutions (5mM-45mM) for24h or48h and cell viability was measured by MTT to determine the best concentration of glucose and time. THCE cells were treated with IGF-1(10-200ng/ml) for48h and cell viability was measured by MTT to determine the best concentration of IGF-1.
     2. Respectively, with a concentration of5mM or25mM D-glucose treatment THCE cells for48h, then cells were growth factors starved for12h. After wounding, cells were harvested and real-time PCR, ELISA, western blot and immunofluorescence staining were performed to detect IGF-1and IGF-1R mRNA and protein expression.
     3. In wounded corneal epithelium of streptozotocin induced diabetic rats, IGF-1and IGF-1R mRNA and protein expression were measured by real-time PCR and immunofluorescence.
     4. THCE cells were pretreated with25mM D-glucose. For experiments,50ng/ml IGF-1was added into high glucose medium. Then, three groups of cells were formed: cells grown in normal glucose medium, high glucose medium, or high glucose medium plus50ng/ml IGF-1. The effects of IGF-1in the presence of high glucose on cell proliferation, migration and apoptosis were evaluated by MTT, cell restitution assay and flow cytometry after PI-Annexin-V staining.
     5. The possible molecular mechanisms were detected by the levels of ki-67, MMP-2, bax, and bcl-2expression using real-time PCR, immunohistochemistry or western blot.
     Results
     1. For experiments, the proper concentration was25mM glucose or50ng/ml IGF-1.
     2. After wounding, both IGF-1and IGF-1R mRNA and protein expression were increased. At12and24h, the expressions were significantly lower in high glucose group than that in normal group. As for IGF-1and IGF-1R protein, the expressions were significantly lower in high glucose group than that in normal group at24and48h.
     3. Delayed wound healing was observed in wounded corneal epithelium of diabetic rats which were accompanied with reduced IGF-1and IGF-1R mRNA and protein expression.
     4. High glucose reduced THCE cells proliferation and migration, induced cell apoptosis via downregulating ki-67, MMP-2, bcl-2mRNA and protein expression, upregulating bax expression. Treatment with IGF-1could reverse these high glucose effects.
     Conclusions
     High glucose-inhibited IGF-1/IGF-1R expression caused THCE cell dysregulation including decreased cell proliferation, migration and increased cell apoptosis, which might result, at least in part, in delayed corneal epithelial cell wound healing.
     Part Ⅱ:
     Role of β-catenin Signaling in high-glucose impaired corneal epithelial cells wound healing
     Purpose
     To investigate the expression and role of P-catenin signaling in high glucose-impaired corneal epithelial cells wound healing.
     Methods
     1. THCE cells were pretreated with25mM D-glucose and growth factors starved. After wounding, real-time PCR and western blot were performed to detect J3-catenin> cyclin D1、c-Myc mRNA and protein expression.
     2. THCE cells were pretreated with25mM D-glucose and growth factors starved. For experiments,0.5mM Licl was added into high glucose medium. Then, three groups of cells were formed:cells grown in normal glucose medium, high glucose medium, or high glucose medium plus0.5mM Licl. The effects of Licl in the presence of high glucose on cell proliferation, migration and apoptosis were evaluated by MTT, cell restitution assay and flow cytometry after PI-Annexin-V staining.
     3. The possible molecular mechanisms were detected by the levels of ki-67, MMP-2, bax, and bcl-2expression using real-time PCR, immunohistochemistry or western blot.
     Results
     High glucose downregulated β-catenin、cyclin D1、c-Myc mRNA and protein expression while Licl upregulated these factors expression in wounded THCE cells cultured in high glucose. Licl improved high glucose-impaired THCE cells proliferation, migration and apoptosis via upregulating ki-67, MMP-2,'bcl-2and downregulating bax mRNA and protein expression.
     Conclusions
     High glucose decreased THCE cell proliferation, migration and increased cell apoptosis through inhibited β-catenin signaling.
     Part Ⅲ:
     IGF-1mediated β-catenin signaling in high glucose-impaired corneal epithelial cells wound healing
     Purpose
     To investigate whether IGF-1mediated β-catenin signaling in high glucose-impaired corneal epithelial cell wound healing.
     Methods
     THCE cells were pretreated with25mM D-glucose and growth factors starved. After wounding, IGF-1was added into high glucose medium. Real-time PCR and western blot were performed to detect β-catenin, cyclin D1mRNA and protein expression.
     Results
     The addition of IGF-1significantly increased β-catenin、cyclin D1mRNA and protein expression compaired with high glucose-treated control.
     Conclusions
     IGF-1mediated β-catenin signaling to modulate high glucose-impaired corneal epithelial cell wound healing.
引文
1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF Diabetes Atlas:Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311-321.
    2. Resnokoff S. Global data on visual impairment in the year 2002. Bulletin of the World Health Organization.2004,82:844-851.
    3. Schultz RO, Van Horn DL, Peters MA, Klewin KM, Schutten WH. Diabetic keratopathy. Trans Am Ophthalmol Soc.1981;79:180-199.
    4. Didenko TN, Smoliakova GP, Sorokin EL, Egorov W. Clinical and pathogenetic features of neurotrophic corneal disorders in diabetes. Vestn Oftalmol.1999; 115:7-11.
    5. Xu K, Yu FS. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci.2011;52:3301-3308.
    6. Yamada N, Yanai R, Kawamoto K, Nagano T, Nakamura M, et al. Promotion of corneal epithelial wound healing by a tetrapeptide (SSSR) derived from IGF-1. Invest Ophthalmol Vis Sci.2006;47:3286-3292.
    7. Yu FS, Yin J, Xu K, Huang J. Growth factors and corneal epithelial wound healing. Brain Res Bull.2010;81(2-3):229-235.
    8. Lee HK, Lee JH, Kim M, Kariya Y, Miyazaki K, et al. Insulin-like growth factor-1 induces migration and expression of laminin-5 in cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci.2006;47:873-882.
    9. Yanai R, Yamada N, Inui M, Nishida T. Correlation of proliferative and anti-apoptotic effects of HGF, insulin, IGF-1, IGF-2, and EGF in SV40-transformed human corneal epithelial cells. Exp Eye Res.2006;83:76-83.
    10. Xu KP, Ding Y, Ling J, Dong Z, Yu FS. Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial cells. Invest Ophthalmol Vis Sci. 2004;45(3):813-820.
    11. Secker GA, Shortt AJ, Sampson E, Schwarz QP, Schultz GS, Daniels JT. TGFbeta stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling. Exp Cell Res.2008;314(1):131-142.
    12. Nakamura M, Chikama T, Nishida T. Participation of p38 MAP kinase, but not p44/42 MAP kinase, in stimulation of corneal epithelial migration by substance P and IGF-1. Curr Eye Res.2005;30(10):825-834.
    13. Ko JA, Yanai R, Nishida T. IGF-1 released by corneal epithelial cells induces up-regulation of N-cadherin in corneal fibroblasts. J Cell Physiol. 2009;221(1):254-261.
    14. Robertson DM, Ho SI, Hansen BS, Petroll WM, Cavanagh HD. Insulin-like Growth Factor Binding Protein-3 expression in the human corneal epithelium. Exp Eye Res.2007;85(4):492-501.
    15. Robertson DM, Zhu M, Wu YC. Cellular distribution of the IGF-1R in corneal epithelial cells. Exp Eye Res.2012;94(1):179-186.
    16. Inokuchi N, Ikeda T, Imamura Y, Sotozono C, Kinoshita S, et al. Vitreous levels of insulin-like growth factor-I in patients with proliferative diabetic retinopathy. Curr Eye Res.2001;23:368-371.
    17. Ruberte J, Ayuso E, Navarro M, Carretero A, Nacher V, et al. Increased ocular levels of IGF-1 in transgenic mice lead to diabetes-like eye disease. J Clin Invest. 2004;113:1149-1157.
    18. Trosan P, Svobodova E, Chudickova M, Krulova M, Zajicova A, et al. The key role of insulin-like growth factor I in limbal stem cell differentiation and the corneal wound-healing process. Stem Cells Dev.2012;21:3341-3350.
    19. Lee SW, Kim SH, Kim JY, Lee Y. The effect of growth hormone on fibroblast proliferation and keratinocyte migration. J Plast Reconstr Aesthet Surg. 2010;63(4):e364-369.
    20. Schmal H, Mehlhorn A, Stoffel F, Kostler W, Sudkamp NP, Niemeyer P. In vivo quantification of intraarticular cytokines in knees during natural and surgically induced cartilage repair. Cytotherapy.2009; 11(8):1065-1075.
    21. Gotz W, Kunert D, Zhang D, Kawarizadeh A, Lossdorfer S, Jager A. Insulin-like growth factor system components in the periodontium during tooth root resorption and early repair processes in the rat. Eur J Oral Sci.2006; 114(4):318-327.
    22.Yamada N, Matsuda R, Morishige N, Yanai R, Chikama TI, et al. Open clinical study of eye-drops containing tetrapeptides derived from substance P and insulin-like growth factor-1 for treatment of persistent corneal epithelial defects associated with neurotrophic keratopathy. Br J Ophthalmol.2008;92:896-900.
    23. Velander P, Theopold C, Hirsch T, Bleiziffer O, Zuhaili B, Fossum M, Hoeller D, Gheerardyn R, Chen M, Visovatti S, Svensson H, Yao F, Eriksson E. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair Regen.2008;16(2):288-293.
    24. Bitar MS. Insulin and glucocorticoid-dependent suppression of the IGF-I system in diabetic wounds. Surgery.2000;127(6):687-695.
    25. Blakytny R, Jude EB, Martin Gibson J, Boulton AJ, Ferguson MW. Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J Pathol.2000;190(5):589-594.
    26.Bitar MS, Labbad ZN. Transforming growth factor-beta and insulin-like growth factor-I in relation to diabetes-induced impairment of wound healing. J Surg Res. 1996;61(1):113-119.
    27. Brown DL, Kane CD, Chernausek SD, Greenhalgh DG. Differential expression and localization of insulin-like growth factors I and II in cutaneous wounds of diabetic and nondiabetic mice. Am J Pathol.1997;151(3):715-724.
    28. Thaller SR, Lee TJ, Armstrong M, Tesluk H, Stern JS. Effect of insulin-like growth factor type 1 on critical-size defects in diabetic rats. J Craniofac Surg. 1995;6(3):218-223.
    29. Bitar MS. Insulin-like growth factor-1 reverses diabetes-induced wound healing impairment in rats. Horm Metab Res.1997;29(8):383-386.
    30. Hirsch T, Spielmann M, Velander P, Zuhaili B, Bleiziffer O, Fossum M, Steinstraesser L, Yao F, Eriksson E. Insulin-like growth factor-1 gene therapy and cell transplantation in diabetic wounds. J Gene Med.2008;10(11):1247-1252.
    31. Xu F, Zhang C, Graves DT. Abnormal cell responses and role of TNF-α in impaired diabetic wound healing. Biomed Res Int.2013;2013:754-802.
    32. Lan CC, Liu IH, Fang AH, Wen CH, Wu CS. Hyperglycaemic conditions decrease cultured keratinocyte mobility:implications for impaired wound healing in patients with diabetes. Br J Dermatol.2008;159:1103-1115.
    33. Desta T, Li J, Chino T, Graves DT. Altered fibroblast proliferation and apoptosis in diabetic gingival wounds. J Dent Res.2010;89:609-614.
    35. Nishida T, Nakamura M, Ofuji K, Reid TW, Mannis MJ, et al. Synergistic effects of substance P with insulin-like growth factor-1 on epithelial migration of the cornea. J Cell Physiol.1996;169:159-166.
    36.Chen P, Parks WC. Role of matrix metalloproteinases in epithelial migration. J Cell Biochem.2009;108:1233-1243.
    37.Lee JH, Ryu IH, Kim EK, Lee JE, Hong S, et al. Induced expression of insulin-like growth factor-1 by amniotic membrane-conditioned medium in cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci.2006;47:864-872.
    38.Szentmary N, Nagy ZZ, Resch M, Szende B, Siiveges I. Proliferation and apoptosis in the corneal stroma in longterm follow-up after photorefractive keratectomy. Pathol Res Pract.2005;201:399-404.
    39. Bhan S, Mitra R, Arya AK, Pandey HP, Tripathi K. A study on evaluation of apoptosis and expression of bcl-2-related marker in wound healing of streptozotocin-induced diabetic rats. ISRN Dermatol.2013;2013:739054.
    40. Xu KP, Li Y, Ljubimov AV, Yu FS. High glucose suppresses epidermal growth factor receptor/phosphatidylinositol 3-kinase/Akt signaling pathway and attenuates corneal epithelial wound healing. Diabetes.2009;58(5):1077-1085.
    1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF Diabetes Atlas:Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311-321.
    2. Schultz RO, Van Horn DL, Peters MA, Klewin KM, Schutten WH. Diabetic keratopathy. Trans Am Ophthalmol Soc.1981;79:180-199.
    3. Didenko TN, Smoliakova GP, Sorokin EL, Egorov VV. Clinical and pathogenetic features of neurotrophic corneal disorders in diabetes. Vestn Oftalmol.1999;115:7-11.
    4. Xu K, Yu FS. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci.2011;52:3301-3308.
    5. Yamada N, Yanai R, Kawamoto K, Nagano T, Nakamura M, et al. Promotion of corneal epithelial wound healing by a tetrapeptide (SSSR) derived from IGF-1. Invest Ophthalmol Vis Sci.2006;47:3286-3292.
    6. Yu FS, Yin J, Xu K, Huang J. Growth factors and corneal epithelial wound healing. Brain Res Bull.2010;81(2-3):229-235.
    7. Xu KP, Ding Y, Ling J, Dong Z, Yu FS. Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial cells. Invest Ophthalmol Vis Sci. 2004;45(3):813-820.
    8. Secker GA, Shortt AJ, Sampson E, Schwarz QP, Schultz GS, Daniels JT. TGFbeta stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling. Exp Cell Res.2008;314(1):131-142.
    9. Nakamura M, Chikama T, Nishida T. Participation of p38 MAP kinase, but not p44/42 MAP kinase, in stimulation of corneal epithelial migration by substance P and IGF-1. Curr Eye Res.2005;30(10):825-834.
    10. Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev. 2000;11(4):273-282.
    11. Fathke C, Wilson L, Shah K, Kim B, Hocking A, Moon R, Isik F. Wnt signaling induces epithelial differentiation during cutaneous wound healing.BMC Cell Biol. 2006;7(4):1-9.
    12. Yamaguchi Y, Passeron T, Hoashi T, et al. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes. FASEB J.2008;22(4):1009-1020.
    13. Gurung A, Uddin F, Hill RP, Ferguson PC, Alman BA. Beta-catenin is a mediator of the response of fibroblasts to irradiation. Am J Pathol.2009;174(1):248-255.
    14. Chong ZZ, Shang YC, Maiese K. Vascular injury during elevated glucose can be mitigated by erythropoietin and Wnt signaling. Curr Neurovasc Res.2007;4(3): 194-204.
    15. Karrasch T1, Spaeth T, Allard B, Jobin C. PI3K-dependent GSK3B(Ser9)-phosphorylation is implicated in the intestinal epithelial cell wound-healing response. PLoS One.2011;6(10):e26340.
    16. Liu L, Rao JN, Zou T, Xiao L, Smith A, Zhuang R, Turner DJ, Wang JY. Activation of Wnt3a signaling stimulates intestinal epithelial repair by promoting c-Myc-regulated gene expression. Am J Physiol Cell Physiol.2012;302(1):C277-285.
    17. Wang Y, Wang M, Wang F, Zhu M, Ma Y, Wang X, Wu R. IQGAP1 promotes cell proliferation and is involved in a phosphorylation-dependent manner in wound closure of bronchial epithelial cells. Int J Mol Med.2008;22(1):79-87.
    18. Stojadinovic O, Brem H, Vouthounis C, Lee B, Fallon J, Stallcup M, Merchant A, Galiano RD. Tomic-Canic M. Molecular pathogenesis of chronic wounds:the role of beta-catenin and c-myc in the inhibition of epithelialization and wound healing. Am J Pathol.2005;167(1):59-69.
    19. Lopez-Herradon Al, Portal-Nunez S, Garcia-Martin A, Lozano D, Perez-Martinez FC, Cena V, Esbrit P. Inhibition of the canonical Wnt pathway by high glucose can be reversed by parathyroid hormone-related protein in osteoblastic cells. J Cell Biochem. 2013;114(8):1908-1916.
    20. Li Z, Xu J, Xu P, Liu S, Yang Z. Wnt/β-catenin signalling pathway mediates high glucose induced cell injury through activation of TRPC6 in podocytes. Cell Prolif. 2013;46(1):76-85.
    21. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007,447(7142):316-320.
    22. Sinha D, Wang Z, Ruchalski KL, Levine JS, Krishnan S, Lieberthal W, Schwartz JH, Borkan SC. Lithium activates the Wnt and phosphatidylinositol 3-kinase Akt signaling pathways to promote cell survival in the absence of soluble survival factors. Am J Physiol Renal Physiol.2005;288(4):F703-713.
    23. Nakatsu MN, Ding Z, Ng MY, Truong TT, Yu F, Deng SX. Wnt/β-catenin signaling regulates proliferation of human cornea epithelial stem/progenitor cells.Invest Ophthalmol Vis Sci.2011;52(7):4734-4741.
    24. Yamada N, Yanai R, Kawamoto K, Nagano T, Nakamura M, et al. Promotion of corneal epithelial wound healing by a tetrapeptide (SSSR) derived from IGF-1. Invest Ophthalmol Vis Sci.2006;47:3286-3292.
    25. Yu FS, Yin J, Xu K, Huang J. Growth factors and corneal epithelial wound healing. Brain Res Bull.2010;81(2-3):229-235.
    26. Lee HK, Lee JH, Kim M, Kariya Y, Miyazaki K, et al. Insulin-like growth factor-1 induces migration and expression of laminin-5 in cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci.2006;47:873-882.
    27. Yanai R, Yamada N, Inui M, Nishida T. Correlation of proliferative and anti-apoptotic effects of HGF, insulin, IGF-1, IGF-2, and EGF in SV40-transformed human corneal epithelial cells. Exp Eye Res.2006;83:76-83.
    1. Wang L, Shao YY, Ballock RT. Thyroid hormone-mediated growth and differentiation of growth plate chondrocytes involves IGF-1 modulation of beta-catenin signaling. J Bone Miner Res.2010;25(5):1138-1146.
    2. Playford MP, Bicknell D, Bodmer WF, Macaulay VM. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc Natl Acad Sci U S A.2000;97(22):12103-12108.
    3. Ye P, Hu Q, Liu H, Yan Y, D'ercole AJ. Beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures. Glia.2010;58(9):1031-41.
    4. Lee HK, Lee JH, Kim M, Kariya Y, Miyazaki K, et al. Insulin-like growth factor-1 induces migration and expression of laminin-5 in cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci.2006;47:873-882.
    5. Yanai R, Yamada N, Inui M, Nishida T. Correlation of proliferative and anti-apoptotic effects of HGF, insulin, IGF-1, IGF-2, and EGF in SV40-transformed human corneal epithelial cells. Exp Eye Res.2006;83:76-83.
    6. Nakamura M, Chikama T, Nishida T. Participation of p38 MAP kinase, but not p44/42 MAP kinase, in stimulation of corneal epithelial migration by substance P and IGF-1. Curr Eye Res.2005;30(10):825-834.
    7. Trosan P, Svobodova E, Chudickova M, Krulova M, Zajicova A, et al. The key role of insulin-like growth factor I in limbal stem cell differentiation and the corneal wound-healing process. Stem Cells Dev.2012;21:3341-3350.
    8. Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev. 2000;11(4):273-282.
    9.Fathke C, Wilson L, Shah K, Kim B, Hocking A, Moon R, Isik F. Wnt signaling induces epithelial differentiation during cutaneous wound healing.BMC Cell Biol. 2006;7(4):1-9.
    lO.Yamaguchi Y, Passeron T, Hoashi T, et al. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes. FASEB J.2008;22(4):1009-1020.
    1. Whiting DR, Guariguata L, Weil C, Shaw J. IDF Diabetes Atlas:Global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Res Clin Pract. 2011;94(3):311-321.
    2. Bashmakov YK, Assaad-Khalil S, Petyaev IM. Resveratrol may be beneficial in treatment of diabetic foot syndrome. Med Hypotheses.2011;77(3):364-367.
    3. Yamada N, Yanai R, Kawamoto K, Nagano T, Nakamura M, et al. Promotion of coraeal epithelial wound healing by a tetrapeptide (SSSR) derived from IGF-1. Invest Ophthalmol Vis Sci.2006;47:3286-3292.
    4. Yu FS, Yin J, Xu K, Huang J. Growth factors and corneal epithelial wound healing. Brain Res Bull.2010;81(2-3):229-235.
    5. Lee HK, Lee JH, Kim M, Kariya Y, Miyazaki K, et al. Insulin-like growth factor-1 induces migration and expression of laminin-5 in cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci.2006;47:873-882.
    6. Goodson, W. H., Hunt, T. K. Studies of wound healing in experimental diabetes. J Surg Res.1977;22:221.
    7. Goodson WH, Hunt TK. Wound healing and the diabetic patient. Surg Gyn Obstet. 1979; 149:600.
    8. Yue, D.K., Swanson, B.McLennan, S.MarshM, et al. Abnormalities of granulation tissue and collagen formation in experimental diabetes, uremia and malnutrition. Diab Med.1986;3:221.
    9. Prakash A, Pandit PN, Sharma LK. Studies in wound healing in experimental diabetes. Inter Surg.1974;59:75.
    10. Xu K, Yu FS. Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci.2011;52:3301-3308.
    11. Yanai R, Yamada N, Inui M, Nishida T. Correlation of proliferative and anti-apoptotic effects of HGF, insulin, IGF-1, IGF-2, and EGF in SV40-transformed human corneal epithelial cells. Exp Eye Res.2006; 83:76-83.
    12. Xu KP, Ding Y, Ling J, Dong Z, Yu FS. Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial cells. Invest Ophthalmol Vis Sci. 2004;45(3):813-820.
    13. Seeker GA, Shortt AJ, Sampson E, Schwarz QP, Schultz GS, Daniels JT. TGFbeta stimulated re-epithelialisation is regulated by CTGF and Ras/MEK/ERK signalling. Exp Cell Res.2008;314(1):131-142.
    14. Singer AJ, Clark RA. Cutaneous wound healing. N Engl J Med 1999; 341: 738-746.
    15. Andree C, Swain WF, Page CP, Macklin MD, Slama J, Hatzis D, Eriksson E. In vivo transfer and expression of a human epidermal growth factor gene accelerates wound repair. Proc Natl Acad Sci.1994; 91:12188-12192.
    16. Martin P. Wound healing-aiming for perfect skin regeneration. Science.1997; 276: 75-81.
    17. Ko JA, Yanai R, Nishida T. IGF-1 released by corneal epithelial cells induces up-regulation of N-cadherin in corneal fibroblasts. J Cell Physiol. 2009;221(1):254-261.
    18. Bergman PB, Moravski CJ, Edmondson SR, Russo VC, Bach LA, Wilkinson-Berka JL, Werther GA. Expression of the IGF system in normal and diabetic transgenic (mRen-2)27 rat eye. Invest Ophthalmol Vis Sci. 2005;46(8):2708-2715.
    19. Burren CP, Berka JL, Edmondson SR, Werther GA, Batch JA. Localization of mRNAs for insulin-like growth factor-I (IGF-I), IGF-I receptor, and IGF binding proteins in rat eye. Invest Ophthalmol Vis Sci.1996;37(7):1459-1468.
    20. Robertson DM, Ho SI, Hansen BS, Petroll WM, Cavanagh HD. Insulin-like Growth Factor Binding Protein-3 expression in the human corneal epithelium. Exp Eye Res.2007;85(4):492-501.
    21. Robertson DM, Zhu M, Wu YC. Cellular distribution of the IGF-1R in corneal epithelial cells. Exp Eye Res.2011.
    22. Nakamura M, Chikama T, Nishida T. Participation of p38 MAP kinase, but not p44/42 MAP kinase, in stimulation of corneal epithelial migration by substance P and IGF-1. Curr Eye Res.2005;30(10):825-834.
    23. Leloup L, Daury L, Mazeres G, Cottin P, Brustis JJ. Involvement of the ERK/MAP kinase signalling pathway in milli-calpain activation and myogenic cell migration. Int J Biochem Cell Biol.2007;39(6):1177-1189.
    24. O.V.CHISTYAKOVA. Signaling pathway of insulin and insulin-like growth factor 1(IGF-1)as a potential regulator of lifespan. Journal of Evolutionary Biochemistry and Physiology.2008,44(1):1-11.
    25. Sung MK, Yeon JY, Park SY, Park JH, Choi MS. Obesity-induced metabolic stresses in breast and colon cancer. Ann N Y Acad Sci.2011;1229:61-68.
    26. Clemmons D, Maile L, Xi G, Shen X, Radhakrishnan Y. IGF-I signaling in response to hyperglycemia and the development of diabetic complications. Curr Diabetes Rev.2011;7(4):235-245.
    27. Matsui T, Davidoff AJ. Assessment of PI-3 kinase and Akt in ischemic heart diseases in diabetes. Methods Mol Med.2007;139:329-338.
    28. Koh A, Niikura T, Lee SY, Oe K, Koga T, Dogaki Y, Kurosaka M. Differential gene expression and immunolocalization of insulin-like growth factors and insulin-like growth factor binding proteins between experimental nonunions and standard healing fractures. J Orthop Res.2011;29(12):1820-1826.
    29. Lyras DN, Kazakos K, Agrogiannis G, Verettas D, Kokka A, Kiziridis G, Chronopoulos E, Tryfonidis M. Experimental study of tendon healing early phase:is IGF-1 expression influenced by platelet rich plasma gel. Orthop Traumatol Surg Res. 2010;96(4):381-387.
    30. Lee SW, Kim SH, Kim JY, Lee Y The effect of growth hormone on fibroblast proliferation and keratinocyte migration. J Plast Reconstr Aesthet Surg. 2010;63(4):e364-369.
    31. Schmal H, Mehlhorn A, Stoffel F, Kostler W, Siidkamp NP, Niemeyer P. In vivo quantification of intraarticular cytokines in knees during natural and surgically induced cartilage repair. Cytotherapy.2009;11(8):1065-1075.
    32. Gotz W, Kunert D, Zhang D, Kawarizadeh A, Lossdorfer S, Jager A. Insulin-like growth factor system components in the periodontium during tooth root resorption and early repair processes in the rat. Eur J Oral Sci.2006; 114(4):318-327.
    33. Taboubi S, Garrouste F, Parat F, Pommier G, Faure E, Monferran S, Kovacic H, Lehmann M. Gq-coupled purinergic receptors inhibit insulin-like growth factor-I/phosphoinositide 3-kinase pathway-dependent keratinocyte migration. Mol Biol Cell.2010;21(6):946-955.
    34. Nakasaki M, Yoshioka K, Miyamoto Y, Sasaki T, Yoshikawa H, Itoh K. IGF-I secreted by osteoblasts acts as a potent chemotactic factor for osteoblasts. Bone. 2008;43(5):869-879.
    35. Chang YM, Kuo WH, Lai TY, Shih YT, Tsai FJ, Tsai CH, Shu WT, Chen YY, Chen YS, Kuo WW, Huang CY RSC96 Schwann Cell Proliferation and Survival Induced by Dilong through PI3K/Akt Signaling Mediated by IGF-I. Evid Based Complement Alternat Med.2009.
    36. Lee HK, Lee JH, Kim M, Kariya Y, Miyazaki K, Kim EK. Insulin-like growth factor-1 induces migration and expression of laminin-5 in cultured human corneal epithelial cells. Invest Ophthalmol Vis Sci.2006;47(3):873-882.
    37. Nakamura M, Chikama T, Nishida T. Participation of p38 MAP kinase, but not p44/42 MAP kinase, in stimulation of corneal epithelial migration by substance P and IGF-1. Curr Eye Res.2005;30(10):825-834.
    38. Leloup L, Daury L, Mazeres G, Cottin P, Brustis JJ. Involvement of the ERK/MAP kinase signalling pathway in milli-calpain activation and myogenic cell migration. Int J Biochem Cell Biol.2007;39(6):1177-1189.
    39 Velander P, Theopold C, Hirsch T, Bleiziffer O, Zuhaili B, Fossum M, Hoeller D, Gheerardyn R, Chen M, Visovatti S, Svensson H, Yao F, Eriksson E. Impaired wound healing in an acute diabetic pig model and the effects of local hyperglycemia. Wound Repair Regen.2008;16(2):288-293.
    40. Bitar MS. Insulin and glucocorticoid-dependent suppression of the IGF-I system in diabetic wounds. Surgery.2000;127(6):687-695.
    41. Blakytny R, Jude EB, Martin Gibson J, Boulton AJ, Ferguson MW. Lack of insulin-like growth factor 1 (IGF1) in the basal keratinocyte layer of diabetic skin and diabetic foot ulcers. J Pathol.2000;190(5):589-594.
    42.Bitar MS, Labbad ZN. Transforming growth factor-beta and insulin-like growth factor-I in relation to diabetes-induced impairment of wound healing. J Surg Res. 1996;61(1):113-119.
    43. Brown DL, Kane CD, Chernausek SD, Greenhalgh DGDifferential expression and localization of insulin-like growth factors Ⅰ and Ⅱ in cutaneous wounds of diabetic and nondiabetic mice. Am J Pathol.1997;151(3):715-724.
    44. Kumari R, Willing LB, Krady JK, Vannucci SJ, Simpson IA. Impaired wound healing after cerebral hypoxia-ischemia in the diabetic mouse. J Cereb Blood Flow Metab.2007;27(4):710-718.
    45. Korolkiewicz RP, Fujita A, Seto K, Suzuki K, Takeuchi K. Polaprezinc exerts a salutary effect on impaired healing of acute gastric lesions in diabetic rats. Dig Dis Sci.2000;45(6):1200-1209.
    46. Thaller SR, Lee TJ, Armstrong M, Tesluk H, Stern JS. Effect of insulin-like growth factor type 1 on critical-size defects in diabetic rats. J Craniofac Surg. 1995;6(3):218-223.
    47. Bitar MS. Insulin-like growth factor-1 reverses diabetes-induced wound healing impairment in rats. Horm Metab Res.1997;29(8):383-386.
    48. Hirsch T, Spielmann M, Velander P, Zuhaili B, Bleiziffer O, Fossum M, Steinstraesser L, Yao F, Eriksson E. Insulin-like growth factor-1 gene therapy and cell transplantation in diabetic wounds. J Gene Med.2008; 10(11):1247-1252.
    49. Nakamura M, Kawahara M, Morishige N, Chikama T, Nakata K, Nishida T. Promotion of corneal epithelial wound healing in diabetic rats by the combination of a substance P-derived peptide (FGLM-NH2) and insulin-like growth factor-1. Diabetologia.2003;46(6):839-842.
    50. Xu K, Yu FS Impaired epithelial wound healing and EGFR signaling pathways in the corneas of diabetic rats. Invest Ophthalmol Vis Sci.2011;52(6):3301-3308.
    51. Yin J, Yu FS. LL-37 via EGFR transactivation to promote high glucose-attenuated epithelial wound healing in organ-cultured corneas. Invest Ophthalmol Vis Sci. 2010;51(4):1891-1897.
    52. Hu Z, Wang H, Lee IH, Modi S, Wang X, Du J, Mitch WE. PTEN inhibition improves muscle regeneration in mice fed a high-fat diet. Diabetes. 2010;59(6):1312-1320.
    53. Yu P, Yu DM, Qi JC, Wang J, Zhang QM, Zhang JY, Tang YZ, Xing QL, Li MZ. High D-glucose alters PI3K and Akt signaling and leads to endothelial cell migration, proliferation and angiogenesis dysfunction. Zhonghua Yi Xue Za Zhi. 2006;86(48):3425-3430.
    54. Loughlin DT, Artlett CM. Modification of collagen by 3-deoxyglucosone alters wound healing through differential regulation of p38 MAP kinase. PLoS One. 2011;6(5):e18676.
    55. Stenberg L, Kanje M, Martensson L, Dahlin LB. Injury-induced activation of ERK1/2 in the sciatic nerve of healthy and diabetic rats. Neuroreport. 2011;22(2):73-77.
    56. Cheng B, Liu HW, Fu XB, Sun TZ, Sheng ZY. Recombinant human platelet-derived growth factor enhanced dermal wound healing by a pathway involving ERK and c-fos in diabetic rats. J Dermatol Sci.2007;45(3):193-201.
    57. Lan CC, Wu CS, Huang SM, Kuo HY, Wu IH, Wen CH, Chai CY, Fang AH, Chen GS. High-glucose environment inhibits p38MAPK signaling and reduces human β-Defensin-3 expression in keratinocytes. Mol Med.2011;17(7-8):771-779.
    58. Medicherla S, Wadsworth S, Cullen B, Silcock D, Ma JY, Mangadu R, Kerr I, Chakravarty S,Luedtke GL, Dugar S, Protter AA, Higgins LS. P38 MAPK inhibition reduces diabetes-induced impairment of wound healing. Diabetes Metab Syndr Obes. 2009;2:91-100.
    59. Saghizadeh M, Kramerov AA, Yu FS, Castro MG, Ljubimov AV. Normalization of wound healing and diabetic markers in organ cultured human diabetic corneas by adenoviral delivery of c-Met gene. Invest Ophthalmol Vis Sci.2010;51(4):1970-1980.
    60. Akiyama T. Wnt/beta-catenin signaling. Cytokine Growth Factor Rev. 2000;11(4):273-282.
    61. Fathke C, Wilson L, Shah K, Kim B, Hocking A, Moon R, Isik F.Wnt signaling induces epithelial differentiation during cutaneous wound healing.BMC Cell Biol. 2006,7(4):1-9.
    62. Yamaguchi Y, Passeron T, Hoashi T,et al. Dickkopf 1 (DKK1) regulates skin pigmentation and thickness by affecting Wnt/beta-catenin signaling in keratinocytes. FASEB J.2008,22(4):1009-1020.
    63. Gurung A, Uddin F, Hill RP, Ferguson PC, Alman BA. Beta-catenin is a mediator of the response of fibroblasts to irradiation. Am J Pathol,2009;174(1):248-255.
    64. Chong ZZ, Shang YC, Maiese K. Vascular injury during elevated glucose can be mitigated by erythropoietin and Wnt signaling. Curr Neurovasc Res.2007,4(3): 194-204.
    65. Ito M, Yang Z, Andl T, Cui C, Kim N, Millar SE, Cotsarelis G. Wnt-dependent de novo hair follicle regeneration in adult mouse skin after wounding. Nature. 2007,447(7142):316-320.
    66. Wang L, Shao YY, Ballock RT. Thyroid hormone-mediated growth and differentiation of growth plate chondrocytes involves IGF-1 modulation of beta-catenin signaling. J Bone Miner Res.2010;25(5):1138-1146.
    67. Playford MP, Bicknell D, Bodmer WF, Macaulay VM. Insulin-like growth factor 1 regulates the location, stability, and transcriptional activity of beta-catenin. Proc Natl Acad Sci USA.2000;97(22):12103-12108.
    68. Ye P, Hu Q, Liu H, Yan Y, D'ercole AJ. beta-catenin mediates insulin-like growth factor-I actions to promote cyclin D1 mRNA expression, cell proliferation and survival in oligodendroglial cultures.Glia.2010 Jul;58(9):1031-41.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700