糖基化终末产物对人角膜上皮细胞凋亡的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究目的角膜上皮创伤愈合延迟是目前眼科临床常见的糖尿病眼部并发症之一,治疗棘手,发生机制尚不清楚。糖基化终末产物(advanced glycation end products, AGEs)是在持续高糖条件下,蛋白质的氨基与糖的醛基在非酶催化反应下生成的终产物,与糖尿病慢性并发症的发生发展相关。AGEs促进ROS的生成,而ROS可通过不同的途径诱导细胞凋亡。因此本课题通过研究AGEs对THCEs凋亡作用及其与ROS的关系,探讨AGEs在糖尿病角膜创伤愈合延迟中的作用机制。
     研究方法利用牛血清白蛋白(BSA)和葡萄糖体外制备AGE-BSA及其对照物。体外培养THCE细胞与不同浓度(50μg/ml,100μg/ml,200μg/ml,400μg/ml)的AGEs修饰牛血清白蛋白(AGE-BSA)在体外共同培养不同时间(6h,12h,24h,48h)。应用Annexin V-Fitc和碘化丙啶(PI)与细胞共同孵育,通过流式细胞仪检测并定量分析细胞凋亡百分率;采用Western blot检测凋亡蛋白Bcl-2,Bax蛋白表达。选用刺激效果最好的AGE-BSA浓度和作用时间,抗氧化剂NAC (20μmol/L)预先作用1小时清除内源性ROS或NADPH氧化酶抑制剂DPI (10μM)和Apocynin (300μM)孵育1小时抑制NADPH氧化酶后,实验分为9组:空白对照组、BSA对照组、AGE-BSA组、AGE-BSA+NAC组、AGE-BSA+DPI组、AGE-BSA+Apocynin组、DPI组、Apocynin组、NAC组,应用流式细胞仪检测细胞凋亡百分率。选用刺激效果最好的AGE-BSA浓度和作用时间,用NADPH氧化酶抑制剂DPI (10μM)和Apocynin (300μM)抑制NADPH氧化酶后,实验分为5组,分别为空白对照组、BSA对照组、AGE-BSA组、AGE-BSA+DPI组、AGE-BSA+Apocynin组,用Western blot检测Bax蛋白表达。
     结果流式细胞仪凋亡检测分析THCEs凋亡率结果显示:200μg/ml AGE-BSA刺激细胞6h,凋亡细胞明显增加(P<0.05),24h达高峰(P<0.05),与对照组相比,差异有统计学意义; BSA对照组与空白对照组相比凋亡率改变无统计学意义。50μg/ml AGE-BSA能够明显刺激THCE细胞凋亡(P<0.05),100μg/ml,200μg/ml和400μg/ml AGE-BSA均能够显著增加角膜上皮细胞凋亡(P<0.05),与对照组比差异有统计学意义;BSA对照组与空白对照组相比凋亡率改变无统计学意义。Western-blot结果显示:200ug/ml AGE-BSA刺激THCE细胞6h,12h,24h,Bax蛋白表达增强,12h达高峰(P<0.05);Bcl-2蛋白表达减弱,24h最明显(P<0.05)。分别用ROS清除剂NAC清除ROS,NADPH氧化酶抑制剂DPI、Apocynin抑制NADPH氧化酶从而抑制细胞内ROS的生成后,AGE-BSA200ug/ml刺激THCE细胞24h,流式结果显示,与AGE-BSA组相比,流式细胞仪检测细胞凋亡率均明显降低,差异有统计学意义(P<0.05);与空白对照组及BSA对照组相比,差异无统计学意义。应用NADPH氧化酶抑制剂DPI、Apocynin抑伟NADPH氧化酶从而抑制细胞内ROS的生成后,AGE-BSA200ug/ml刺激THCE细胞24h,Western blot检测Bax蛋白表达降低,与AGE-BSA组相比差异有统计学意义(P<0.05);与空白对照组及BSA对照组相比,差异无统计学意义。
     结论AGE-BSA诱导THCE细胞凋亡,而且可能是通过NADPH氧化酶途径生成的活性氧(ROS)进而促进Bax的表达发挥促凋亡作用的。AGEs可能是引起糖尿病角膜上皮创伤愈合延迟的重要致病因素之一。
Objective:Delayed wound healing in diabetic cornea result in significant morbidity, prolonged hospitalization, and enormous health care expenses. Advanced glycation end products (AGEs) is the final product produced in the non-enzymatic catalysis reaction in the condition of continuous glucose, and plays a critical role in the progression of chronic complications in diabetic mellitus. Thus, we investigated the effect of AGEs on THCEs apoptosis in vitro, and the relationship with ROS to study the influence and mechanism of AGEs in delayed corneal wound healing due to diabetes.
     Methods:tolerated human corneal epithelial cells(THCE) were cultured in vitro with AGE-BSA of the concentrations of50,100,200,400ug/ml for6,12,24,48hours. Cells were stained with annexin V-Fitc and propidium iodide(PI). Flow cytometry was used to calculate the annexin V Fitc positive cells (early stage apoptotic cells) and Annexin V Fitc/PI positive cells(late apoptotic cells). Western blot were used to detect the expression of proapoptotic protein Bcl-2and Bax. After antioxidant NAC(20μmol/L)were used for1hour or DPI (10μM) or apocrynin300μM) were used for1hour, THCE were cultured with AGE-BSA of the best concentration and time. Flow cytometry was used to calculate the ratio of apoptosis. After DPI or apocrynin were used, Western blot were used to detect the expression of proapoptotic protein Bax.
     Results:Flow cytometry showed that the apoptotic rates in THCE cultured with50,100or200ug/ml AGE-BSA for6,12,24or48hours were significantly higher than those in control group(P<0.05). The apoptotic rates in200ug/ml group for24hours were significantly higher than that in100ug/ml group(P<0.05). The apoptotic rate increased along with the increase of culture time and concentration of AGE-BSA. Western blot showed200ug/ml AGE-BSA significantly increase Bax expression and suppressed the expression of Bcl-2in a time-dependent manner with the maximal effect by24h(P<0.05), compared with control treatment. Pretreatment with DPI, apocrynin or NAC significantly decreased the apoptotic rate compared with the only AGE-BSA group(P<0.05). Pretreatment with DPI or apocrynin dramatically inhibited AGE-induced expression of Bax (all P<0.05).
     Conclusion:AGE-BSA may promote the apoptosis of THCE by the way of ROS which is generated by NADPH oxidase. AGE modification-induced pathobiological cascade may be involved in delayed corneal wound healing due to diabetes.
引文
1. Inzucchi SE. Clinical practice. Diagnosis of diabetes[J]. N Engl J Med,2012,367(6): 542-550.
    2. Resnikoff S, Pascolini D, Etya'ale D, et al. Global data on visual impairment in the year 2002 [J]. Bulletin Of the World Health Organization.,2004,82:844-851.
    3. Chikama T, Wakuta M, Liu Y, et al. Deviated mechanism of wound healing in diabetic corneas[J]. Cornea,2007,26:S75-81.
    4. Perry HD. Foulks GN, Thoft RA, et al. Corneal complications after closed vitrectomy through the pars plana[J]. Arch Ophthalmol,1978,96(8):1401-1403.
    5.黄翠娥.角膜缘干细胞移植和生物羊膜移植治疗翼状胬肉的疗效观察[J].眼外伤职业眼病杂志,2009,31(5):378-380.
    6.林泰南,何晓璐,张姬慧.2型糖尿病患者翼状胬肉切除3种术式的疗效分析[J].海峡预防医学杂志,2010,16(2):73-75.
    7. Abdelkader H, Patel DV, McGhee CNj, et al. New therapeutic approaches in the treatment of diabetic keratopathy:a review[J]. Clin Experiment Ophthalmol,2011,39(3):259-70.
    8. Prasad A, Bekker P, Tsimikas S. Advanced glycation end products and diabetic cardiovascular disease[J]. Cardiol Rev,2012,20(4):177-83.
    9. Ola MS, Nawaz MI, Siddiquei MM, et al. Recent advances in understanding the biochemical and molecular mechanism of diabetic retinopathy[J].J Diabetes Complications,2012, 26(1):56-64.
    10. Peppa M, Brem H, Ehrlich P, et al. Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice[J]. Diabetes,2003,52(11):2805-13.
    11. Zhu Y, Lan F, Wei J, et al. Influence of dietary advanced glycation end products on wound healing in nondiabetic mice[J]. J Food Sci,2011,76(1):T5-10.
    12. Goova MT, Li J, Kislinger T, et al. Blockade of receptor for advanced glycation end-products restores effective wound healing in diabetic mice[J]. Am J Pathol,2001,159(2):513-25.
    13. Kim J, Kim CS, Sohn E, et al. Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy[J]. Graefes Arch Clin Exp Ophthalmol,2011,249(4):529-36.
    14. Kim J, Kim CS, Kim H, et al. Protection against advanced glycation end products and oxidative stress during the development of diabetic keratopathy by KIOM-79[J]. J Pharm Pharmacol,2011,63(4):524-30.
    15. Kaji Y, Usui T, Oshika T, et al. Advanced glycation end products in diabetic corneas[J]. Invest Ophthalmol Vis Sci,2000,41(2):362-8.
    16. Sato E, Mori F, Igarashi S, et al. Corneal advanced glycation end products increase in patients with proliferative diabetic retinopathy[J]. Diabetes Care,2001,24(3):479-82.
    17. McDermott AM, Xiao TL, Kern TS, et al. Non-enzymatic glycation in corneas from normal and diabetic donors and its effects on epithelial cell attachment in vitro[J]. Optometry,2003, 74(7):443-52.
    18. Yucel I, Yucel G, Akar Y, et al. Transmission electron microscopy and autofluorescence findings in the cornea of diabetic rats treated with aminoguanidine[J]. Can J Ophthalmol, 2006,41(1):60-6.
    19. Gul M, Emre S, Esrefoglu M, et al. Protective effects of melatonin and aminoguanidine on the cornea in streptozotocin-induced diabetic rats[J]. Cornea,2008,27(7):795-801.
    20. Gasset AR, Dohlman CH. The tensile strength of corneal wounds[J]. Arch Ophthalmol, 1968,79(5):595-602.
    21. Dunnington JH, Weimar V. Influence of the epithelium on the healing of corneal incisions[J]. Am J Ophthalmol,1958,45(4 Pt 2):89-95.
    22.张阳,尹树国,徐洪斌,等.角膜创伤愈合中上皮细胞的作用初探[J].眼外伤职业眼病杂志,1999,21(4)292-3.
    23. Alikhani Z, Alikhani M, Boyd CM, et al. Advanced glycation end products enhance expression of pro-apoptotic genes and stimulate fibroblast apoptosis through cytoplasmic and mitochondrial pathways[J]. J Biol Chem,2005,280(13):12087-95.
    24. Kowluru RA. Effect of advanced glycation end products on accelerated apoptosis of retinal capillary cells under in vitro conditions[J]. Life Sci,2005,76(9):1051-60.
    25. Sheikpranbabu S, Haribalaganesh R, Gurunathan S. Pigment epithelium-derived factor inhibits advanced glycation end-products-induced cytotoxicity in retinal pericytes[J]. Diabetes Metab,2011,37(6):505-11.
    26. Chen J, Song M, Yu S, et al. Advanced glycation endproducts alter functions and promote apoptosis in endothelial progenitor cells through receptor for advanced glycation endproducts mediate overpression of cell oxidant stress[J]. Mol Cell Biochem,2010,335(1-2):137-46.
    27. Kaji Y, Amano S, Usui T, et al. Expression and function of receptors for advanced glycation end products in bovine corneal endothelial cells[J]. Invest Ophthalmol Vis Sci, 2003,44(2):521-8.
    28. Maeda S, Matsui T, Takeuchi M, et al. Pigment epithelium-derived factor (PEDF) inhibits proximal tubular cell injury in early diabetic nephropathy by suppressing advanced glycation end products (AGEs)-receptor (RAGE) axis[J]. Pharmacol Res,2011,63(3):241-8.
    29. Liu Y, Ma Y, Wang R, et al.Advanced glycation end products accelerate ischemia/reperfusion injury through receptor of advanced end product/nitrative thioredoxin inactivation in cardiac microvascular endothelial cells[J]. Antioxidants & redox signaling,2011,15 (7):1769-1778.
    30. Stitt AW, Jenkins AJ, Cooper ME. Advanced glycation end products and diabetic complications[J]. Expert Opin Investig Drugs,2002,11 (9):1205-23.
    31. Bhatwadekar AD, Glenn JV, Li G, et al. Advanced glycation of fibronectin impairs vascular repair by endothelial progenitor cells:implications for vasodegeneration in diabetic retinopathy[J]. Invest Ophthalmol Vis Sci,2008,49(3):1232-41.
    32. Hamada Y, Fujii H, Fukagawa M. Role of oxidative stress in diabetic bone disorder[J]. Bone, 2009,45 Suppl 1:S35-8.
    33. Lu L, Reinach PS, Kao WW. Corneal epithelial wound healing[J]. Exp Biol Med (Maywood), 2001,226(7):653-64.
    34. Gipson I, Sugrue S. Cell Biology of the Corneal Epithelium. In:Albert D, Jakobiec F. Principles and Practice of Ophthalmology. Philadelphia:WB Saunders,1994,3-16.
    35. Xu KP, Ding Y, Ling J, Wound-induced HB-EGF ectodomain shedding and EGFR activation in corneal epithelial cells[J]. Invest Ophthalmol Vis Sci,2004,45(3):813-20.
    36. Wakuta M, Morishige N, Chikama T, et al. Delayed wound closure and phenotypic changes in corneal epithelium of the spontaneously diabetic Goto-Kakizaki rat[J]. Invest Ophthalmol Vis Sci,2007,48(2):590-6.
    37. McDermott AM, Kern TS, Murphy CJ. The effect of elevated extracellular glucose on migration, adhesion and proliferation of SV40 transformed human corneal epithelial cells[J]. Curr Eye Res,1998,17(9):924-32.
    38. Fujita H, Morita I, Takase H, et al. Prolonged exposure to high glucose impaired cellular behavior of normal human corneal epithelial cells[J]. Curr Eye Res,2003,27:197-203.
    39. Yamamoto N, Katakami C, Yamamoto M. Proliferation of corneal epithelial cells in diabetic rats (in Japanese) [J]. Nippon Ganka Gakkai Zasshi,1998,102:475-480.
    40. Cai W, He JC, Zhu L, et al. Reduced oxidant stress and extended lifespan in mice exposed to a low glycotoxin diet:association with increased AGER1 expression[J]. Am J Pathol, 2007,170:1893-902.
    41. Jorge Berlanga Acosta, Diana Garcia del Barco, Danay Cibrian Vera, et al. The pro-inflammatory environment in recalcitrant diabetic foot wounds[J]. Int Wound J,2008, 5(4):530-9.
    42. Yamagishi S, Inagaki Y, Amano S, et al. Pigment epithelium-derived factor protects cultured retinal pericytes from advanced glycation end product-induced injury through its antioxidative properties[J]. Biochem Biophys Res Commun,2002,296(4):877-82.
    43. Honda S, Farboud B, Hjelmeland LM,et al. Induction of an aging mRNA retinal pigment epithelial cell phenotype by matrix-containing advanced glycation end products in vitro[J]. Invest Ophthalmol Vis Sci,2001,42(10):2419-25.
    44. Yamagishi S, Inagaki Y, Okamoto T,et al. Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells[J]. J Biol Chem,2002,277(23):20309-15.
    45. Reber F, Geffarth R, Kasper M, et al. Graded sensitiveness of the various retinal neuron populations on the glyoxal-mediated formation of advanced glycation end products and ways of protection[J]. Graefes Arch Clin Exp Ophthalmol,2003,241(3):213-25.
    46. Krishna S, Low IC, Pervaiz S. Regulation of mitochondrial metabolism:yet another facet in the biology of the oncoprotein Bcl-2[J]. Biochem J,2011,435(3):545-51.
    47. Walensky LD. BCL-2 in the crosshairs:tipping the balance of life and death[J]. Cell Death Differ,2006,13(8):1339-50.
    48.陈百华,姜德咏,唐罗生.糖基化终产物诱导牛视网膜毛细血管周细胞凋亡及凋亡调节基因的表达[J].中华眼科杂志,2003,39(4):224-227.
    49.凌志红,徐格致,龚红华,等.糖基化终产物对纯化培养大鼠视网膜神经节细胞凋亡的影响[J].中华眼科杂志,2005,41(1):55-57
    50. Alikhani M, Alikhani Z, Boyd C, et al. Advanced glycation end products stimulate osteoblast apoptosis via the MAP kinase and cytosolic apoptotic pathways[J]. Bone,2007,40:345-53.
    51. Kasper M, Roehlecke C, Witt M, et al. Induction of apoptosis by glyoxal in human embryonic lung epithelial cell line L132[J]. Am J Respir Cell Mol Biol,2000,23(4):485-91.
    52. Xu KP, Li Y, Ljubimov AV, et al. High glucose suppresses epidermal growth factor receptor/phosphatidylinositol 3-kinase/Akt signaling pathway and attenuates corneal epithelial wound healing[J]. Diabetes,2009,58(5):1077-85.
    53. Basta G, Lazzerini G, Del Turco S, et al. At least 2 distinct pathways generating reactive oxygen species mediate vascular cell adhesion molecule-1 induction by advanced glycation end products[J]. Arterioscler Thromb Vase Biol,2005,25(7):1401-7.
    54. Sheikpranbabu S, Haribalaganesh R, Lee KJ, et al. Pigment epithelium-derived factor inhibits advanced glycation end products-induced retinal vascular permeability[J].Biochimie,2010,92(8):1040-51.
    1. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic[J]. Nature,2001,414:782-787.
    2. Creager MA, Liischer TF, Cosentino F, et al. Diabetes and vascular disease:pathophysiology, clinical consequences, and medical therapy:Part I[J]. Circulation,2003,108(12):1527-32.
    3. The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. The Diabetes Control and Complications Trial Research Group[J]. N Engl J Med,1993,329:977.
    4. Intensive blood-glucose control with sulphonylureas or insulin compared with conventional treatment and risk of complications in patients with type 2 diabetes (UKPDS 33). UK Prospective Diabetes Study (UKPDS) Group[J].Lancet,1998,352(9131):837-53.
    5. Sheetz MJ, King GL. Molecular understanding of hyperglycemia's adverse effects for diabetic complications[J]. JAMA,2002,288(20):2579-88.
    6. Peppa M, Uribarri J, Vlassara H. The role of advanced glycation end products in the development of atherosclerosis[J]. Curr Diab Rep,2004,4(1):31-6.
    7. Pellegrino L, Cattaneo S. Occurrence of galactosyl isomaltol and galactosyl beta-pyranone in commercial drinking milk[J]. Nahrung,2001,45(3):195-200.
    8. Henle T. A food chemist's view of advanced glycation end-products[J]. Perit Dial Int,2001,21 Suppl 3:S 125-30.
    9. Goldberg T, Cai W, Peppa M, et al. Advanced glycoxidation end products in commonly consumed foods[J]. J Am Diet Assoc,2004,104(8):1287-91.
    10. Peppa M, Brem H, Ehrlich P, et al. Adverse effects of dietary glycotoxins on wound healing in genetically diabetic mice[J]. Diabetes,2003,52(11):2805-13.
    11. Cai W, He JC, Zhu L, et al. High levels of dietary advanced glycation end products transform low-density lipoprotein into a potent redox-sensitive mitogen-activated protein kinase stimulant in diabetic patients[J]. Circulation,2004,20;110(3):285-91.
    12. Shinohara M, Thornalley PJ, Giardino I, et al. Overexpression of glyoxalase-I in bovine endothelial cells inhibits intracellular advanced glycation endproduct formation and prevents hyperglycemia-induced increases in macromolecular endocytosis[J]. J Clin Invest,1998,101(5): 1142-1147.
    13. Miyata T, Ueda Y, Shinzato T, et al. Accumulation of albumin-linked and free-form pentosidine in the circulation of uremic patients with end-stage renal failure:renal implications in the pathophysiology of pentosidine[J]. J Am Soc Nephrol,1996,7(8):1198-206.
    14. Mamputu JC, Renier G. Advanced glycation end products increase, through a protein kinase C-dependent pathway, vascular endothelial growth factor expression in retinal endothelial cells. Inhibitory effect of gliclazide[J]. J Diabetes Complications,2002,16(4):284-93.
    15. Stitt AW, Li YM, Gardiner TA, et al. Advanced glycation end products (AGEs) co-localize with AGE receptors in the retinal vasculature of diabetic and of AGE-infused rats[J]. Am J Pathol,1997,150(2):523-31.
    16. Koga K, Yamagishi S, Okamoto T, et al. Serum levels of glucose-derived advanced glycation end products are associated with the severity of diabetic retinopathy in type 2 diabetic patients without renal dysfunction[J]. Int J Clin Pharmacol Res.2002;22(1):13-7.
    17. Sulochana KN, Ramprasad S, Coral K, et al. Glycation and glycoxidation studies in vitro on isolated human vitreous collagen[J]. Med Sci Monit,2003,9(6):BR220-4.
    18. Reber F, Geffarth R, Kasper M, et al. Graded sensitiveness of the various retinal neuron populations on the glyoxal-mediated formation of advanced glycation end products and ways of protection[J]. Graefes Arch Clin Exp Ophthalmol,2003,241(3):213-25.
    19. Franke S, Dawczynski J, Strobel J, et al. Increased levels of advanced glycation end products in human cataractous lenses[J]. J Cataract Refract Surg,2003,29(5):998-1004.
    20. Matsumoto K, Ikeda K, Horiuchi S, et al. Immunochemical evidence for increased formation of advanced glycation end products and inhibition by aminoguanidine in diabetic rat lenses[J]. Biochem Biophys Res Commun,1997,241(2):352-4.
    21. Abdelkader H, Patel DV, McGhee CNj, et al. New therapeutic approaches in the treatment of diabetic keratopathy:areview[J]. Clin Experiment Ophthalmol,2011,39(3):259-70.
    22. Kim J, Kim CS, Sohn E, et al. Involvement of advanced glycation end products, oxidative stress and nuclear factor-kappaB in the development of diabetic keratopathy[J]. Graefes Arch Clin Exp Ophthalmol,2011,249(4):529-36.
    23. Kim J, Kim CS, Kim H, et al. Protection against advanced glycation end products and oxidative stress during the development of diabetic keratopathy by KIOM-79[J]. J Pharm Pharmacol,2011,63(4):524-30.
    24. McDermott AM, Xiao TL, Kern TS, et al. Non-enzymatic glycation in corneas from normal and diabetic donors and its effects on epithelial cell attachment in vitro[J]. Optometry,2003,74(7):443-52.
    25. Yucel I, Yucel G, Akar Y, et al. Transmission electron microscopy and autofluorescence findings in the cornea of diabetic rats treated with aminoguanidine[J]. Can J Ophthalmol,2006,41(1):60-6.
    26. Gul M, Emre S, Esrefoglu M,et al. Protective effects of melatonin and aminoguanidine on the cornea in streptozotocin-induced diabetic rats[J]. Cornea,2008,27(7):795-801.
    27. Kaji Y, Usui T, Oshika T, et al. Advanced glycation end products in diabetic corneas[J]. Invest Ophthalmol Vis Sci,2000,41(2):362-8.
    28. Sato E, Mori F, Igarashi S, et al. Corneal advanced glycation end products increase in patients with proliferative diabetic retinopathy[J]. Diabetes Care,2001,24(3):479-82.
    29. Forbes JM, Thallas V, Thomas MC, et al. The breakdown of preexisting advanced glycation end products is associated with reduced renal fibrosis in experimental diabetes[J]. FASEB J,2003, 17(12):1762-4.
    30. Hollenberg NK, Price DA, Fisher ND, et al. Glomerular hemodynamic and the renin-angiotensin system in patients with type 1 diabetes mellitus [J]. Kidney Int,2003, 63(1):172-8.
    31. Scivittaro V, Ganz MB, Weiss MF. AGEs induce oxidative stress and activate protein kinase C-beta(Ⅱ) in neonatal mesangial cells[J]. Am J Physiol Renal Physiol,2000,278(4):F676-83.
    32. Forbes JM, Cooper ME, Thallas V, et al. Reduction of the accumulation of advanced glycation end products by ACE inhibition in experimental diabetic nephropathy [J]. Diabetes,2002, 51(11):3274-82.
    33. Doi T, Vlassara H, Kirstein M, et al. Receptor-specific increase in extracellular matrix production in mouse mesangial cells by advanced glycosylation end products is mediated via platelet-derived growth factor. Proc Natl Acad Sci U S A,1992,89(7):2873-7.
    34. Yamagishi S, Inagaki Y, Okamoto T, et al. Advanced glycation end product-induced apoptosis and overexpression of vascular endothelial growth factor and monocyte chemoattractant protein-1 in human-cultured mesangial cells [J]. J Biol Chem,2002,277(23):20309-15.
    35. Yamamoto Y, Kato I, Doi T, et al. Development and prevention of advanced diabetic nephropathy in RAGE-overexpressing mice [J]. J Clin Invest,2001,108(2):261-8.
    36. Wendt TM, Tanji N, Guo J, et al. RAGE drives the development of glomerulosclerosis and implicates podocyte activation in the pathogenesis of diabetic nephropathy [J]. Am J Pathol,2003, 162(4):1123-37?
    37. Doublier S, Salvidio G, Lupia E, et al. Nephrin expression is reduced in human diabetic nephropathy:evidence for a distinct role for glycated albumin and angiotensin Ⅱ [J]. Diabetes, 2003,52(4):1023-30.
    38. Tanji N, Markowitz GS, Fu C, et al. Expression of advanced glycation end products and their cellular receptor RAGE in diabetic nephropathy and nondiabetic renal disease [J]. J Am Soc Nephrol,2000,11(9):1656-66.
    39. Dyck PJ, Giannini C. Pathologic alterations in the diabetic neuropathies of humans:a review[J]. J Neuropathol Exp Neurol,1996,55(12):1181-93.
    40. McLean WG. The role of axonal cytoskeleton in diabetic neuropathy[J]. Neurochem Res,1997,22(8):951-6.
    41. Boel E, Selmer J, Flodgaard HJ, et al. Diabetic late complications:will aldose reductase inhibitors or inhibitors of advanced glycosylation end product formation hold promise [J]? J Diabetes Complications,1995,9(2):104-29.
    42. Portero-Otin M, Pamplona R, Bellmunt MJ,et al. Advanced glycation end product precursors impair epidermal growth factor receptor signaling[J]. Diabetes,2002,51(5):1535-42.
    43. Bucala R, Mitchell R, Arnold K, et al. Identification of the major site of Apo lipoprotein B modification by advanced glycosylation end products blocking uptake by the low density lipoprotein receptor [J]. J Boil Chem,1995,270(18):10828-32.
    44. Zhang J, Ren S, Sun D, et al. Influence of glycation on LDL-induced generation of fibrinolytic regulators in vascular endothelial cells [J]. Arterioscler Thromb Vase Biol,1998,18(7):1140-8.
    45. Bucala R, Tracey KJ, Cerami A. Advanced glycosylation products quench nitric oxide and mediate defective endothelium-dependent vasodilatation in experimental diabetes[J]. J Clin Invest,1991,87(2):432-8.
    46. Wautier MP, Chappey O, Corda S, et al. Activation of NADPH oxidase by AGE links oxidant stress to altered gene expression via RAGE [J]. Is J Physiol Endocrinol Metab,2001, 280(5):E685-94.
    47. Park L, Raman KG, Lee KJ, et al. Suppression of accelerated diabetic atherosclerosis by the soluble receptor for advanced glycation end products [J]. Nat Med,1998,4(9):1025-31.
    48. Schleicher ED, Wagner E, Nerlich AG. Increased accumulation of the glycoxidation product N(epsilon)-(carboxymethyl)lysine in human tissues in diabetes and aging[J].J Clin Invest,1997,99(3):457-68.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700