基于高光谱成像技术的水稻稻瘟病诊断关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
精细农业技术体系包括数据获取与数据采集、数据分析与可视化表达、决策分析与制定和精细农田作业的控制实施等主要组成部分,其中植物生长信息的快速获取与生长状况快速诊断,对提高农作物的产量和质量具有重要意义。
     传统的水稻稻瘟病病害检测主要基于分子生物学检测方法,不利于在线实时水稻稻瘟病病害识别。本研究论文主要围绕植物生长信息检测与解析中的病害胁迫信息快速获取和识别关键技术展开,利用光学成像传感装置快速无损获取水稻稻瘟病早期病害信息,通过研究不同的病害检测预报模型,及时监控水稻稻瘟病发生发展状况,构建稻瘟病预测预报系统,为变量施药决策系统的实施提供决策支持。本论文的主要研究内容和结论如下:
     (1)提出了针对稻瘟病病害检测的高光谱特征提取方法,实现了高维光谱数据压缩和特征提取,建立了基于光谱特征的稻瘟病病害识别模型,实现了稻瘟病的精确、无损检测。系统地研究了高斯函数拟合光谱特征提取、植被指数光谱特征提取和小波近似系数光谱特征提取,建立了基于高斯拟合参数、植被指数和小波近似系数的水稻稻瘟病病害分类判别模型。研究表明,3种光谱特征提取方法均可有效提取水稻稻瘟病病害特征光谱信息,其中分析得到的水稻稻瘟病优化识别模型为基于1阶导数光谱高斯拟合参数(峰高、峰宽、峰面积)LDA病害判别模型,该模型在校正集和预测集分类准确率分别为100%和96%。
     (2)应用数字图像处理技术,实现了水稻稻瘟病高光谱图像特征信息获取,建立了基于高光谱图像统计信息的水稻稻瘟病分类判别模型。系统研究了主成分图像特征提取,概率统计滤波图像特征提取和二阶概率统计滤波图像特征提取方法,得到了基于图像特征提取的优化模型——基于主成分图像统计信息的逐步线性判别模型,该模型在校正集判别准确率为98.3%,预测集判别准确率为97.5%。
     (3)应用高光谱和高光谱图像技术,提取了对水稻稻瘟病识别敏感的特征波长,建立了基于特征波长下光谱和图像信息的水稻稻瘟病害识别模型,实现基于图像信息稻瘟病病害识别模型的优化。研究应用主成分分析-载荷系数法得到了基于图像特征波长的病害识别优化模型为基于特征波段长(419nm,502nm,569nm,659nm,675nm,699nm,742nm)图像信息构建PCA-LDA分类模型,校正集判别准确率为92.7%,预测集判别准确率为92.5%。
     (4)首次建立了水稻冠层光谱信息与抗氧化酶活性关系预测模型,实现稻瘟病可见症状显症之前的早期病害识别。应用光谱技术,利用偏最小二乘回归法建立基于冠层光谱信息的抗氧化物酶(POD、SOD、CAT)酶值活性预测模型。基于可见-近红波段(400-1100nm)冠层光谱漫反射信息对POD预测相关系数,校正集为97.57%,预测集为90.79%;SOD预测相关系数,校正集为96.82%,预测集为86.65%;CAT预测相关系数,校正集为85.98%,预测集为66.63%。研究首次建立了基于特征波长光谱信息抗氧化物酶(POD、SOD、CAT)活性预测模型,实现了抗氧化酶活性预测模型的简化。基于特征波长(491nm,545nm,676nm,707nm,741nm)的漫反射值对POD预测相关系数,校正集为83.35%,预测集为75.19%;基于特征波长(526nm,550nm,672nm,697nm,738nm,747nm)的漫反射值对SOD预测相关系数,校正集为69.45%,预测集为54.88%;基于特征波长(491nm,503nm,544nm,673nm,709nm,744nm)漫反射值对CAT的预测相关系数,校正集为66.09%,预测集为46.91%。
     上述研究成果表明基于高光谱图像技术可以实现水稻稻瘟病病害的快速、无损检测,研究为水稻稻瘟病病害的快速检测仪器和传感器开发奠定了理论基础,具有广阔的应用前景。
The system of precision agriculture technology consists of 4 major components, which includes:data acquisition & data collection, data analysis and visualization, decision analysis and decision making, the implementation of agricultural job control. In these key technology areas, rapid acquiring and diagnoses of plant growth information is of great importance to the improvement of crop yield and quality.
     Traditional detection of rice blast disease is mainly based on molecular biology methods, which militate against on-line and real time detection. The main focus of this paper is on the key technology of acquiring and identifying the diseases stress in the plant growth stage. The early rice blast disease information was detected by optical imaging sensing device rapidly and non-destructively, and by the study of different prediction models, the incidence of rice blast development was monitored timely. The blast forecasting system constructed will provide the decision support for the variable spraying system.The main research contents of this paper and conclusions are as follows:
     (1) The high spectral feature extraction method was proposed for rice blast detection, the proposed method realized the high-dimensional spectral data compression and feature extraction. The Blast disease recognition model was constucted based on spectral feature and realized the identification of rice blast nondestructively and pricisely. The gaussian function fitting spectrum feature extraction, vegetation index spectrum feature extraction and wavelet approximate coefficient spectrum feature extraction are evaluated systematically and the classification discrimination model of rice blast based on gaussian fitting parameters, vegetation index and Wavelet approximate coefficient was constructed respectively.Research shows that three spectrum feature extraction method can effectively extract characteristics spectrum information for rice blast detection. The Optimization identification model based on spectral feature obtained by analysis,The classification accuracy of LDA identification model based on gaussian fitting parameters (peak high, peak width and peak area)extracted from 1 st derivative spectra is 100% on correction set and 96% on pridiction set, respectively.
     (2) The rice blast hyperspectral image feature informationwas acquired based on digital image processing techniques.The Blast disease recognition model was constucted based on image feature. Principal component image feature extraction, probability statistics filter image feature extraction and second order probability statistics filter image feature extraction are evaluated systematically.The optimization model based on feature extraction was obtained. The classification accuracy of stepwised LDA identification model based on principal component image statistical information (image mean and variance) is 98.3% on correction set and 97.5% on pridiction set, respectively.
     (3) The feature wavelengths to rice blast recognition sensitive was extracted based on spectrum and high hyperspectral imaging technology. The Blast disease recognition model was constucted based on spectrum and image information of feature wavelengths. The blast disease identification model based on image information was optimized. The optimimation identification of disease based on image feature wavelengths was acquired using principal component analytical-load coefficient method.The classification performance of PCA-LDA discriminant analysis model based on feature wavelengths (419nm,502nm,569nm,659nm,675nm,699nm, 742nm) image information, the classification accuracy is 92.7% on correction set and 92.5% on pridiction set, respectively.
     (4) The canopy spectral information and antioxidant enzymes activity relationship forecast model was set up for the first time.The early disease recognition was realized before the visible symptoms of the disease. The antioxidant enzyme (POD SOD CAT) enzyme activity value prediction model was constructed based on canopy spectral information using PLS regression method. Based on visible-infared band (400-1100 nm) canopy spectral diffuse information, the POD prediction correlation coefficient is 97.5% on calibration set and 90.79% on pridiction set; the SOD prediction correlation coefficient is 96.82% on calibration set and 86.65% on pridiction set. the CAT prediction correlation coefficient is 85.98% on calibration set and 66.63% on pridiction set. The antioxidants enzyme (POD SOD CAT) activity forecasting model based on was set up based feature wavelengths spectrum information for the first time,and simplified the forecasting model. Based on diffuse value of feature wavelengths (491 nm,545 nm,676nm,707 nm,741nm), the POD prediction correlation coefficient is 83.35% on calibration set and 75.19% on pridiction set. Based on diffuse value of feature wavelengths (526nm,550nm,672nm, 697nm,738nm,747nm), the SOD prediction correlation coefficient is 69.45% on calibration set and 54.88% on pridiction set. Based on diffuse value of feature wavelengths (491 nm,503nm,544nm,673nm,709nm,744nm), the SOD prediction correlation coefficient is 66.09% on calibration set and 46.91% on pridiction set.
     The research results indicated that the rice blast disease can identified quickly and non-destructively based on hyper-spectral image technology. For developing the rice blast disease fast detection instruments and sensors, the research laid a theoretical foundation and has the broad application prospect.
引文
Agrios, G. N.,1995. Plant pathology.北京,中国农业出版社.
    Belasque, J. J., et al. (2008). Detection of mechanical and disease stresses in citrus plants by fluorescence spectroscopy. Appl. Opt.,47(11),1922-1926.
    Bravo, C., et al. (2004). Foliar disease detection in the field using optical sensor fusion. Agricultural Engineering International:the CIGR Journal of Scientific Research and Development, VI.
    Brereton, R. G. and G. R. Lloyd (2010). Support vector machines for classification and regression. Analyst,135(2),230-267.
    Brown, J. K. M. and M. S. Hovmoller (2002). Epidemiology-aerial dispersal of pathogens on the global and continental scales and its impact on plant disease. Science,297(5581),537-541.
    Carter, G. A. (1994). Ratios of leaf reflectances in narrow wavebands as indicators of plant stress. International Journal of Remote Sensing,15(3),697-703.
    Carter, G. A. and A. K. Knapp (2001). Leaf optical properties in higher plants:Linking spectral characteristics to stress and chlorophyll concentration. American Journal of Botany,88(4), 677-684.
    Ceccato, P., et al. (2001). Detecting vegetation leaf water content using reflectance in the optical domain. Remote Sensing of Environment 77,22-33.
    Chaerle, L., et al. (2007). Multicolor fluorescence imaging for early detection of the hypersensitive reaction to tobacco mosaic virus. Journal of Plant Physiology,164(3), 253-262.
    Chai, A. L., et al. (2010). Identification of cucumber disease using hyperspectral imaging and discriminate analysis. Spectroscopy and Spectral Analysis,30(5),1357-1361.
    Champagne, C., et al. (2001). Mapping crop water status:Issues of scale in the detection of crop water stress using hyperspectral indices. Proceedings of the 8th International Symposium on Physical Measurements and Signatures in Remote Sensing, Aussois, France.79-84.
    Chauchard, F., et al. (2004). Application of 1s-svm to non-linear phenomena in nir spectroscopy: Development of a robust and portable sensor for acidity prediction in grapes. Chemometrics and Intelligent Laboratory Systems,71(2),141-150.
    Clark, R. N., et al. (1990). High spectral resolution reflectance spectroscopy of minerals. J. Geophys. Res.,95(B8),12653-12680.
    CM, Y. and C. CH (2001). Spectral characteristics of rice plants infested by brown planthoppers. Proc Natl Sci Counc Repub China B.,25(3),180-186.
    Costa, G., et al. (2007). Innovative application of nondestructive techniques for fruit quality and disease diagnosis. Acta Horticulturae,753(1),275-282.
    Curran, P. J., et al. (1995). Exploring the relationship between reflectance red edge and chlorophyll concentration in slash pine leaves. Tree Physiology 15,203-206
    Das, A. K. (2004). Rapid detection of candidatus liberibacter asiaticus, the bacterium associated with citrus huanglongbing (greening) disease using pcr. Current Science,87(9),1183-1185.
    Datt, B. (1999). A new reflectance index for remote sensing of chlorophyll content in higher plants: Tests using eucalyptus leaves. Journal of Plant Physiology 154,30-36.
    Dawson, T. P., et al. (1999). The propagation of foliar biochemical absorption features in forest canopy reflectance:A theoretical analysis. Remote Sensing of Environment,67(2),147-159.
    de Jong, S. M. and F. D. Van de Meer,2006. Remote sensing image analysis:Including the spatial domain.In Bookseries on remote sensing digital image processing, Kluwer Academic Publishers.5:359.
    Delwiche, S. R. and M. S. Kim (Year). Hyperspectral imaging for detection of scab in wheat. Boston, MA, USA,4203.13-20.
    Depczynski, U., et al. (1999). Quantitative analysis of near infrared spectra by wavelet coefficient regression using a genetic algorithm. Chemometrics and Intelligent Laboratory Systems, 47(2),179-187.
    Drozdowska, V., et al. (2002). Natural water fluorescence characteristics based on lidar investigations of a surface water layer polluted by an oil film. Oceanologia 44(3),339-354.
    Dudka, M., et al. (1999). Use of digital imagery to evaluate disease incidence and yield loss caused by sclerotinia stem rot of soybeans. Proceedings of the Fourth International Conference on Precision Agriculture, Pts a and B.1549-1558.
    EC, S. and L. MN,1957. Principles of plant pathology. New York, Ronald Press:581.
    ElMasry, G., et al. (2009). Detecting chilling injury in red delicious apple using hyperspectral imaging and neural networks. Postharvest Biology and Technology,52(1),1-8.
    Ferrao, M. F., et al. (2007). Non-destructive method for determination of hydroxyl value of soybean polyol by 1s-svm using hatr/ft-ir. Analytica Chimica Acta,595(1-2),114-119.
    Fourty, T., et al. (1996). Leaf optical properties with explicit description of its biochemical composition:Direct and inverse problems. Remote Sensing of Environment 56,104-117.
    Gamon, J. A., et al. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment,41(1),35-44.
    Gamon, J. A., et al. (1997). The photochemical reflectance index:An optical indicator of photosynthetic radiation use efficiency across species, functional types and nutrient levels. Oecologia 112,492-501.
    Gamon, J. A. and J. S. Surfus (1999). Assessing leaf pigment content and activity with a reflectometer. New Phytologist 143,105-117.
    Gao, B. C. (1995). Normalized difference water index for remote sensing of vegetation liquid water from space. Proceedings of SPIE,2480,225-236.
    Gaston, E., et al. (2010). Visible-near infrared hyperspectral imaging for the identification and discrimination of brown blotch disease on mushroom (agaricus bisporus) caps. Journal of near Infrared Spectroscopy,18(5),341-353.
    Gitelson, A. A. and M. N. Merzlyak (1994). Spectral reflectance changes associated with autumn senescence of aesculus hippocastanum 1. And acer platanoides 1. Leaves. Spectral features and relation to chlorophyll estimation. Journal of Plant Physiology 143,286-292.
    Gitelson, A. A., et al. (2001). Optical properties and nondestructive estimation of anthocyanin content in plant leaves. Photochemistry and Photobiology 71,38-45.
    Gitelson, A. A., et al. (2002). Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochemistry and Photobiology 75,272-281.
    Goetz, A. F. H. and L. C. Rowan (1981). Geologic remote-sensing. Science,211(4484),781-791.
    Graeff, S., et al. (2006). Identification of powdery mildew (erysiphe graminis sp. Tritici) and take-all disease (gaeumannomyces graminis sp. Tritici) in wheat (triticum aestivum 1.) by means of leaf reflectance measurements. Central European Journal of Biology,1(2),275-288.
    HA, M. and F. BDL,1998. Dispersal of foliar plant pathogens:Mechanisms, gradients and spatial patterns.In The epidemiology of plant pathogens. Dordrecht:Kluwer:138-160.
    Hardisky, M. A., et al. (1983). The influences of soil salinity, growth form, and leaf moisture on the spectral reflectance of spartina alterniflora canopies. Photogrammetric Engineering and Remote Sensing 49,77-83.
    Huang, W., et al. (2007). Identification of yellow rust in wheat using in-situ spectral reflectance measurements and airborne hyperspectral imaging. Precision Agriculture,8(4-5),187-197.
    Huete, A. R., et al. (1997). A comparison of vegetation indices over a global set of tm images for eos-modis. Remote Sensing of Environment,59(3),440-451.
    Hunt Jr., E. R. and B. N. Rock (1989). Detection of changes in leaf water content using near- and middle-infrared reflectances. Remote Sensing of Environment 30,43-54.
    Jackson, R. D., et al. (1983). Discrimination of growth and water stress in wheat by various vegetation indices through clear and turbid atmospheres. Remote Sensing of Environment, 13(3),187-208.
    Jackson, T. L., et al. (2004). Vegetation water content mapping using landsat data derived normalized difference water index for corn and soybeans. Remote Sensing of Environment 92,475-482
    Kaufman, Y. J. and D. Tanre (1996). Strategy for direct and indirect methods for correcting the aerosol effect on remote sensing: From avhrr to eos-modis. Remote Sensing of Environment, 55(1),65-79.
    Kim, Y., et al. (2011). Hyperspectral image analysis for water stress detection of apple trees. Computers and Electronics in Agriculture,77(2),155-160.
    Kobayashi, T., et al. (2001). Detection of rice panicle blast with multispectral radiometer and the potential of using airborne multispectral scanners. Phytopathology,91(3),316-323.
    Kruse, F. A., et al. The spectral image processing system (sips)-interactive visualization and analysis of imaging spectrometer data. Remote Sensing of Environment,44(2-3),145-163.
    LaCapra, V. C., et al. (1996). Remote sensing of foliar chemistry of inundated rice with imaging spectrometry. Remote Sensing of Environment,55(1),50-58.
    Lenk, S. and C. Buschmann (2006). Distribution of uv-shielding of the epidermis of sun and shade leaves of the beech (fagus sylvatica 1.) as monitored by multi-colour fluorescence imaging. Journal of Plant Physiology,163(12),1273-1283.
    Lenk, S., et al. (2007). Multispectral fluorescence and reflectance imaging at the leaf level and its possible applications. Journal of Experimental Botany,58(4),807-814.
    Li, H., et al. (2009). Support vector machines and its applications in chemistry. Chemometrics and Intelligent Laboratory Systems,95(2),188-198.
    Li, W. B., et al. (2006). Quantitative real-time pcr for detection and identification of candidatus liberibacter species associated with citrus huanglongbing. Journal of Microbiological Methods,66(1),104-115.
    Lillesand, T. M. and R. W. Kiefer,1994. Remote sensing and image interpretation New York, Wiley & Sons.
    Lins, E., et al. (2009). Detection of citrus canker in citrus plants using laser induced fluorescence spectroscopy. Precision Agriculture,10(4),319-330.
    Liu, Z. Y., et al. (2010). Discrimination of rice panicles by hyperspectral reflectance data based on principal component analysis and support vector classification. Journal of Zhejiang University-Science B,11(1),71-78.
    Liu, Z. Y., et al. (2010). Application of neural networks to discriminate fungal infection levels in rice panicles using hyperspectral reflectance and principal components analysis. Computers and Electronics in Agriculture,72(2),99-106.
    Lobell, D. B. and G. P. Asner (2003). Hyperion studies of crop stress in mexico. Proceedings of the 12th Annual JPL Airborne Earth Science Workshop., Pasadena, CA.
    M, D. X., et al. (2001). The production and scavenging of reactive oxygen species in plants. Chin J Biotec,17(2),121-125.
    Marcassa, L., et al. (2006). Fluorescence spectroscopy applied to orange trees. Laser Physics, 16(5),884-888.
    McCord, J. M. and I. Fridovich (1969). Superoxide dismutase. Journal of Biological Chemistry, 244(22),6049-6055.
    Merzlyak, J. R., et al. (1999). Non-destructive optical detection of pigment changes during leaf senescence and fruit ripening. Physiologia Plantarum 106,135-141.
    Minekawa, Y., et al. (2005). Salt-damaged paddy fields analyses using highspatial-resolution hyperspectral imaging system.1GARSS 2005:IEEE International Geoscience and Remote Sensing Symposium, Vols 1-8, Proceedings,2153-2156.
    Moshou, D., et al. (2005). Plant disease detection based on data fusion of hyper-spectral and multi-spectral fluorescence imaging using kohonen maps. Real-Time Imaging,11(2),75-83.
    Nutter, F. J., et al. (1993). Assessing the accuracy, intra-rater repeatability, and inter-rater reliability of disease assessment systems. Phytopathology,33(8),806-812.
    Nutter Jr, F. W. and R. H. Littrell (1996). Relationships between defoliation, canopy reflectance and pod yield in the peanut-late leafspot pathosystem. Crop Protection,15(2),135-142.
    Okamoto, H., et al. (2009). Unified hyperspectral imaging methodology for agricultural sensing using software framework. ISHS Acta Horticulturae,824,49-56.
    Penuelas, J., F. Baret and I. Filella (1995). Semi-empirical indices to assess carotenoids/chlorophyll-a ratio from leaf spectral reflectance. Photosynthetica 31,221-230.
    Penuelas, J., et al. (1995). The reflectance at the 950-970 region as an indicator of plant water status. International Journal of Remote Sensing 14,1887-1905.
    Pontius, J., et al. (2005). Assessing hemlock decline using visible and near-infrared spectroscopy: Indices comparison and algorithm development. Appl. Spectrosc,59(6),836-843.
    Prithiviraj, B., et al. (2004). Volatile metabolite profiling for the discrimination of onion bulbs infected by erwinia carotovora ssp.Carotovora, fusariumoxysporum and botrytis allii. European Journal of Plant Pathology,110(4),371-377.
    Qin, Z. H. and M. H. Zhang (2005). Detection of rice sheath blight for in-season disease management using multispectral remote sensing. International Journal of Applied Earth Observation and Geoinformation,7(2),115-128.
    Rapilly, F. (1979). Yellow rust epidemiology. Annual Review of Phytopathology,17,59-73.
    Ren, H., et al.,2002. Lagrange constraint neural network for fully constrained subpixel classification in hyperspectral imagery.In Wavelet and independent componenet analysis applications ix. H. H. Szu and J. R. Buss.4738:184-190.
    Rouse, J. W.,JR; Haas, R H; Schell, J A; Deeding, D W (1974). Monitoring vegetation systems in the great plains with erts NASA. Goddard Space Flight Center 3d ERTS-1 Symp Vol. 1(Sect. A (SEE N74-30705 20-13)),309-317.
    Ruiz-Ruiz, S., et al. (2009). Detection and quantitation of citrus leaf blotch virus by taqman real-time rt-pcr. Journal of Virological Methods,160(1-2),57-62.
    S, J. and U. SL (2001). Leaf optical properties: A state of thr art. Int.Symp.Phys.Meas.Signat.RemoteSens., Aussois,France,8th.223-232.
    Saponari, M., et al. (2008). Quantitative detection of citrus tristeza virus in citrus and aphids by real-time reverse transcription-pcr (taqman (r)). Journal of Virological Methods,147(1), 43-53.
    Sellers, P. J. (1985). Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing,6(8),1335-1372.
    Serrano, L., et al. (2002). Remote sensing of nitrogen and lignin in mediterranean vegetation from aviris data: Decomposing biochemical from structural signals. Remote Sensing of Environment 81,355-364.
    Shibayama, M., et al. (2009). Continuous monitoring of visible and near-infrared band reflectance from a rice paddy for determining nitrogen uptake using digital cameras. Plant Production Science,12(3),293-306.
    Sims, D. A. and J. A. Gamon (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment 81,337-354.
    Spinelli, F., et al. (2006). Near infrared spectroscopy (nirs):Perspective of fire blight detection in asymptomatic plant material. Proceeding of 10th International Workshop on Fire Blight. Acta Horticulturae,704,87-90.
    Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment,8(2),127-150.
    Vane, G. and A. F. H. Goetz (1993). Terrestrial imaging spectrometry-current status, future-trends. Remote Sensing of Environment,44(2-3),117-126.
    Vogelmann, J. E., et al. (1993). Red edge spectral measurements from sugar maple leaves. International Journal of Remote Sensing 14,1563-1575.
    Waggoner, P. E. and D. E. Aylor (2000). Epidemiology: A science of patterns. Annual Review of Phytopathology,38,71-94.
    Wang, Y. P., et al. (2010). Large-area rice yield forecasting using satellite imageries. International Journal of Applied Earth Observation and Geoinformation,12(1),27-35.
    Woolley, J. T. (1971). Reflectance and transmittance of light by leaves. Plant Physiology,47(5), 656-662.
    Wu, D., et al. (2008). Study on infrared spectroscopy technique for fast measurement of protein content in milk powder based on 1s-svm. Journal of Food Engineering,84(1),124-131.
    Xu, H. R., et al. (2007). Near-infrared spectroscopy in detecting leaf miner damage on tomato leaf. Biosystems Engineering,96(4),447-454.
    YANG, et al.,2007. Changes in spectral characteristics of rice canopy infested with brown planthopper and leaffolder. Madison, WI, ETATS-UNIS, Crop Science Society of America:7.
    Yang, C. M. (2010). Assessment of the severity of bacterial leaf blight in rice using canopy hyperspectral reflectance. Precision Agriculture,11 (1),61-81.
    Yvon, M., et al. (2009). Specific detection and quantification of the phytopathogenic agent 'candidatus phytoplasma prunorum'. Molecular and Cellular Probes,23(5),227-234.
    Zadoks, J. C. and F. Vandenbosch (1994). On the spread of plant-disease-a theory on foci. Annual Review of Phytopathology,32,503-521.
    Zhang, H., et al. (2011). Estimation of rice neck blasts severity using spectral reflectance based on bp-neural network. Acta Physiologiae Plantarum,33(6),2461-2466.
    王新忠and李大朋(2010).基于主成分回归法的稻飞虱百穴虫量冠层光谱检测.安徽农业科学,38(23),12695—12696.
    史永刚,et al.,2003.化学计量学.北京,中国石化出版社.
    何勇and赵春江.,2010.精细农业.杭州,浙江大学出版社.
    李民赞(2008).精细农业特征、现状与发展.农机市场(03),38-41.
    李波,et al.(2009).基于概率神经网络的水稻穗颈瘟高光谱遥感识别初步研究.科技通报,25(6),811-815.
    李波,et al.(2009).基于pca和pnn的水稻病虫害高光谱识别.农业工程学报,25(9),143-148.
    李建东,et al.(2004).高斯拟合法研究肝病变白鼠血清荧光光谱.激光杂志,25(5),95-96.
    李华北,et al.(2000).用小波变换技术提高食醋近红外光谱分析的精度.农业工程学报(06),114-117.
    周旭欣,et al.(2004).用matlab编制用户界面实现曲线拟合.西南民族大学学报(自然科学版),30(2),221-224.
    周建明,et al.(1999).稻瘟病菌侵染水稻的机理.植物生理学通讯,35(1),49-55.
    尚翊(1979).世界农药市场展望.农药工业译丛,1,13-19.
    邱白晶,et al.(2008).水稻白背飞虱虫害的冠层光谱特性与虫量反演.农业机械学报,39(9),92-95.
    胡耀华,et al.(2009).近红外光谱测定猪眼肌肌内脂肪中脂肪酸含量.光谱学与光谱分析(08),2079-2082.
    唐启义,2002.实用统计分析及其dps数据处理系统.北京,科学出版社.
    郭俊先,et al.(2010).近红外光谱用于皮棉杂质含量预测和分类的研究.光谱学与光谱分析(03),649-653.
    陶波and郑筱祥(1998).基于高斯拟合的中轴反光度测量.浙江大学学报(工学版),32(2),155-161.
    章庆禧,1995.电子光学遥感系统的过去、现在和未来.北京,科学出版社.
    童庆禧,et al.,2006.高光谱遥感——原理、技术与应用.北京,高等教育出版社.
    冯雷,et al.(2009).基于多光谱成像技术的水稻叶瘟检测分级方法研究.光谱学与光谱分析,29(10),2730-2733.
    刘占宇,et al.(2007).基于学习矢量量化神经网络的水稻白穗和正常穗的高光谱识别.中国水稻科学,21(6),664-668.
    叶旭君,et al.(2010).基于机载高光谱成像的柑橘产量预测模型研究.光谱学与光谱分析(05),1295-1300.
    吴昊,et al.(2009).水稻白背飞虱虫害的单叶高光谱特征分析.农机化研究,31(4),117-119.
    吴迪,et al.(2009).基于可见-近红外光谱技术的水稻穗颈瘟染病程度分级方法研究.光谱学与光谱分析,29(12),3295-3299.
    吴曙雯,et al.(2002).稻叶瘟对水稻光谱特性的影响研究.上海交通大学学报(农业科学版),20(1),73-80.
    孙桂玲,et al.(2004).谱图曲线中高斯峰的分离算法与计算机实现.南开大学学报(自然科学版),37(4),115-117.
    孙红,et al.(2010).基于光谱技术的水稻稻纵卷叶螟受害区域检测.光谱学与光谱分析,30(4),1080-1083.
    张浩,et al.(2009).水稻穗颈瘟严重度的高光谱反演模型研究.农业现代化研究,30(3),369-372.
    张浩,et al.(2009).基于多光谱图像的水稻穗颈瘟严重度识别研究.湖南农业科学(1),65-68.
    张学工and边肇祺,2004.模式识别.北京,清华大学出版社.
    杨淑莹,2008.模式识别与智能计算——matlab技术实现.北京,电子工业出版社.
    赵南京,et al.(2006).利用特征光谱荧光标记与高斯拟合分析水体中有机物的特性.光谱学与光谱分析,26(5),922-924.
    陈斌,et al.(2007).连续投影算法在近红外光谱校正模型优化中的应用.分析测试学报,26(01),66-69.
    陈刚,et al.(2002).采用多项式拟合进行谱峰定位的误差分析.半导体光电,23(2),132-135.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700