快速热处理(RTP)对大直径直拉单晶硅中氧沉淀的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,快速热处理(Rapid thermal processing,RTP)已经用于控制直拉硅单晶的生产和研究。世界著名的硅材料供应商—美国的MEMC提出了一种基于RTP的所谓的“魔幻洁净区”(Magic Denuded Zone,MDZ)技术,其基本思想就是利用RTP在硅片中形成浓度从表面到体内逐步升高的空位分布,利用空位来控制后续热处理中氧沉淀,从而在硅片体内形成高密度的氧沉淀而在近表面形成洁净区。可以认为MDZ技术是具有里程碑式的意义,在它背后还蕴涵了一个基本的科学问题,即:空位是如何影响氧沉淀的?本文就这个基本问题进行了一系列的研究,得到了一些有意义的结果。
     研究了不同温度的RTP对直拉(CZ)硅片在两步(低-高)退火中氧沉淀的影响,结果表明:对于两步退火来说,RTP引入的空位参与了氧沉淀核心的形成,因而促进了随后高温热处理中的氧沉淀;特别是在实验中发现:样品经过两步退火后的氧沉淀量与RTP处理的温度呈正相关关系。
     研究了经过RTP处理过的直拉硅片在低温和中温(650℃,750℃,850℃和950℃)下长时间处理的氧沉淀行为,分析表明:由RTP引入的空位能促进这些温度下氧沉淀核心的形成。
     研究了经过RTP处理过的直拉硅片在高温(1050℃)下长时间处理的氧沉淀行为,结果表明:在高温下,空位没有参与氧沉淀的成核,而是显著加速了早期的氧沉淀,但是它没有增加长时间处理后的氧沉淀量。特别是,经过高温长时间热处理后,与未经RTP预处理的直拉硅片相比,经RTP预处理过的直拉硅片具有更低密度的氧沉淀,尽管它与前者具有相同的氧沉淀量。进一步的分析表明:这是由于在RTP预处理阶段,直拉硅片中的一部分原生氧沉淀被消除。
     在论文的最后,还研究了快速热处理对直拉硅中氧沉淀消融的作用,发现用快速热处理在较短的时间内就可以消除直拉硅片中的部分氧沉淀,这表明热处理温度是氧沉淀消融的最主要的决定因素。
In recent years, rapid thermal processing (RTP) has been employed in the manufacturing and research of Czochralski (CZ) silicon wafer. MEMC Electronic Materials, Inc., a worldwide famous silicon wafer manufacturer, has developed a so-called 'Magic Denuded Zone (MDZ)' process based on RTP. The main idea underlying the MDZ process is to enable the oxygen precipitation in CZ silicon wafer to be controlled by an RTP-created vacancy profile with the vacancy concentration increasing from the surface to bulk of wafer, thus forming a denuded zone above the region of high density bulk micro-defects (BMDs). The MDZ process initiates a fundamental problem that how the vacancy affects the oxygen precipitation in CZ silicon, which has been addressed in this thesis. Thorough a series of investigation, the following conclusions have been derived.
    As for the standard two-step anneal of 800℃/4h +1000℃/16h used in the MDZ process, the RTP-introduced vacancies are involved in the formation of oxygen precipitate nuclei during the low temperature anneal and, therefore, enhancing the oxygen precipitation during the subsequent high temperature anneal; the amounts of precipitated oxygen in the samples were positively in proportional to the RTP temperature.
    During the single-step high temperature (1050℃) anneal, the RTP-induced vacancies significantly enhance the early stage oxygen precipitation in terms of precipitation rate, but do not increase the amount of precipitated oxygen in the CZ silicon wafer subjected to prolonged anneal. It was found that after lengthy anneal at 1050℃ the silicon wafer with prior RTP treatment had relatively lower density of BMDs than the one without prior RTP treatment, the reason for which is that the prior RTP treatment had dissolved a part of grown-in oxygen precipitates that are the nuclei of oxygen precipitation occurring at 1050℃.
    Through investigating the effects of RTP-induced vacancies on the oxygen precipitation in CZ silicon wafers subjected to lengthy anneals at 650℃,750℃,850℃
    
    
    
    
    and 950℃, it is revealed that the vacancies significantly foster the nucleation of oxygen precipitation occurring at the above-mentioned temperatures.
    Moreover, it has been found that the RTP at high temperatures has superior capability to dissolve the oxygen precipitates existing in the CZ silicon wafer, implying that the dissolution of oxygen precipitates is primarily determined by the anneal temperature, not like the case of oxygen precipitation that is dependent on both anneal temperature and time.
引文
1.阙端麟,陈修治,硅材料科学与技术,浙江大学出版社,第一版,2000,pp1-19.
    2. Huaixiang Li, Chuanbo Li, Yuejiao He, Guirong Liu, Yansheng Chen, Shuzhen Duan, "Oxygen precipitation in floating-zone silicon grown in hydrogen ambience and its application", Materials Science and Engineering: B,2001, Vol 83, pp. 106-110.
    3. Luo Biao Xu, "statistical thermodynamic model for oxygen segregation during Czochralski growth of silicon single crystals"Joumal of crystal growth,1999, Vol 200, pp.414-420.
    4. C.Wanga, H.Zhang, T.H.Wang, T.F.Ciszek, "A continuous Czochralski silicon crystal growth system", J.Crys.Grow, 2003, Vol 250, pp.209-214.
    5. T.Sirmoa, E.Dornbergerb, W.von Ammonb, R.A.Brownc, F.Dupretd, "Defect engineering of Czochralski single-crystal silicon", Material Science and Engineering: R: Reports, 2000, Vol 28, pp149-198.
    6. V.V.Voronkov, R.Falster, "Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon", Journal of Crystal Growth, 1999, Vol 204, pp 462-474.
    7. Pawe E. Tomaszewski, "Jan Czochralski-father of the Czochralski method", Journal of Crystal Growth, 2002, Vo1236, pp1-4.
    8. A.Borghesi, B.Pivac, A.Sassella and A.Stella, "Oxygen precipitation in silicon", J.Appl.Phys, 1995, Vol 77 (9), pp 4169-4244.
    9. Tan T Y, Gardner E E and Tice W K, "Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si", Appl.Phys.Lett, 1977, Vol 30, pp 175-176.
    10. L.Jastrzebski, R.Soydan, "Acomparison of internal gettering during bipolar, cmos and ccd (high, medium, low temperature) processes" J.Electrochem.Soc, 1987, Vol 134, pp 1018-1024.
    11. Yoichi Kamiura, Yoshinori Takeuchi and Yoshifumi Yamashita, "Annihilation of thermal double donors in silicon", J.Appl.Phys., 2000, Vol.87, No.4, pp 1681-1689.
    
    
    12. S.Cadeoa, S.Pizzini, M.Acciarria, A.Cavallini, "Oxygen precipitate precursors and low temperature gettering processes.Ⅰ.Segregation of oxygen and thermal donor generation in the 600-850℃ range", Materials Science in Semiconductor Processing, 1999, Vol 2, pp 57-58.
    13. F.M.Livinton, S.Messoloras, R.C.Newman, B.C.Park, R.J.Stewart, M.J.Binns, W.P, Brown, J.G..Wilkes, "An infrared and neutron scattering analysis of the precipitation of oxygen in dislocation-free silicon" ,J.Phys.C, 1984, Vol 17, pp 6253-6252.
    14. C. Maddalon-Vinante, D. Barbier, H. Erramli, and G. Blondiaux, "Charged particle activation analysis study of the oxygen outdiffusion from Czochralski-grown silicon during classical and rapid thermal annealing in various gas ambient", J Appl Phys 1993 Vol 74(10), pp 6115-6119.
    15. J.Gass, H.H.Mueller, H.Stussi, S.Schweitzer. "Oxygen diffusion in silicon and the influence of different dopants". J.Appl.Phys. 1980, Vol 51, pp 2030-2037.
    16. S.T.Lee, D.Nichols. "Outdiffusion and diffusion mechanism of oxygen in silicon", Appl.Phys.Lett. 1985, Vol 47, pp 1001-1003.
    17. S.A.Mcquaid, M.J.Binns, C.A.Londos, J.H.Tucker, A.R.brown, R.C.Newman. "Oxygen loss during thermal donor formation in Czochralski silicon: New insights into oxygen diffusion mechanisms", J.Appl.Phy. 1995, Vol 77, pp 1427-1442.
    18. J.C.Mikkelsen, "Diffusivity of oxygen in silicon during steam oxidation", Appl Phys Lett, 1982, Vol.40, pp 336-337.
    19. S.Senkader, P.R.Wilshaw and R.J. Falster, "Oxygen-dislocation interatctions in silicon at temperatures below 700 [degree] C: Dislocation locking and oxygen diffusion", J.Appl.Phys. 2001, Vol 89, pp 4803-4808.
    20. M.Stavola, J.R.Patel, L.C.Kimerling and P.E.Freeland, "Diffusivity of oxygen in silicon at the donor formation temperature", Applied Physics Letters, 1983, Vol.42, pp 73-75.
    21. R.W.Shaw, R.Bredeweg and P.Rossetto, "Gas Fussion Analysis of Oxygen in Silicon: Separation of Components", J.Electrochem.Soc., 1991, Vol. 138, pp 382-384.
    22.孙以材,半导体测试技术,冶金工业出版社,第一版,1984,P51。
    23. K.Sumino. "in Semiconductor Silicon" 1981, edited by Huff H R, Kriegler R J and
    
    Takeishi, Ecs, Pennington, NJ 1981, pp 208.
    24. I.Yonenaga, K. Sumino. "Influence of oxygen precipitation along dislocations on the strength of silicon crystals". J.Appl.Phys. 1996, Vol 80, pp 734-738.
    25. I.Yonenaga, K. Sumino, "Dislocation in Solids", edited by H. Suzuki, T. Ninomiya, K. Sumino and S. Takeuchi (University of Tokyo Press, Tokyo, 1985), pp 385.
    26. T.Y.Tan, E.E.Gardner, W.K.Tice. "Intrinsic gettering by oxide precipitate induced dislocations in Czochralski Si", Appl.Phys.Lett. 1977, Vol 30, pp 175-176.
    27. Shimura.F, "Redissolution of precipitated oxygen in Czochralski-grown silicon wafers", Appl. Phys. Lett., 1981, Vol 39, pp 987-989.
    28. S. M. Hu, "Effects of ambients on oxygen precipitation in silicon", Appl. Phys. Lett. 1980, Vol 36, pp 561-564.
    29. N. Inoue, K. Watanabe, K. Wada and J. Osaka, "Time-lag in nucleation of oxide precipitates in silicon due to high temperature preannealing", J. Cryst Growth. 1987, Vol 57, pp 21-35.
    30. J. Vanhellemont and C. Claeys, "A theoretical study of the critical radius of precipitates and its application to silicon oxide in silicon", J. Appl. Phys. 1987, Vol 62, pp 3960-3967.
    31. Jan Vanhellemont and Cor Claeys, Erratum: "A theoretical study on the critical radius of precipitates and its application to silicon oxide in silicon", J. Appl. Phys. 1992, Vol 71, pp 1073-1073.
    32. A. J. R. de Kock and W. M. van de Wijgert, "The influence of thermal point defects on the precipitation of oxygen in dislocation-free silicon crystals", Appl. Phys. Lett., 1981, Vol. 38, pp. 888-890.
    33. G. S. Oehrlein, J. L. Lindstrm, and J. W. Corbett, "Carbon-oxygen complexes as nuclei for the precipitation of oxygen in Czochralski silicon", Appl. Phys. Lett., 1982, VoI. 40, pp. 241-243.
    34. K. Wada, H. Nakanishi, H. Takaoka and N. Inoue, "Nucleation temperature of large oxide precipitates in as-grown Czochralski silicon crystal", J. Cryst Growth, 1982, Vol. 57, pp. 535-540.
    35. T. Y. Tan and C. Y. Kung, "Oxygen precipitation retardation and recovery
    
    phenomena in Czochralski silicon: Experimental observations, nuclei dissolution model, and relevancy with nucleation issues", J. Appl. Phys., 1986, Vol. 59, pp. 917-931.
    36. John P. Hirth and William A. Tiller, "Ledge growth, strain accommodation, and stacking fault formation during silicon oxidation", J. Appl. Phys., 1984, Vol. 56, pp. 947-952.
    37. S. M. Hu, "Effects of ambients on oxygen precipitation in silicon", Appl. Phys. Lett., 1980, Vol. 36, pp. 561-564
    38. Mitsuharu Yonemura, Koji Sueoka and Kazuhito Kamei, "Effect of heavy boron doping on the lattice strain around platelet oxide precipitates in Czochralski silicon wafers", J. Appl. Phys., 2000, Vol. 88, pp. 503-507.
    39. Inoue N, Wada K. "Semiconductor Silicon", 1981, pp 282.
    40. Walitzki H. "Semiconductor silicon", 1986, pp 86.
    41. H.Wong, N.W.Cheung and P.K.Chu. "Gettering of gold and copper with implanted carbon in silicon", Appl Phys Lett, 1988, Vol 52, pp 889-891.
    42. Walitzki H. "Semiconductor Silicon", 1986, pp 88.
    43. J.S.Kang, Schroeder. "The effects of gas ambients on the formation of surface and bulk defects in silicon". J.Appl.Phys. 1988, Vol 64, pp 6673-6678.
    44. K.Izunomi, H.Shirai, K.Kashima, J.Yoshikawa, "Oxygen precipitation in Czochralski-grown silicon wafers during hydrogen annealing", A.Hoji. Appl.Phys.Lett. 1996, Vol 68, pp 49-50.
    45. C.Y.Kung. "Effect of thermal history on oxygen precipitates in Czochralski silicon annealed at 1050℃". J.Appl. Phys. 1989, Vol 65, pp 4654-4665.
    46. S. M. Hu. "Precipitation of oxygen in silicon: Some phenomena and a nucleation model". J.Appl.Phys. 1981, Vol 52, pp 3974-3984.
    47. Fumio Shimura, Hideki Tsuya, and Tsutomu Kawamura, "Precipitation and redistribution of oxygen in Czochralski-grown silicon", Appl. Phys. Lett., 1980, Vol. 37, pp. 483-486.
    48. S. M. Hu, "Infrared absorption spectra of SiO_2 precipitates of various shapes in silicon: calculated and experimental", J. Appl. Phys. 1980, Vol. 51, pp 5945-5948
    
    
    49. R.Falster, V.V.Voronkov, "The engineering of intrinsic point defects in silicon wafers and crystals". Material Science and Engineering B, 2000, Vol 73, pp87-94.
    50. Guo Yunde, "Rapid heating process of semiconductor materials and devices", J.Henan Metallurgy, 1999, Vol 31, pp 7-9.
    51. A. Katz and W. C. Dautremont-Smith, "Stress measurements of Pt/Ti/InP and Pt/Ti/SiO_2/InP systems: In situ measurements through sintering and after rapid thermal processing", J. Appl. Phys., 1990, Vol. 67, pp 6237-6246.
    52. G. J. R Krooshof, F. H. R M. Habraken, and W. F. van der Weg, L. Van den hove, K. Maex, and R. F. De Keersmaecker, "Study of the rapid thermal nitridation and silicidation of Ti using elastic recoil detection. Ⅰ. Ti on Si", J. Appl. Phys., 1988, Vol. 63, pp 5104-5109.
    53. Michael P Siegal, Jorge J. Santiago, "Effects of rapid thermal processing on the formation of uniform tetragonal tungsten disilicide films on Si(100) substra(?) J. Appl. Phys., 1988, Vol. 63, pp 525-529.
    54. Brad Mattson, Paul Timans, Sing-Pin Tay, Daniel J, Devine and Jung Kim. "THE FUTURE OF RTP, A TECHNOLOGY THAT CAN CHANGE THE IC FAB INDUSTRY", 9th Int. Conference on Advanced Thermal Processing of Semiconductors-RTP 2001.
    55. D. Gilles, E.R. Weber, "Mechanism of internal gettering of interstitial impurities in Czochralski-grown silicon", Phys. Rev. Lett. 1990, Vol 64, pp 196-199.
    56. M. Jacob, E Pichler, H.Rysel, R. Falster "Determination of vacancy concentrations in the bulk of silicon wafers by platinum diffusion experiments", J. Appl. Phys., 1997 Vol 82(1), pp 182-191.
    57. E. Ehret, C. Maddalon-Vinante,"Influence of rapid thenrmal annealing and internal gettering on Czochralski-grown silicon. Ⅱ. Light beam induced current study of recombination centers", J. Appl. Phys., 1996, Vol 79(5), pp 2712-2715.
    58. M. S. Carroll, J. C. Sturm,"Quantification of substitutional carbon loss from Si0.998C0.002 due to silicon self-interstitial injection during oxidation", Appl. Phys. Lett., 2002, Vol. 81, pp 1225-1227.
    59. B. J. O'Sullivan, R K. Hurley, C. Leveugle, J. H. Das,"Si(100)-SiO_2 interface
    
    properties following rapid thermal processing", J. Appl. Phys., 2001,Vol. 89, pp3811-3820.
    60. D. Bouvet, P. A. Clivaz, M. Dutoit C. Coluzza, J. Almeida, G. Margaritondo,"Influence of nitrogen profile on electrical characteristics of furnace or rapid thermally nitrided silicon dioxide films", J. Appl. Phys., 1996, Vol. 79, pp 7114-7122.
    61. Yu Xuegong, Ma Xiangyang, Yang Deren. "The rapid thermal process of large diameter Czochralski silicon". Chinese Journal of Semiconductors, 2003,Vol 24(5):pp 490-493.
    62. M.Akatsuka, M.Okui, K.Sueoka, "Effect of rapid thermal annealing on oxide precipitation behavior in silicon crystal", Nuclear Instruments and Methods in Physics Research B, 2002, Vol 186, pp 46-54.
    63. R. Singh, "Rapid isothermal processing", J.Appl.Phys. 1988, April Vol 63, pp.R59-4358.
    64. M. Fakhruddin, K.F. Poole, "Rapid photothermal processing as a semiconductor manufacturing technology for the 21st century"Applied Surface Science, 2000, Vol 168, pp 198-203.
    65. C.P. Yin, C.C. Hsiao, T.F. Lin, "Improvement in wafer temperature uniformity and flow pattern in a lamp heated rapid thermal processor" Journal of Crystal Growth 2000, Vol 217, pp 201-210.
    66. Falster R, Voronkov V.V. "The engineering of intrinsic point defects in silicon wafers and crystals". Materials Science and Engineering B, 2000, Vol 73, pp 87-94.
    67. G. Kissinger, J. Vanhellemont, G. Obermerier and J. Esfandyari, "Denuded zone formation by conventional and rapid thermal anneals", Mater. Sci. and Eng. B, 2000,Vol 73, pp 106-110.
    68. M. Akatsuka. M. Okui, N. Morimoto and K. Sueoka, "Effect of Rapid Thermal Annealing on Oxygen Precipitation Behavior in Silicon Wafers" Jpn. J. Appl. Phys,2001 Vol 40, pp 3055-3062.
    69. Yu X, Yang D, Ma X, Que D. "Effect of rapid thermal process on oxygen precipitation and denuded zone in nitrogen-doped silicon wafer", Microelectronic
    
    Engineering, 2003, Vol 69, pp 97-104.
    70. M.Akatsuka, M.Okui, K.Sueoka, "Effect of rapid thermal annealing on oxide precipitation behavior in silicon crystal", Nuclear Instrument and Methods in Physics Research B, 2002, Vol 186, pp 46-54.
    71. M.J.Binns, A.Banerjee, R.Wise, D.J.Myers and T.A.McKenna "Gettering anf Defect Engineering in Semiconductor Technology", Solid State Phenomena, 2002, Vol 82-84.
    72. V. V. Vorokov and R. Falster, "Intrinsic Point Defects and Impurities in Silicon Crystal Growth", J. Electrochem. Soc., 2002, Vol 149, pp G167-G174.
    73. Guenther Obermeier, Juergen Hage and Diethard Huber, "Oxygen precipitation and denuded zone characterization with the electrolytical metal tracer technique"J.Appl.Phys. 1997, Vol 82 (2), pp 595-600.
    74. Richard H. Perkins, Terrence J. Riley, Ronald S. Gyurcsik, "Thermal uniformity and stress minimization during rapid thermal processes",IEEE Transactions on semiconductor manufacturing, 1995, Vol 8, pp 272-279.
    75. C. Claeys, J. Vanhellemont, H. Richter and M. Kittler, "Gettering and Defect Engineering in Semiconductor Technology", Solid State Phenomena, 1997, Vol 57-58.
    76. H. Zimmermann, R. Falster, "Investigation of the nucleation of oxygen precipitates in Czoehralski silicon at an early stage", Appl. Phys. Lett. 1992, Vol 60(26),pp.3250-3252.
    77. K. Aihara, H. Takeno, Y. Hayamizu, M. Tamatsuka, and T. Masui, "Enhanced nucleation of oxide precipitates during Czoehralski silicon crystal growth with nitrogen doping", J.App.Phys, 2000, Vol 88(6), pp 3705-3707.
    78. M.Glück, W.Lerch, D.Lōffelmacher, M.Hanf, and U.Kreiser, "Challenges and current status in 300 mm rapid thermal processing" Microelectronic engineering,1999 Vol 45, pp 237-246.
    79. M.Ramamoorthy, S.T.Pantelides, "Atomic dynamics and defect evolution during oxygen precipitation and oxidation of silicon", Appl.Phys.Lett, 1999, Vol 75, pp 115-117.
    
    
    80. S.Sivoththaman, W.Laureys, J.Nijs, and R.Mertens, "Rapid thermal annealing of spin-coated phosphoric acid films for shallow junction formation" Appl.Phys.Lett.1997, Vol 71,392-394.
    81. R.Falster, V.V.Voronkov and F.Quast, "On the properties of the intrinsic point defects in silicon: a perspective from crystal growth and wafer processing".Phys.Stat.Sol. (b), 2000, Vol 222, pp 219-244.
    82. Borghesi A, Pivac B, Sassella A, "Oxygen precipitation in silicon". J Appl Phys,1995, Vol 77: pp 4169-4244.
    83. Sumino.K. "Point and extended defects in semiconductor". Edited by G.Benedek, A.Cavallini and W. Schroter (Plenum, New York, 1989), pp 77.
    84. Falster R. "Orthogonal defect solutions for silicon wafers: MDZ and Micro-defect free crystal growth". Monotgometry Research Group Europe, 2002, Future Fab International Issue 12.
    85. Zimmermann H, "Accurate measurement of the vacancy equilibrium concentration in silicon'' Appl. Phys. Lett. 1991, Vol 59, pp 3133-3135.
    86. Yu Xuegong, Yang Deren, Ma Xiangyang, "Grown-in defects in nitrogen-doped Czochralski silicon''. J Appl Phys, 2002, Vol 92(1), pp 188-194.
    87. Shimura F, Higuchi T, Hockett R.S."Investigation of the nucleation of oxygen precipitates in Czochralski silicon at an early stage". Applied Physics Letters, 1988,Vol 53(1), pp 69-71
    88. Voronkov V.V, Falster R. "Grown-in microdefects, residual vacancies and oxygen precipitation bands in Czochralski silicon". J Cryst Growth, 1999, Vol 204, pp 462-474.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700