微重力条件下航天器贮箱推进剂管理过程中的流动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何进行推进剂管理是航天器贮箱设计必须考虑的关键问题。本文针对航天器在轨加注的需求,以板式表面张力贮箱的推进剂管理为背景,采用了理论分析、数值模拟和物理实验相结合的手段,重点研究了微重力条件下推进剂管理过程中的流动特性,包括表面张力驱动的流动理论、推进剂的定位过程、加注过程以及排出过程,初步建立了可用于推进剂管理过程的理论体系,为可在轨加注板式表面张力贮箱的设计提供参考。论文主要工作如下:
     (1)表面张力驱动的流动理论与实验研究。对液面分布的基本方程进行了分析,确定了完全失重条件下圆柱形容器内部液面的分布形式;建立了表面张力驱动流动的控制方程并求解,并与落塔实验数据进行对比,对毛细上升的动态过程进行了分析;
     (2)贮箱内推进剂定位的流动过程分析。基于流体运动的连续性方程,建立了内角自流控制方程,并利用自相似方法进行了理论近似求解,得到了二阶精度的理论解。在此基础上,利用毛细实验和落塔实验对理论计算结果进行了验证,并对误差进行了分析。根据内角自流的理论计算结果,完成了推进剂管理装置的导流板布局设计;
     (3)贮箱加注过程的入流稳定性分析。根据贮箱内射流的压强平衡方程,建立了稳态射流的控制方程,对方程进行求解并分析了贮箱相关参数对射流稳定性的影响;通过对落塔实验数据的回归分析,得到了涌泉高度与填充高度、Weber数和Bond数之间的近似关系,为分析贮箱入流的涌泉高度提供了参考;
     (4)贮箱推进剂排出过程的液面稳定性分析。基于Young-Laplace方程和动量方程,建立了内角过流一维稳定性控制方程,并通过Newton非线性方法求解该方程,得到沿流动方向的液面高度、曲率和速度的变化;利用数值计算方法对内角过流问题进行了三维仿真计算,仿真结果表明流动在液面达到最低点以后将会出现流动分离,存在附加压强损失;利用微重力落塔实验数据对计算结果进行了验证;
     (5)内角过流液面特性的微重力实验研究。根据落塔实验结束时内角流道中液面轮廓线的收敛性和液面上最低点的位置变化,提出了对超临界流动和亚临界流动的判定方法;对气泡的注入进行了初步的实验研究,实验发现,气泡的注入将使液面趋于稳定,气泡的运动轨迹与注入位置密切相关。
     论文通过理论分析、数值模拟和落塔实验等手段,对微重力条件下推进剂管理过程中的流动特性进行了深入研究,丰富了流动理论的研究内容,拓展了理论和实验方法;论文的研究为可在轨加注板式表面张力贮箱设计提供了重要支持,具有较强的理论意义和工程应用价值。
Propellant management is significant in the design of the tank for the aircraft. Thiswork is on the background of the propellant management in the orbital refueling tank.It mostly focuses on the flow in the tank under microgravity. The thesis employs boththe analytic and experimental methods to study the basic flow theory with capillarity,the orientation process, the inflow process, and the exclusive of the propellant. It buildsa theory that can be used in the propellant management process, and provides multipletools for the design of the vane type refueling tank. Main work of the thesis are:
     (1) The fundamental governing equation for the free surface in a tank under micro-gravity and the theory of capillary rise. The Young-Laplace equation is explained withthe view of force balance. Meanwhile, the governing equation for the free surface in acylinder tank is solved; the theory of capillary rise is analyzed, and the equation is alsosolved. The theory is verified by the drop tower experimental data extracted from otherwork.
     (2)Theanalysisoftheorientationoftheliquidinthetank. Thegoverningequationisderivedfrom the flow continuity equation. A second order theoretical solution isobtainedby using the self-similar approximation method. Both the capillary experiments and thedrop tower experiments are used to verify the theory. The errors between the theory andthe experimental data are contributed to the change of the flow resistance in the flow.Furthermore, the theory is used to select the vanes in a tank to get a maximum flow ratewhile reducing the total mass.
     (3) The inflow stability during the refueling in the tank. The governing equation ofthe stable jet flow is derived by the pressure balance equation. Theoretical solution isused to analyze the influence of the jet parameters on the stability of the inflow. The ex-perimental data are analyzed by regression method. An approximated relation is obtainedbetween the geyser height and the filling height, Webber number as well as Bond number.This relation can be used for the tank design in applications.
     (4) The stability of the free surface during the exclusion of the propellant. The1-dimensional governing equation of the stability is derived from the Young-Laplace equa-tion combined with the momentum equation of the flow. Numerical method is used tosolve the equation to get the variation of the height of the free surface, the curvature, and the velocity along the flow path. Meanwhile,3-dimensional simulation of the forced flowin the channel is studied. The simulation finds that flow separation could occur after theflow pass though the lowest point of the free surface, which adds pressure loss to the flow.The drop tower experimental data are used to verify the theory as well as the simulation.
     (5) The experimental study of the forced flow in the channel. In the drop towerexperiments, the flow is classified as subcritical, supercritical, critical and super highspeed flow according to the development of the free surface. The flow type is identifiedby the convergence of the surface contour and the changing of the lowest point of thesurface; the experiments also found that the flow was influenced by both the oscillationof the flow and the flow development. Furthermore, the experiments also studied theimpact of the bubble injection on the flow. It showed that the bubble can stabilize theflow. The movement of the bubbles are influenced by the position of injection.
     This work develop a deep study on the flow of the propellant under microgravity byanalytic and experimental methods. It explores new areas of the study of the flow theoryand provides more methods for the study itself. This work could be used in the design ofthe refueling tank for the propellant management device.
引文
[1]陈小前,袁建平,姚雯,等.航天器在轨服务技术[M].北京:中国宇航出版社,2009.
    [2] Jaekle J. Propellant Management Device Conceptual Design and Analy-sis:Vanes [C]. In AIAA/SAE/ASME/ASEE27th Joint Propulsion Conference.1991.
    [3] Dominick S, Driscoll S. Fluid acquisition and resupply experiment (FARE l) flightresults [C]. In29th AIAA/ASME/SAE/ASEE Joint Propulsion Conference andExhibit. Monterey,CA,1993.
    [4] Dominick S, Tegart J. Orbital test results of a vaned liquid acquisition device [C].In30th AIAA/ASME/SAE/ASEE Joint Propulsion Conference. Indianapolis, IN,1994.
    [5] Chato D J, Martin T A. Vented Tank Resupply Experiment flight Test Results [C].In NASA Technical Memorandum.1997.
    [6] Fisher M F. Propellant Management in Booster and Upper-Stage Propulsion Sys-tems [J]. Journal of Propulsion and Power.1998,14:649–656.
    [7] Jaekle J. Propellant Management Device Conceptual Design and Analy-sis:Sponges [C]. In AIAA-93-1970. Sacramento, CA,1993.
    [8] Jaekle J. Propellant Management Device Conceptual Design and Analysis:Trapsand troughs [C]. In AIAA-95-2531. Sacramento, CA,1995.
    [9] Jaekle J. Propellant Management Device Conceptual Design and Analy-sis:Galleries [C]. In AIAA/SAE/ASME/ASEE32th Joint Propulsion Conference.Sacramento, CA,1997.
    [10] Netter G, Renner U, Gerstmann J, et al. Design of a new refillable reservoir fora standard surface tension tank [C]. In36th AIAA/ASME/ASEE Joint PropulsionConference and Exhibit. Huntsville, Alabama,2000.
    [11] Concus P, Finn R. On the behavior of a capillary surface in a wedge [J]. Appl.Math. Sci.1969,63(2):292–299.
    [12] Concus P, Finn R, Weislogel M. Measurement of Critical Contact Angle in a Mi-crogravity Space Experiment [J]. Experiments in Fluids.2000,28(3):197–205.
    [13] LenormandR,ZarconeC.Roleofroughnessandedgesduringimbibitioninsquarecapillaries[C].In59thAnnualTechnicalConferenceandExhibitionoftheSocietyof Petroleum Engineers of AIME.1984.
    [14] Ransohoff T, Gauglitz P, Radke C. Snap-off of Gas Bubbles in Smoothly Con-stricted Noncircular Capillaries [J]. AIChE Journal.1987,33(5):753–765.
    [15] Ransohoff T, Radke C. Laminar flow of a wetting liquid along the corners of apredominantly gas-occupied noncircular pore [J]. Colloid and Interface Science.1988,121:392–401.
    [16] DongM,ChatzisI.TheImbibitionandFlowofaWettingLiquidalongtheCornersofaSquareCapillaryTube[J].JournalofColloidandInterfaceScience.1995,172:278–288.
    [17] Weislogel M, Lichter S. Capillary flow in an interior corner [J]. J.Fluid Mech.1998,373:349–378.
    [18] WeislogelMM,CollicottSH.Capillaryre-wettingofvanedcontainers:spacecrafttank rewetting following thrust resettling [J]. AIAA JOURNAL.2004,42(12):2551–2561.
    [19] Weislogel M, Nardin C. Capillary Driven Flow along Interior Corners Formed byPlanarWalls of Varying Wettability [J]. Microgravity sci. technol.2005,3:45–55.
    [20] Weislogel M, Collicott S. Analysis of Tank PMD Rewetting Following Thrust Re-settling[C]//2002-0757A.In40thAIAAAerospaceSciencesMeeting&Exhibit.14-17January2002/Reno, NV,2002.
    [21] WeislogelM.SomeAnalyticalToolsForFluidsManagementInSpace:IsothermalCapillary Flows Along Interior Corners [J]. Adv.Space Res.2003,32:163–170.
    [22] Weislogel M, Yongkang C, Bolleddula D. A better nondimensionalization schemefor slender laminar flows:The Laplacian operator scaling method [J]. PHYSICSOF FLUIDS.2008,20.
    [23] Weislogel M. Capillary Flow in Containers of Polygonal Section Theory and Ex-periment [C]. In NASA/CR.
    [24] Brakke K. Surface Evolver.
    [25] Collicott S. Convergence behavior of Surface Evolver applied to a generic pro-pellant management device [C]. In37th Aerospace Sciences Meeting&Exhibit.Reno, NV,1999.
    [26] Collicott S. Initial experiments on reduced-weight propellant managemen-tvanes[C].In36thAIAA/ASME/ASEEJointPropulsionConferenceandExhibit.Huntsville, AL,2000.
    [27] Collicott S H, Weislogel M. Modeling of the operation of the VTRE propellantmanagementdevice[C].In38thAIAA/ASME/ASEEJointPropulsionConferenceand Exhibit. indianapolis, Indiana,2002.
    [28] Collicott S H, Weislogel M M. Computing Existence and Stability of CapillarySurfaces Using Surface Evolver [J]. AIAA JOURNAL.2003,41(12).
    [29] Yongkang C, Collicott S H. Experimental Study on Capillary Flow in a Vane–WallGap Geometry [J]. AIAA JOURNAL.2005,43(11):2395–2403.
    [30] Yongkang C, Collicott S H. Study of Wetting in an Asymmetrical Vane–Wall Gapin Propellant Tanks [J]. AIAA JOURNAL.2006,44(4):859–867.
    [31] Yongkang C, Weislogel M M, Nardin C L. Capillary-driven flows along roundedinterior corners [J]. J. Fluid Mech.2006,566:235–271.
    [32] Aydelott J. Axial Jet Mixing of Ethanol In Cylindrical Containers During Weight-lessness [R].1979.
    [33] Der J. A Linearized Theory For Unsteady Surface Tension Driven Flow AlongSupercritical Vane-Formed Fillets.1991.
    [34] Symons, Eugene P, Staskus V J. Interface Stability During Liquid Inflow to Par-tially Full, Hemispherical Ended Cylinders in Weightlessness [R].1971.
    [35] Aydelott J. Modeling of Space Vehicle Propellant Mixing [R].1983.
    [36] Hochstein J I, Marchetta J G. Microgravity Geyser and Flowfield Prediction [J].Journal of Propulsion and Power.2008,24(1):104–110.
    [37] Shrader G, Hochstein J. Modeling of Jet-Induced Geyser Formation in Low-Gravity [C]. In31st Aerospace Sciences Meeting&Exhibit. Reno,NV,1993.
    [38] Marchetta J G, Benedetti R H. Three Dimensional Modeling of Jet-Induced Gey-sers in Low Gravity [C]//AIAA2007-955. In45th AIAA Aerospace SciencesMeeting and Exhibit.8-11January2007, Reno, Nevada,2007.
    [39] Jacqmin D. Calculation of Two-Phase Navier–Stokes Flows Using Phase-FieldModeling [J]. Journal of Computational Physics.1999,155:96–127.
    [40] van Foreest A, Dreyer M, Arndt T. Moving Two-FluidSystems Using the Volume-of-Fluid Method and Single-Temperature Approximation [J]. AIAA JOURNAL.2011,49(12):2805–2813.
    [41] JChato D. Parametric Investigation of Liquid Jets in Low Gravity [R].2003.
    [42] Bentz M D. Tank Pressure ControlExperiment-Results of three space flights [J].AIAA Paper.1997.
    [43] MohammadM,Hasan,ChinSL,etal.TankPressureControlExperiment:ThermalPhenomena [R].1996.
    [44] Israelachvili J N. Intermolecular and Surface Forces [M]. London: AcademicPress,2006.
    [45] HochsteinJ,GerhartP,AydelottJ.ComputationalModelingofJetInducedMixingof Cryogenic Propellants in Low-G [C]. In AIAA84–1344.1984.
    [46] Hochstein J. Computational Modeling of Jet Induced Mixing in Cryogenic Propel-lant Tanks in Low-G [D].[S. l.]: The University of Akron,1984.
    [47] Der J, Stevens C. Low-Gravity Bubble Reorientation in Liquid Propellan-t Tanks [C]. In AIAA-87–0622.1987.
    [48] Aydelott J. Numerical Modeling of On-Orbit Propellant Motion Resulting from anImpulsive Acceleration [R].1987.
    [49] BrackbillJ,KotheD,ZemachC.AContinuumMethodforModelingSurfaceTen-sion [J]. Journal of Computational Physics.1992,100: n2.
    [50] Rosendahl U, Ohlhoff A, Dreyer M E. Choked flows in open capillary channels:theory, experiment and computations [J]. J. Fluid Mech.2004,518:187–214.
    [51] Rosendahl U, Ohlhoff A, Dreyer M E, et al. Investigation of Forced Liquid Flowsin Open Capillary Channels [J]. Microgravity Sci. Technol.2002,4:53–58.
    [52] Rosendahl U, Fechtmann C, Dreyer M E. Sounding rocket experiment on cap-illary channel flow [J].17th ESA Symposium on European Rocket and BalloonProgrammes and Related Research.2005,590:551–556.
    [53] Rosendahl U, Dreyer M E. Design and performance of an experiment for the in-vestigation of open capillary channel flows Sounding rocket experiment TEXUS-41[J]. Exp Fluids.2007,42:683–696.
    [54] Rosendahl U, Grah A, Dreyer M E. Convective dominated flows in open capillarychannels [J]. Physics of Fluids.2010,22(5):1–13.
    [55] Grah A, Haake D, Rosendahl U, et al. Stability limits of unsteady open capillarychannel flow [J]. Journal of Fluid Mechanics.2008,600:271–289.
    [56] Grah A, Dreyer M E. Dynamic stability analysis for capillary channel flow: One-dimensional and three-dimensional computations and the equivalent steady statetechnique [J]. PHYSICS OF FLUIDS.2010,22(1).
    [57] Haake D, Rosendahl U, Ohlhoff A, et al. Flow rate limitation in open capillarychannel flows [J]. Interdisciplinary Transport Phenomena in the Space Sciences.2006,1077:443–458.
    [58] HaakeD,KlatteJ,GrahA,etal.FlowRateLimitationofSteadyConvectiveDom-inatedOpenCapillaryChannelFlowsThroughaGroove[J].MicrogravityScienceand Technology.2010,22:129–138.
    [59] Klatte J, Haake D, Weislogel M M, et al. A fast numerical procedure for steadycapillary flow in open channels [J]. Acta Mechanica.2008,201(1-4):269–276.
    [60] Aydelott J. Effect of Gravity on Self-Pressurization of Spherical Liquid-HydrogenTankage [R].1967.
    [61] KnollR,SmolakG,NunamakerR.WeightlessExperimentswithLiquidHydrogenin Aerobee Sounding Rockets; Uniform Radiant Heat Addition—Flight1[R].1962.
    [62] McArdle J, Dillon R, Altmos D. Weightless Experiments with Liquid Hydrogen inAerobee Sounding Rockets; Uniform Radiant Heat Addition—Flight2[R].1962.
    [63] Lacovic R. Propellant Management Report for the Titan/Centaur TC-5ExtendedMission [R].1977.
    [64] Bentz M D. Tank pressure control in low gravity by jet mixing [R].1993.
    [65] Weislogel M. The Capillary Flow Experiments: Handheld Fluids Experiments forthe International Space Station [C]. In AIAA–2004–1148.2004.
    [66] Weislogel M. Preliminary Results from the Capillary Flow Experiment AboardISS: The Moving Contact Line Boundary Condition [C]. In AIAA–2005–1439.2005.
    [67] Abraham M. Wetting of hydrophobic rough surfaces: To be heterogeneous or notto be [J]. Langmuir.2003,19:8343–8348.
    [68] AdamsonG.PhysicalChemistryofSurface(6thedition)[M].JohnWileyandSons,1997.
    [69] Calvert J B. Surface Tension [M]. University of Denver,2007.
    [70] Baierlein. Thermal Physics [M]. Cambridge: Cambridge University Press,2003.
    [71]包科达.热物理学基础[M].北京:高等教育出版社,2001.
    [72]德鲁迈克尔(吴大诚,等译).表面、界面和胶体[M].北京:化学工业出版社,2005.
    [73] Chow T. Wetting of rough surfaces [J]. Journal of Physics: Condensed Matter.1998,10: L445.
    [74] de Gennes P G. Soft Interfaces [M]. Cambridge: Cambridge University Press,1994.
    [75] Jang J K, C S G, M R. Capillary force in atomic force microscopy [J]. Journal ofApplied Physics.2004,120:1157.
    [76] Robert J G. Contact angle,wetting, and adhesion: A critical review [J]. J. AdhesionSci. Technol.1992,6:1269–1302.
    [77] Lee K S. Kinetics of wetting and spreading by aqueous surfactant solutions [J].Advance in colloid and interface science.2008,144:54–65.
    [78] Dreyer M. Free Surface Flows under Compensated Gravity Conditions [M].Springer,2007.
    [79] Martic G, De Coninck J, Blake T D. Influence of the dynamic contact angle onthe characterization of porous media [J]. Journal of Colloid and Interface Science.2003,263(1):213–216.
    [80] MASON G, MORROWt N R. Capillary Behavior of a Perfectly Wetting Liquidin Irregular Triangular Tubes [J]. Journal of Colloid and lnterface Science.1991,141:262–274.
    [81] Mourik S v, Veldman A, Dreyer M. Simulation of Capillary Flow with a DynamicContact Angle [J]. Microgravity sci. technol.2005,3:87–93.
    [82] Rio E, Daerr A, Andreotti B, et al. Boundary Conditions in the Vicinity of a Dy-namic Contact Line: Experimental Investigation of Viscous Drops Sliding Downan Inclined Plane [J]. Physical Review Letters.2005,94(2):024503.
    [83] Siebold A, Nardin M, Schultz J, et al. Effect of dynamic contact angle on capillaryrise phenomena [J]. Colloids and Surfaces A: Physicochemical and EngineeringAspects.2000,161(1):81–87.
    [84] Washburn E. The Dynamics of Capillary Flow [J]. Physical Review.1921,17(3):273–283.
    [85] Bracke M, De Voeght F, Joos P. The kinetics of wetting: the dynamic contact an-gle Trends in Colloid and Interface Science III [M]. Springer Berlin/Heidelberg,1989:142–149.
    [86] Bracke M, De Voeght F, Joos P. The kinetics of wetting: the dynamic contact an-gle [J]. Progr. Colloid Pol. Sc.1989,79:142–149.
    [87] Bracke M, Devoeght F, Joos P. The Kinetics of Wetting-the Dynamic Contact-Angle [J]. Trends in Colloid and Interface Science Iii.1989,79:142–149.
    [88] Blake T D, Bracke M, Shikhmurzaev Y D. Experimental evidence of nonlocalhydrodynamicinfluenceonthedynamiccontactangle[J].PhysicsofFluids.1999,11(8):13.
    [89] Shenghua X, Caixia W, Zhiwei S, et al. The influence of contact line velocity andacceleration on the dynamic contact angle: An experimental study in microgravi-ty [J]. International Journal of Heat and Mass Transfer.2011,54.
    [90] Gerstmann J, Dreyer M E. The Dynamic Contact Angle in the Presence of a Non-Isothermal Boundary Condition [J]. Microgravity Sci. Technol.2007:96–99.
    [91] Wolf F G, dos Santos L O, Philippi P C. Capillary rise between parallel platesunder dynamic conditions [J]. Journal of Colloid and Interface Science.2010,344:171–179.
    [92] BAYER I, MEGARIDIS C M. Contact angle dynamics in droplets impacting onflat surfaces with different wetting characteristics [J]. J. Fluid Mech.2006,558:415–449.
    [93] Jiang T S, Slattery S. Correlation for dynamic contact angle [J]. Journal of Colloidand Interface Science.1993,69:74–77.
    [94] Seeberg J, Berg J. Dynamic wetting in the flow of capillary number regime [J].Chem.Eng.Sc.1992,47:4455–4464.
    [95] LeGrand J E, Rense A W. Data on Rate of Capillary Rise [J]. Journal of AppliedPhysics.1945,16(12):843–846.
    [96] Levine S, Lowndes J, Watson E, et al. A Theory of Capillary Rise of a Liquid ina Vertical Cylindrical Tube and in a Parallel-Plate Channel: Washburn EquationModified to Account for the Meniscus with Slippage at the Contact Line [J].1980,73:136–151.
    [97] KAUKLER W F. Fluid Oscillation in the Drop Tower [J]. Metallurgical Transac-tions AIME.1988,19:2625–2630.
    [98] DreyerME,DelgadoA,RathHJ.CapillaryRiseofLiquidBetweenParallelPlatesUnder Microgravity [J]. Journal of Colloid and Interface Science.1994,163(1):158–168.
    [99] Dreyer M E, Gerstmann, Stange, et al. Capillary Effects Under Low Gravity, Part1: SurfaceSettling, Capillary Rise, and Critical Velocities [J]. Space Forum.1998,3:87–136.
    [100] Ramé E, Weislogel M M. Gravity effects on capillary flows in sharp corners [J].PHYSICS OF FLUIDS.2009,21.
    [101] Lavi B, Marmur A. The exponential power law: partial wetting kinetics and dy-namic contact angles [J]. Colloids and Surfaces A: Physicochem. Eng. Aspects.2004,250:409–414.
    [102] Stange M, Dreyer M E, Rath H J. Capillary-Driven Flow in Circular CylindricalTubes [J]. Physics of Fluid.2003,15(9):2587–2601.
    [103] Caixia W, Shenghua X, Zhiwei S, et al. Influence of Contact Angle and TubeSize on Capillary-Driven Flow Under Microgravity [J]. AIAA JOURNAL.2009,47(11):2642–2648.
    [104] Weislogel M. Capillary flow in an Interior Corner.1996.
    [105] Mayer F, McGrath J, Steele J W. A class of similarity solutions for the nonlinearthermal conduction problem [J]. J. Phys.1983,16:3393–3400.
    [106] de Lazzer A, Langbein D, Dreyer M, et al. Mean curvature of liquid surfacesin cylindrical containers of arbitrary cross-section [J]. Microgravity Science andTechnology.1996,9(3):208–219.
    [107] Zhou D, Martin B, Orr J M. Hydrocarbon Drainage along Corners of NoncircularCapillaries [J]. Journal of Colloid and Interface Science.1997,187:11–21.
    [108] Randall J T. Microgravity Propellant Tank Geyser Analysis and Prediction.[C]. In39th AIAA Aerospace Sciences Meeting&Exhibit, Reno, NV, AIAA-2011-1132.2001.
    [109]赵学端,廖其奠.粘性流体力学[M].机械工业出版社,1983.
    [110] Ayyaswamy P, Catton I, Edwards D. Capillary flow in trangular grooves [J].J.Appl.Mech.1974:332–336.
    [111] White F. Fluid Mechanics.[M]. McGraw Hill.,1986.
    [112] Mccomas S. Hydrodynamic Entrance Lengths for Ducts of Arbitrary Cross Sec-tion [J]. Journal of Basic Engineering.1967,89:847–850.
    [113] Sparrow E M. Laminar flow in isoscales triangular ducts [J]. AICHE J.1962:599–604.
    [114] Sparrow E M, Lin S H. Flow development in the hydrodynamic entrance regionof tubes and ducts.[J]. Phys. Fluids.1964,7:338–347.
    [115] Salim A, Colin C, Dreyer M. Experimental Investigation of a Bubbly Two-PhaseFlow in an Open Capillary Channel under Microgravity Conditions [J]. Micro-gravity Science and Technology.2010,22(1):87–96.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700