固体推进剂和高分子共混物的微观、介观和宏观多尺度模拟研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着计算机运算能力的不断提高,计算机模拟在材料设计和开发过程中的作用越来越重要,其可以揭示一些无法或很难从实验获得的微观机理和本质。高分子材料的特性是具有多个时间和空间尺度,到目前为止没有一种单一的模拟方法可以跨越多个时间及空间尺度。本文采用分子动力学(MD)、介观动力学(MesoDyn)、耗散粒子动力学(DPD)和有限元分析方法(FEM)对几种高分子材料的结构与性能进行了研究,主要包括:高分子粘结剂/增塑剂、二元高分子共混物和高分子/粘土纳米复合材料。
     固体推进剂和塑性炸药(RBX)的力学性能在很大程度上依赖于配方中高分子粘结剂与增塑剂的相容性。为预测这两种材料的相容性,本文对高分子粘结剂/增塑剂共混物进行了MD和MesoDyn模拟研究,即在COMPASS力场条件下,对端羟基聚丁二烯(HTPB)/癸二酸二辛酯(DOS)和HTPB/硝化甘油(NG)共混物的的密度(ρ)、内聚能密度(CED)、溶度参数(δ)、Flory–Huggins相互作用参数(χ)、玻璃化转变温度(Tg)和力学性能等进行了模拟计算。结果表明通过比较溶度参数差值(Δδ)的大小、分子间径向分布函数g(r)或模拟前后体系密度变化情况均可以推测HTPB/DOS属于相容体系,而HTPB/NG则不然。通过分析温度-体积曲线得到HTPB、HTPB/DOS和HTPB/NG的T_g分别为197.54 K、176.30 K和200.03 K,而HTPB/DOS中只出现一个T_g的情况则进一步表明其为相容体系;另外,通过MD模拟也可以得到共混物的弹性模量(E),体积模量(K)和剪切模量(G),添加DOS增塑剂后使E、K和G显著下降,柔性增强,共混物的力学性能得到有效改善。
     将通过MD模拟得到的Δδ转化为MesoDyn模拟的输入参数,然后采用MesoDyn模拟方法对共混体系的介观形貌与动力学演变过程进行了计算。计算所得的等密度图、有序度参数和自由能密度等也可用于判断共混体系的相容性。MD和MesoDyn模拟结果均表明:HTPB/DOS属于相容体系,而HTPB/NG属于不相容体系,其结论与现有实验结果一致。
     (2)通过MD、MesoDyn和FEM等模拟计算方法研究了聚丙烯(PP)/尼龙1(1PA11)和聚乳酸(PLA)/聚对苯二甲酸乙二醇酯(PET)共混物的相容性、介观结构和力学性能。分别建立了五个质量比例为10/90、30/70、50/50、70/30和90/10的PP/PA11和PLA/PET共混物。通过MD模拟得到纯物质的δ与文献的实验值比较一致,通过比较模拟得到的χ与临界值χc的大小以及C-C原子对分子间g(r)的大小可以确定在90/10比例下PP/PA11共混具有一定相容性,其它比例下的PP/PA11共混物不相容,而PLA在任意比例下均与PET完全互溶。PP/PA11共混物出现两个T_g,每个值分别对应于各自组分的T_g,而PLA/PET共混物只有一个T_g,通过共混物的玻璃化转变过程也可以证明共混体系的相容与否。
     为了进一步探究PP/PA11和PLA/PET共混物的介观结构,将MD模拟的组分间相互作用的χ参数转化为MesoDyn模拟的相互作用参数,采用MesoDyn模拟方法在介观水平研究了共混物的相分离动力学过程,共混物的相容性可以从其介观形态结构得到进一步证实。
     将通过MesoDyn模拟得到的周期性模拟盒子中基于网格的两相浓度分布转化为宏观模拟中FEM分析的输入结构,通过FEM分析得到共混体系的力学性能和局部应力分布情况。结果表明:所有的共混物均为各向同性材料,PP/PA11共混物的模量(E,K和G)随PP含量的增加线性降低,PLA/PET共混物的E和G随PLA含量的增加而增加,K随PLA含量的增加而降低,FEM预测的值与实验测试值吻合较好。
     (3)通过MD、DPD和FEM等计算模拟方法对PA11/季铵盐(Quat)/蒙脱土(MMT)纳米复合材料的微观分子结构、介观结构和宏观力学性能进行了研究。MD模拟得到的平衡构象表明:Quat分子平铺在MMT上,几乎覆盖了MMT的整个表面,高分子链塌缩在季铵盐分子上,没有直接与MMT表面相接触。Quat与MMT之间存在强烈的相互作用,Quat中的极性基团通过强烈的静电吸引保持在邻近的MMT层上,Quat中的非极性基团通过范德华(vdW)力与高分子链发生作用,Quat与PA11之间的结合能也比较强。
     通过将MD模拟得到的非键相互作用能转化为介观模拟中的相互作用参数,采用DPD模拟方法研究了共混物的介观形态结构,DPD模拟得到的介观形貌结构与MD模拟结果一致。将通过DPD模拟得到的介观结构作为宏观模拟中FEM分析的输入结构,采用FEM方法预测了共混物的力学性能。FEM分析结果表明,共混物为各向异性材料,在z方向的模量值与实验值一致,且比垂直与z方向(x和y方向)的低很多。
With the improvement of computational power, computer simulations have played anincreasingly important role in materials modeling and subsequent technology development, asthey can reveal the microscopic pictures of underlying mechanisms that are otherwiseexperimentally inaccessible or difficult to obtain. Polymersarecharacterizedby theirabroadrangeof lengthandtime scales, which, up till now, cannot be encompassed by anysinglemodel or simulation algorithm currently available. In this paper, the moleculardynamics(MD), dissipative particle dynamics (DPD), mesoscopic dynamics (MesoDyn)simulation and the finite element (FEM) methodare employed toinvestigate the relationshipbetween structures and properties in several polymer systems includingpolymerbinder/plasticizer blends, binary polymer/polymer blends and polymer-clay nanocompositessystem.
     (1) It has been found that the mechanical properties of solid propellants and plasticbonded explosives (PBX) are largely decided by the compatibility of the polymer binder andplasticizer used in theirs formulation. To predict this compatibility, MD and MesoDynsimulations are conducted in this paper to calculate the density (ρ), cohesive energy density(CED), solubility parameters (δ), the Flory–Huggins interaction parameters,χ, bindingenergies, the glass transition temperature (T_g) and the mechanical properties ofhydroxyl-terminated Polybutadiene (HTPB)/Dioctyl sebacate (DOS) blend and HTPB/nitroglycerine (NG) blend in the COMPASS force field. Then by comparing differentsolubility parameters value (Δδ), the radial distribution functions g(r), or the change in density,it can be all found that HTPB/DOS is a miscibility system while HTPB and NG are not. Inaddition, by analyzing the volume–temperature curve, this paper determines the T_gof HTPB,HTPB/DOS and HTPB/NG, which are 197.54, 176.30 and 200.03 K respectively. The factthat HTPB/DOS has only one glass transition indicates it is a miscible system. Meanwhile,MD simulations can also be used to predict the mechanicalproperties of blends such as tensilemodulus (E), bulk modulus (K) and shear modulus (G) of blends, which will greatly decreasewith the adding of DOS.
     In the following process,Δδcalculated through MD simulation serves as the inputparameters of MesoDyn, which is then used to simulate the mesoscale morphologies of blendsand the dynamic evolution process of the system. The obtained isosurface of the density fields,order parameters and free energy density can be further used to predict the compatibility ofthe blend system. The results of both simulations prove that HTPB/DOS is miscibleHTPB/NG is not, which is consistent with the existing experimental observations.
     (2) The miscibility, mesoscopic structures and their mechanical properties ofPolypropylene (PP)/Polyamide-11 (PA11) and Polylactide (PLA)/Polyethylene terephthalate(PET) blends are investigated by MD, MesoDyn simulation and FEM method. Five PP/PA11and PLA/PET blends (with the weight ratio at 10/90, 30/70, 50/50, 70/30 and 90/10) areexamined. Theδvalues of pure polymer obtained by using the MD simulation are in goodagreement with the reference data. By comparing the calculatedχwith the critical valuesχcand comparing the different heights of g(r) of the inter-molecular atomic pairs, it can be foundthat PP/PA11 blend is miscible only when its composition is 90/10, while PLA is completelymiscible with PET over the entire composition range. For each PP/PA11 blend system, two T_gcan be detected, each of which indicates the frozen temperature of one component, while onlyone T_gis observed for PLA/PET blends. This also can indicate the miscibility/immiscibility ofstudied blend system.
     In order to further study the mesoscopic structures of PP/PA11 and PLA/PET blends, MesoDyn is applied to simulate the phase separation dynamics of the blends at themesoscopic level.χparameters calculated by MD simulation between polymer–polymer areconverted into the interaction MesoDyn parameters. The miscibility/immiscibility is provedby the mesoscopic morphologies of polymer blends.
     The distribution of the grid-based concentration density of thetwo phases in the periodicsimulation cell,which are calculated from MesoDyn simulations, are converted into theinputmorphology of FEM method, which is then used to obtain the mechanical propertiesofoverall modulus and local stress distribution.The result indicates that all blends have overallisotropic behavior; in the case of PP/PA11 blends, the increase of PP will lead to the lineardecrease of the modulus (E, G and K), while in the case PLA/PET blends, the increase of PLAwill result in the rise of E and G and the fall of K. which is in consistent with the existingexperimental conclusion.
     (3) The atomistic structures, mesoscopic structures and mechanical properties ofPA11/Quat/Montmorillonite (MMT)nanocomposites system are investigated by MD,DPDsimulationand FEM method. The equilibrium conformationsobtained by MD show that theQuat chains are flattenonto the MMT, covering almost the entire surface, and the polymermolecules collapse onto the Quat themselves rather than directly on the MMT surface. Strongfavorableinteractions between MMT and the surfactants exist; the polar groups of the Quat aremaintainedin the proximity of the MMT layer by virtue of a strongelectrostaticattraction.While the apolar groups of the Quat positively interact, mainlyvia vdW forces, withthe polymer chain, and the bindingenergy between PA11 and the Quat is favorable.
     The DPDis adopted as the mesoscopic simulation technique,and the interactionparameters of the mesoscopic model areestimated by mapping the corresponding nonbondedinteraction energy values obtainedfrom MD simulations. The predicted structure of polymerblend obtained by DPD is in excellent agreement with MD simulation results. The output ofDPD serves as the input morphology for FEM simulations, which are used to predict theirmechanical properties basedon the simulated morphology.The FEM simulationresults showthe blend has an anisotropic behavior, themodulus along z direction show a good agreement with those of the existing experiments and is lower thanthose perpendiculars to it (xand y).
引文
[1]汪文川.分子模拟——从算法到应用(Understanding Molecular Simulation——FromAlgorithms to Applications) [M].北京:化学工业出版社(Beijing: Chemical IndustryPress), 2002:120-125.
    [2]韩志超,严大东,董建华.聚合物凝聚态的多尺度连贯研究——国家自然科学基金重大项目介绍[J].中国科学基金, 2005, (2): 80-83.
    [3]郭洪霞.高分子粗粒化分子动力学模拟进展[J].高分子通报, 2011, (10):154-163.
    [4]任国武.材料的多尺度模拟[D].上海:复旦大学, 2010.
    [5]Fermeglia M, Pricl S. Multiscale modeling for polymer systems of industrial interest [J].Progress in Organic Coatings, 2007, 58(2-3): 187-199.
    [6]韩志超,严大东,董建华.聚合物凝聚态的多尺度连贯研究[J].中国基础科学, 2003,(06): 25-29.
    [7]Tadmor E B, Ortiz M, Phillips R. Quasicontinuum analysis of defects in solids [J].Philosophical Magazine A, 1996, 73(6): 1529-1563.
    [8]Shilkrot L, Curtin W A, Miller R E. A coupled atomistic/continuum model of defects insolids [J]. Journal of the Mechanics and Physics of Solids, 2002, 50(10): 2085-2106.
    [9]张志峰,马岑睿,高峰,等.战术导弹固体火箭发动机推进剂发展综述[J].飞航导弹, 2007, (4): 53-56.
    [10]任务正,王泽山.火炸药理论与实践[M].北京:中国北方化学工业总公司, 2001:120-135.
    [11]张晓宏,莫红军.下一代战术导弹固体推进剂研究进展[J].火炸药学报, 2007,30(1): 24-27.
    [12]Cumming A, Leiper G, Robson E. Molecular modelling as a tool to aid the design ofpolymer bonded explosives, F, 1993 [C].
    [13]Dickfl W A, Fiedler R A, Heath M T. Integrated simulation of solid propellant rockets [J].2000, 11: 21-24.
    [14]Dick W A, Heath M T, Fiedler R A, et al. Advanced Simulation of Solid PropellantRockets from First Principles, F, 2005 [C].
    [15]Abou-Rachid H, Lussier L, Ringuette S, et al. On the correlation between miscibility andsolubility properties of energetic plasticizers/polymer blends: modeling and simulation studies[J]. Propellants, Explosives, Pyrotechnics, 2008, 33(4): 301-310.
    [16] Jaidann M, Abou‐Rachid H, Lafleur‐Lambert X, et al. Modeling and measurement ofglass transition temperatures of energetic and inert systems [J]. Polymer Engineering &Science, 2008, 48(6): 1141-50.
    [17]Jaidann M, Lussier L S, Bouamoul A, et al. Effects of interface interactions onmechanical properties in RDX-based PBXs HTPB-DOA: Molecular dynamics simulations [J].Computational Science–ICCS 2009, 2009, 131-140.
    [18]史良伟,武文明,强洪夫,等.端羟基聚丁二烯与2, 6-甲苯二异氰酸酯固化网络弹性力学性质的分子模拟[J].化学学报, 2008, 66(23): 2579-2584.
    [19]李红霞,强洪夫,武文明. HTPB与TDI固化的分子模拟研究[J].固体火箭技术,2008, 31(06):602-606.
    [20]焦东明,杨月诚,强洪夫,等.键合剂对HTPB与Al/Al2O3之间界面作用的分子模拟[J].火炸药学报, 2009, 32(04): 60-63.
    [21]李倩,姚维尚,谭惠民.叠氮粘合剂与硝酸酯溶度参数的分子动力学模拟[J].含能材料, 2007, 15(4): 370-373.
    [22]李倩,姚维尚,谭惠民.分子动力学模拟叠氮热塑性弹性体的杨氏模量及其与硝酸酯的溶度参数[J].火炸药学报, 2007, 30(4): 13-16.
    [23]Li S, Liu Y, Tuo X, et al. Mesoscale dynamic simulation on phase separation betweenplasticizer and binder in NEPE propellants [J]. Polymer, 2008, 49(11): 2775-2780.
    [24]Akkbarzade H, Parsafar G, Bayat Y. Structural stability of nano-sized crystals of HMX: Amolecular dynamics simulation study [J]. Applied Surface Science, 2011, 258(7):2226-2230.
    [25]Alamdari R F, Keshavarz M H. A simple method to predict melting points ofnon-aromatic energetic compounds [J]. Fluid Phase Equilibria, 2010, 292(1-2): 1-6.
    [26]Albenze E J, Thompson M O, Clancy P. Molecular dynamics study of explosivecrystallization of SiGe and boron-doped SiGe alloys [J]. Industrial & Engineering ChemistryResearch, 2006, 45(16): 5628-5639.
    [27]Bedrov D, Smith G D, Sewell T D. Temperature-dependent shear viscosity coefficient ofoctahydro-1, 3, 5, 7-tetranitro-1, 3, 5, 7-tetrazocine (HMX): A molecular dynamics simulationstudy [J]. The Journal of Chemical Physics, 2000, 112(16): 7203-7208.
    [28]Duan X, Wei C, Liu Y, et al. A molecular dynamics simulation of solvent effects on thecrystal morphology of HMX [J]. Journal of Hazardous Materials, 2010, 174(1): 175-180.
    [29]Cawkwell M, Sewell T D, Zheng L, et al. Shock-induced shear bands in an energeticmolecular crystal: Application of shock-front absorbing boundary conditions to moleculardynamics simulations [J]. Physical Review B, 2008, 78(1): 014107-014119.
    [30]Li M, Li F, Shen R, et al. Molecular dynamics study of the structures and properties ofRDX/GAP propellant [J]. Journal of Hazardous Materials, 2010, 8(3): 145-150.
    [31]Li M, Li F, Shen R. Molecular dynamics study of rdx/ammo propellant [J]. ChineseJournal of Chemical Physics, 2011, 24(02): 199-205.
    [32]Davande H, Bedrov D, Smith G D. Thermodynamic, transport, and viscoelastic propertiesof pbx-9501 binder: a molecular dynamics simulations study [J]. Journal of EnergeticMaterials, 2008, 26(2): 115-138.
    [33]Ghule V D, Sarangapani R, Jadhav P M, et al. Theoretical studies on nitrogen richenergetic azoles [J]. Journal of Molecular Modeling, 2011, 17(6): 1507-1515.
    [34]Ghule V, Jadhav P, Patil R,et al.Quantum-chemical studies on hexaazaisowurtzitanes [J].The Journal of Physical Chemistry A, 2009, 114(1): 498-503.
    [35]Xu X J, Xiao H M, Xiao J J, et al. Molecular dynamics simulations for pureε-CL-20 andε-CL-20-based PBXs [J]. The Journal of Physical Chemistry B, 2006, 110(14): 7203-7207.
    [36]Ma X F, Zhu W H, Xiao J J, et al. Molecular dynamics study of the structure andperformance of simple and double bases propellants [J]. Journal of Hazardous Materials, 2008,156(1): 201-207.
    [37]Ma X F, XIAO J J, Huang H, et al. Effects of concentration and temperature onmechanical properties of TATB/PCTFE PBX by molecular dynamics simulation [J]. ActaChimica Sinica-Chinese Edtion, 2005, 63(22): 2037-2041.
    [38]Qiu L, Xiao H M. Molecular dynamics study of binding energies, mechanical properties,and detonation performances of bicyclo-HMX-based PBXs [J]. Journal of HazardousMaterials, 2009, 164(1): 329-336.
    [39]Kohno Y, Hiyoshi R I, Yamaguchi Y,et al.Molecular dynamics studies of the structuralchange in 1, 3-Diamino-2, 4, 6-trinitrobenzene (DATB) in the crystalline state under highpressure [J]. The Journal of Physical Chemistry A, 2009, 113(11): 2551-2560.
    [40]Martinez De Arenaza I, Meaurio E, Coto B, et al. Molecular dynamics modelling for theanalysis and prediction of miscibility in polylactide/polyvinilphenol blends [J]. Polymer, 2010,51(19): 4431-4438.
    [41]Yang H, Li ZS, Qian H J, et al. Molecular dynamics simulation studies of binary blendmiscibility of poly (3-hydroxybutyrate) and poly (ethylene oxide) [J]. Polymer, 2004, 45(2):453-457.
    [42]Gupta J, Nunes C, Vyas S, et al. Prediction of solubility parameters and miscibility ofpharmaceutical compounds by molecular dynamics simulations [J]. The Journal of PhysicalChemistry B, 2011, 115(9): 2014-2023.
    [43]Ahmadi A, Freire J J. Molecular dynamics simulation of miscibility in several polymerblends [J]. Polymer, 2009, 50(20): 4973-4978.
    [44]Gestoso P, Brisson J. Towards the simulation of poly(vinyl phenol)/poly(vinyl methylether) blends by atomistic molecular modelling [J]. Polymer, 2003, 44(8): 2321-2329.
    [45]Moolman F S, Meunier M, Labuschagne P W, et al. Compatibility of polyvinyl alcoholand poly(methyl vinyl ether-co-maleic acid) blends estimated by molecular dynamics [J].Polymer, 2005, 46(16): 6192-6200.
    [46]Groot R D, Madden T J. Dynamic simulation of diblock copolymer microphaseseparation [J]. The Journal of Chemical Physics, 1998, 108(20): 8713-8724.
    [47]Groot R D, Madden T J, Tildesley D J. On the role of hydrodynamic interactions in blockcopolymer microphase separation [J]. The Journal of Chemical Physics, 1999, 110(19):9739-9749.
    [48]Groot R D, Warren P B. Dissipative particle dynamics: Bridging the gap betweenatomistic and mesoscopic simulation [J]. Journal of Chemical Physics, 1997, 107(11):4423-4435.
    [49]Groot R D, Rabone, KL. Mesoscopic simulation of cell membrane damage, morphologychange and rupture by nonionic surfactants [J]. Biophysical Journal, 2001, 81(2): 725-736.
    [50]Qian HJ, Lu ZY, Chen LJ, et al. Computer simulation of cyclic block copolymermicrophase separation [J]. Macromolecules, 2005, 38(4): 1395-1401.
    [51]Gai J G, Li H L, Schrauwen C, et al. Dissipative particle dynamics study on the phasemorphologies of the ultrahigh molecular weight polyethylene/polypropylene/poly(ethyleneglycol) blends [J]. Polymer, 2009, 50(1): 336-346.
    [52]Huang C I, Chiou Y J, Lan Y K. Phase behavior of an amphiphilic molecule in thepresence of two solvents by dissipative particle dynamics [J]. Polymer, 2007, 48(3): 877-886.
    [53]Rodr Guez-Hidalgo MDR, Soto-Figueroa C, Mart Nez-Magad N JM. Mesoscopic studyof cylindrical phases of poly(styrene)-poly(isoprene) copolymer: Order–order phasetransitions by temperature control [J]. Polymer, 2009, 50(19): 4596-4601.
    [54]Soto-Figueroa C, Rodr Guez-Hidalgo MDR, Mart Nez-Magad N JM. Molecularsimulation of diblock copolymers; morphology and mechanical properties [J]. Polymer, 2005,46(18): 7485-7493.
    [55]Soto-Figueroa C, Rodr Guez-Hidalgo MDR, Mart Nez-Magad N JM. Mesoscopicsimulation of metastable microphases in the order–order transition from gyroid-to-lamellarstates of PS–PI diblock copolymer [J]. Chemical Physics Letters, 2008, 460(4–6): 507-511.
    [56]Soto-Figueroa C, Rodr Guez-Hidalgo MDR, Vicente L. Mesoscopic simulation ofmicellar-shuttle pathway of PB-PEO copolymer in a water/[BMIM][PF6] system [J].Chemical Physics Letters, 2012,531(2):155-159.
    [57]Soto-Figueroa C, Vicente L, Mart Nez-Magad N JM, et al. Mesoscopic simulation ofasymmetric-copolymer/homopolymer blends: Microphase morphological modification byhomopolymer chains solubilization [J]. Polymer, 2007, 48(13): 3902-3911.
    [58]Spyriouni T, Vergelati C. A molecular modeling study of binary blend compatibility ofpolyamide 6 and poly(vinyl acetate) with different degrees of hydrolysis: An atomistic andmesoscopic approach [J]. Macromolecules, 2001, 34(15): 5306-5316.
    [59]Jawalkar S S, Raju K, Halligudi S B, etal. Molecular modeling simulations to predictcompatibility of poly(vinyl alcohol) and chitosan blends: A comparison with experiments [J].Journal of Physical Chemistry B, 2007, 111(10): 2431-2439.
    [60]Jawalkar S S, Nataraj S K, Raghu A V, et al. Molecular dynamics simulations on theblends of poly(vinyl pyrrolidone) and poly(bisphenol-A-ether sulfone) [J]. Journal of AppliedPolymer Science, 2008, 108(6): 3572-3576.
    [61]Jawalkar S S, Adoor S G, Sairam M, et al. Molecular modeling on the binary blendcompatibility of poly(vinyl alcohol) and poly(methyl methacrylate): An atomistic simulationand thermodynamic approach [J]. Journal of Physical Chemistry B, 2005, 109(32):15611-15620.
    [62]Jawalkar S S, Aminabhavi T M. Molecular modeling simulations and thermodynamicapproaches to investigate compatibility/incompatibility of poly(l-lactide) and poly(vinylalcohol) blends [J]. Polymer, 2006, 47(23): 8061-8071.
    [63]Mu D, Li J Q, Zhou Y H. Modeling and analysis of the compatibility ofpolystyrene/poly(methyl methacrylate) blends with four inducing effects [J]. Journal ofMolecular Modeling, 2011, 17(3): 607-619.
    [64]Mu D, Huang XR, Lu ZY, et al. Computer simulation study on the compatibility ofpoly(ethylene oxide)/poly(methyl methacrylate) blends [J]. Chemical Physics, 2008, 348(1-3):122-129.
    [65]Yin Q, Luo J H, Zhou G, et al. A molecular simulation of the compatibility of chitosan andpoly(vinyl pyrrolidone) [J]. Molecular Simulation, 2010, 36(3): 186-91.
    [66]Luo Z L, Jiang J W. Molecular dynamics and dissipative particle dynamics simulationsfor the miscibility of poly(ethylene oxide)/poly(vinyl chloride) blends [J]. Polymer, 2010,36(3): 186-191
    [67]Qi Y, Lai YH. Mesoscale modeling of the influence of morphology on the mechanicalproperties of proton exchange membranes [J]. Polymer, 2011, 52(1): 201-210.
    [68]Deng S W, Zhao X Z, Huang Y M, et al. Deformation and fracture ofpolystyrene/polypropylene blends: A simulation study [J]. Polymer, 2011, 52(24): 5681-5694.
    [69]Tanaka G, Goettler L A. Predicting the binding energy for nylon 6, 6/clay nanocompositesby molecular modeling [J]. Polymer, 2002, 43(2): 541-553.
    [70]Fermeglia M, Ferrone M, Pricl S. Computer simulation of nylon-6/organoclaynanocomposites: prediction of the binding energy [J]. Fluid Phase Equilibria, 2003, 212(1):315-329.
    [71]Fermeglia M, Ferrone M, Pricl S. Estimation of the binding energy in random poly(butylene terephtalate-co-thiodiethylene terephtalate) copolyesters/clay nanocomposites viamolecular simulation [J]. Molecular Simulation, 2004, 30(5): 289-300.
    [72]Piscitelli F, Posocco P, Toth R, et al. Sodium montmorillonite silylation: Unexpectedeffect of the aminosilane chain length [J]. Journal of Colloid and Interface Science, 2010,351(1): 108-115.
    [73]Fermeglia M, Cosoli P, Ferrone M, et al. PET/PEN blends of industrial interest as barriermaterials. Part I. Many-scale molecular modeling of PET/PEN blends [J]. Polymer, 2006,47(16): 5979-5989.
    [74]Fermeglia M, Ferrone M, Cosoli P, et al. Many-scale simulation of ABS/PC blends for theautomotive industry [J]. Advances in Science and Technology, 2006, 51(134): 134-139.
    [75]Fermeglia M, Pricl S. Multiscale modeling for polymer systems of industrial interest [J].Progress in Organic Coatings, 2007, 58(2): 187-199.
    [76]Fermeglia M, Pricl S. Multiscale molecular modeling in nanostructured material designand process system engineering [J]. Computers & Chemical Engineering, 2009, 33(10):1701-1710.
    [77]Scocchi G, Posocco P, Fermeglia M, et al. Polymer-clay nanocomposites: a multiscalemolecular modeling approach [J]. The Journal of Physical Chemistry B, 2007, 111(9):2143-2151.
    [78]Scocchi G, Posocco P, Danani A, et al. To the nanoscale, and beyond!: Multiscalemolecular modeling of polymer-clay nanocomposites [J]. Fluid Phase Equilibria, 2007,261(1-2): 366-374.
    [79]Toth R, Coslanich A, Ferrone M, et al. Computer simulation of polypropylene/organoclaynanocomposites: characterization of atomic scale structure and prediction of binding energy[J]. Polymer, 2004, 45(23): 8075-8083.
    [80]Cosoli P, Scocchi G, Pricl S, et al. Many-scale molecular simulation for ABS-MMTnanocomposites: Upgrading of industrial scraps [J]. Microporous and Mesoporous Materials,2008, 107(1-2): 169-179.
    [81]Toth R, Voorn D J, Handgraaf J W, et al. Multiscale computer simulation studies ofwater-based montmorillonite/poly (ethylene oxide) nanocomposites [J]. Macromolecules,2009, 42(21): 8260-8270.
    [82]Cramer C J. Essentials of computational chemistry: theories and models [M]. John Wiley& Sons Inc, 2004: 43-89.
    [83]Levine I N. Quantum chemistry [M]. Prentice Hall, 1991:98-110.
    [84]Leininger M L, Allen W D, Schaefer III H F, et al. Is M ller–Plesset perturbation theory aconvergent ab initio method? [J]. The Journal of Chemical Physics, 2000, 112(21):9213-9212.
    [85]People J A, Head-Gordon M, Raghavachari K. Quadratic configuration interaction. Ageneral technique for determining electron correlation energies [J]. Journal of ChemicalPhysics, 1987, 87(10):5968-5975.
    [86]Bartlett R J. Many-body perturbation theory and coupled cluster theory for electroncorrelation in molecules [J]. Annual Review of Physical Chemistry, 1981, 32(1): 359-401.
    [87]Werner H J, Knowles P J. A second order multiconfiguration SCF procedure withoptimum convergence [J]. The Journal of Chemical Physics, 1985, 82(11): 5053-5064.
    [88]Knowles P J, Werner H J. An efficient second-order MC SCF method for longconfiguration expansions [J]. Chemical Physics Letters, 1985, 115(3): 259-267.
    [89]Pople J A, Segal G A. Approximate self‐consistent molecular orbital theory. ii.calculations with complete neglect of differential overlap [J]. The Journal of ChemicalPhysics, 1965, 43(10): S136.
    [90] Pople J A, Segal G A. Approximate self‐consistent molecular orbital theory. III. CNDOresults for AB and AB systems [J]. The Journal of Chemical Physics, 1966, 44(9): 3289-3296.
    [91] Gordon M, Pople J. Approximate self‐consistent molecular‐orbital theory. VI. INDOcalculated equilibrium geometries [J]. The Journal of Chemical Physics, 1968, 49(10):4643-4650.
    [92]Bingham R C, Dewar M J S, Lo D H. Ground states of molecules. XXV. MINDO/3.Improved version of the MINDO semiempirical SCF-MO method [J]. Journal of theAmerican Chemical Society, 1975, 97(6): 1285-1293.
    [93]Pople J A, San D P, Segal G A. Approximate self‐consistent molecular orbital theory. I.Invariant procedures [J]. The Journal of Chemical Physics, 1965, 43(10): 129-135.
    [94]Dewar M J S, Zoebisch E G, Healy E F, et al. Development and use of quantummechanical molecular models. 76. AM1: a new general purpose quantum mechanicalmolecular model [J]. Journal of the American Chemical Society, 1985, 107(13): 3902-3909.
    [95]Stewart J J P. Optimization of parameters for semiempirical methods I. Method [J].Journal of Computational Chemistry, 1989, 10(2): 209-220.
    [96]Hohenberg P, Kohn W. Inhomogeneous Electron Gas [J]. Physical Review, 1964, 136(3B):B864-B871.
    [97]Kohn W, Sham L J. Self-consistent equations including exchange and correlation effects[J]. Physical Review, 1965, 140(4A): A1133-A1138.
    [98]Jones R, Gunnarsson O. The density functional formalism, its applications and prospects[J]. Reviews of Modern Physics, 1989, 61(3): 689-746.
    [99]Perdew J P, Burke K, Wang Y. Generalized gradient approximation for theexchange-correlation hole of a many-electron system [J]. Physical Review B, 1996, 54(23):16533-16539.
    [100]Pople J A, Beveridge D L. Approximate molecular orbital theory [M]. McGraw-Hill,1970: 54-89
    [101] Becke A D. Density‐functional thermochemistry. III. The role of exact exchange [J].The Journal of Chemical Physics, 1993, 98(7): 5648-5652.
    [102]Filatov M, Thiel W. A new gradient-corrected exchange-correlation density functional[J]. Molecular Physics, 1997, 91(5): 847-860.
    [103]Adamo C, Barone V. Exchange functionals with improved long-range behavior andadiabatic connection methods without adjustable parameters: The mPW and mPW1PWmodels [J]. The Journal of Chemical Physics, 1998, 108(2): 664-675.
    [104]Lee C, Yang W, Parr R G. Development of the colle-salvetti correlation-energy formulainto a functional of the electron density [J]. Physical Review B, 1988, 37(2): 785-789.
    [105]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple [J].Physical Review Letters, 1996, 77(18): 3865-3868.
    [106]Perdew J P, Chevary J, Vosko S, et al. Atoms, molecules, solids, and surfaces:Applications of the generalized gradient approximation for exchange and correlation [J].Physical Review B, 1992, 46(11): 6671-6687.
    [107]Tao J, Perdew J P, Staroverov V N, et al. Climbing the density functional ladder:Nonempirical meta–generalized gradient approximation designed for molecules and solids [J].Physical Review Letters, 2003, 91(14): 6401-6404.
    [108]Landau D P, Binder K. A guide to Monte Carlo simulations in statistical physics [M].Cambridge Univ Pr, 2005: 67-88.
    [109]Leach A R. Molecular modelling: principles and applications [M]. Addison-WesleyLongman Ltd, 2001: 78-90.
    [110]罗美菊.求解随机变分不等式问题的(拟)蒙特卡罗方法及其收敛性分析[D].大连:大连理工大学, 2010.
    [111]Theeodorou D N, Suter U W. Detailed molecular structure of a vinyl polymer glass [J].Macromolecules, 1985, 18(7): 1467-1478.
    [112]吴超富.交联环氧树脂的分子模拟研究[D].长沙:湖南大学, 2007.
    [113]杨小震.分子模拟与高分子材料[M].北京:科学出版社, 2002: 55-89.
    [114]廖宁波.不同材料界面传热的多尺度建模及物理机制研究[D].镇江:江苏大学,2009.
    [115]Weiner S J, Kollman P A, Case D A,et al. A new force field for molecular mechanicalsimulation of nucleic acids and proteins [J]. Journal of the American Chemical Society, 1984,106(3): 765-784.
    [116]Weiner S J, Kollman P A, Nguyen D T, et al. An all atom force field for simulations ofproteins and nucleic acids [J]. Journal of Computational Chemistry, 1986, 7(2): 230-252.
    [117]Brooks B R, Bruccoleri R E, Olafson B D, et al. CHARMM: A program formacromolecular energy, minimization, and dynamics calculations [J]. Journal ofComputational Chemistry, 1983, 4(2): 187-217.
    [118]Maple J, Hwang M J, Stockfisch T P, et al. Derivation of class II force fields. I.Methodology and quantum force field for the alkyl functional group and alkane molecules [J].Journal of Computational Chemistry, 1994, 15(2): 162-182.
    [119]Rappe A, Casewit C, Colwell K, et al. UFF, a full periodic table force field for molecularmechanics and molecular dynamics simulations [J]. Journal of the American ChemicalSociety, 1992, 114(25): 10024-10035.
    [120]Mayo S L, Olafson B D, Goddard W A. DREIDING: a generic force field for molecularsimulations [J]. Journal of Physical Chemistry, 1990, 94(26): 8897-8909.
    [121]Sun H. COMPASS: An ab initio force-field optimized for condensed-phaseapplicationsoverview with details on alkane and benzene compounds [J]. Journal of Physicalchemistry B, 1998, 102(38): 7338-7364.
    [122]Sun H, Ren P, Fried J R. The COMPASS force field: parameterization and validation forphosphazenes [J]. Computational and Theoretical Polymer Science, 1998, 8(1-2): 229-246.
    [123]陈正隆,徐为人,汤立达.分子模拟的理论与实践[M].北京:化学工业出版社,2007: 45-80.
    [124]龚博致.空泡流现象的非平衡分子动力学模拟和机理研究[D].杭州:浙江大学,2008.
    [125]Verlet L. Computer" experiments" on classical fluids. I. Thermodynamical properties ofLennard-Jones molecules [J]. Physical Review, 1967, 159(1): 98-103.
    [126]Hockney R W. Potential calculation and some applications. Langley Research Center,Hampton, Virginia: 1970, 9: 135-211.
    [127]Swope W C, Andersen H C, Berens P H, et al. A computer simulation method for thecalculation of equilibrium constants for the formation of physical clusters of molecules:Application to small water clusters [J]. The Journal of Chemical Physics, 1982, 76(637):637-649.
    [128]Beeman D. Some multistep methods for use in molecular dynamics calculations [J].Journal of Computational Physics, 1976, 20(2): 130-139.
    [129]李有勇,郭森立,王凯旋,等.介观层次上的计算机模拟和应用[J].化学进展,2000, 12(4): 361-375.
    [130]Hoogerbrugge P J, Koelman J M V A. Simulating microscopic hydrodynamicphenomena with dissipative particle dynamics [J]. EPL (Europhysics Letters), 1992, 19(3):155-160.
    [131]Koelman J M V A, Hoogerbrugge P J. Dynamic simulations of hard-sphere suspensionsunder steady shear [J]. EPL (Europhysics Letters), 1993, 21(3): 363-368.
    [132]Espa Ol P, Warren P. Statistical mechanics of dissipative particle dynamics [J]. EPL(Europhysics Letters), 1995, 30(4): 191-196.
    [133]Pagonabarraga I, Frenkel D. Dissipative particle dynamics for interacting systems [J].The Journal of Chemical Physics, 2001, 115(11): 5015-5026.
    [134]Trofimov S Y, Nies E L F, Michels M A J. Thermodynamic consistency in dissipativeparticle dynamics simulations of strongly nonideal liquids and liquid mixtures [J]. The Journalof Chemical Physics, 2002, 117(20): 9383-9394.
    [135]Novik K E, Coveney P V. Finite-difference methods for simulation models incorporatingnonconservative forces [J]. The Journal of Chemical Physics, 1998, 109(18): 7667-7677.
    [136]Pagonabarraga I, Hagen M H J, Frenkel D. Self-consistent dissipative particle dynamicsalgorithm [J]. EPL (Europhysics Letters), 1998, 42(4): 377-382.
    [137]Vattulainen I, Karttunen M, Besold G, et al. Integration schemes for dissipative particledynamics simulations: From softly interacting systems towards hybrid models [J]. TheJournal of Chemical Physics, 2002, 116(10): 3967-3979.
    [138]Nikunen P, Karttunen M, Vattulainen I. How would you integrate the equations ofmotion in dissipative particle dynamics simulations? [J]. Computer Physics Communications,2003, 153(3): 407-423.
    [139]Shardlow T. Splitting for dissipative particle dynamics [J]. SIAM Journal on ScientificComputing, 2003, 24(4): 1267-1282.
    [140]Lowe C P. An alternative approach to dissipative particle dynamics [J]. EPL(Europhysics Letters), 1999, 47(2): 145-151.
    [141]Malevanets A, Kapral R. Mesoscopic model for solvent dynamics [J]. The Journal ofChemical Physics, 1999, 110(17): 8605-8613.
    [142]Molinero V, Laria D, Kapral R. Dynamics of solvation-induced structural transitions inmesoscopic binary clusters [J]. Physical review letters, 2000, 84(3): 455-458.
    [143]Jones J L, Lal M, Ruddock J N, et al. Dynamics of a drop at a liquid/solid interface insimple shear fields: a mesoscopic simulation study [J]. Faraday Discuss, 1999, 112(0):129-142.
    [144]Farrell J E, Valls O T. Spinodal decomposition in a two-dimensional fluid model [J].Physical Review B, 1989, 40(10): 7027-7039.
    [145]Kawakatsu T, Kawasaki K, Furusaka M, et al. Late stage dynamics of phase separationprocesses of binary mixtures containing surfactants [J]. The Journal of Chemical Physics,1993, 99(10): 8200-8217.
    [146]Podzorov V, Chen C, Gershenson M, et al. Mesoscopic, non-equilibrium fluctuations ofinhomogeneous electronic states in manganites [J]. EPL (Europhysics Letters), 2001, 55(3):411-417.
    [147]董仕晋.分子动力学与介观动力学模拟在聚合物多相体系中的应用[D].吉林:吉林大学, 2011.
    [148]Fraaije J, Van Vlimmeren B, Maurits N, et al. The dynamic mean-field densityfunctional method and its application to the mesoscopic dynamics of quenched blockcopolymer melts [J]. The Journal of Chemical Physics, 1997, 106(10): 4260-4270.
    [149]Altevogt P, Evers O A, Fraaije J G E M, et al. The MesoDyn project: software formesoscale chemical engineering [J]. Journal of Molecular Structure: THEOCHEM, 1999,463(1-2): 139-143.
    [150]赵学哲.高分子共混薄膜的分相结构与力学性能研究[D].上海:华东理工大学,2011.
    [151]黄筑平.连续介质力学基础[M].北京:高等教育出版社, 2003: 33-78.
    [152]Kroner E. Allgemeine kontinuumstheorie der versetzungen und eigenspannungen [J].Arch Ration Mech Anal, 1960, 4(1): 273-334.
    [153]Lee E H. Elastic-plastic deformation at finite strains [J]. Journal of Applied Mechanics,1969, 36(1): 1-6.
    [154]Anand L, Gurtin M E. A theory of amorphous solids undergoing large deformations,with application to polymeric glasses [J]. International Journal of Solids and Structures, 2003,40(6): 1465-1487.
    [155]Boyce M C, Weber G, Parks D M. On the kinematics of finite strain plasticity [J].Journal of the Mechanics and Physics of Solids, 1989, 37(5): 647-665.
    [156]Gurtin M E, Anand L. The decomposition F= FeFp, material symmetry, and plasticirrotationality for solids that are isotropic-viscoplastic or amorphous [J]. International Journalof Plasticity, 2005, 21(9): 1686-1719.
    [157]Holzapfel G A. Nonlinear solid mechanics: a continuum approach for engineering [J].Wiley, New York, 2000, 37(4-5): 489-490.
    [158]冯振兴.连续统力学及其数值模拟[M].武汉:武汉大学出版社, 1996:21-56.
    [159]Callen H B. Thermodynamics and an introduction to thermostatistics [M], 2nd Edition.Wiley-VCH, 1985: 340-357
    [160]康国政,阚前华,张娟.大型有限元程序的原理、结构与使用[M].成都:西南交通大学出版社, 2008: 44-67.
    [161]陈梨俊.以耗散粒子动力学为纽带的多尺度贯通模拟方法[D],吉林:吉林大学,2007.
    [162]Edgar K J, Buchanan C M, Debenham J S, et al. Advances in cellulose esterperformance and application [J]. Progress in Polymer Science, 2001, 26(9): 1605-1688.
    [163]Muthiah R, Somasundaran U, Verghese T, et al. Energetics and compatibility ofplasticizers in composite solid propellants [J]. Defence Science Journal, 1989, 39: 147-155.
    [164]Mathieu J, Stucki H. Military high explosives [J]. CHIMIA International Journal forChemistry, 2004, 58(6): 383-389.
    [165]Jawalkar S N, Ramesh K, Radhakrishnan K K, et al. Studies on the effect of plasticiserand addition of toluene diisocyanate at different temperatures in composite propellantformulations [J]. Journal of Hazardous Materials, 2009, 164(2-3): 549-554.
    [166]孙小巧,范晓薇,居学海,等.推进剂组分相容性研究方法[J].化学推进剂与高分子材料, 2007, 5(4): 30-36.
    [167]吉青,乔宝福,赵得禄.高分子的溶度参数理论[J].物理学报, 2007, 56(3):1815-1818.
    [168]Errede L. Polymer swelling. 5. Correlation of relative swelling of poly(styrene-co-divinylbenzene) with the Hildebrand solubility parameter of the swelling liquid[J]. Macromolecules, 1986, 19(6): 1522-1525.
    [169] Mangarj D, Bhatnagar S, Rath S. Cohesive‐energy‐densities of high polymers. Part.III. Estimation of CED by viscosity measurements [J]. Die Makromolekulare Chemie, 1963,67(1): 75-83.
    [170]Fedors R F. A method for estimating both the solubility parameters and molar volumesof liquids [J]. Polymer Engineering & Science, 1974, 14(2): 147-154.
    [171]杨月诚,焦东明,强洪夫,等. HTPB推进剂组分溶度参数的分子模拟研究[J].含能材料, 2008, 16(2): 191-195.
    [172]Berendsen H J C, Postma J P M, Van Gunsteren W F, et al. Molecular dynamics withcoupling to an external bath [J]. The Journal of Chemical Physics, 1984, 81(8): 3684-3690.
    [173]Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature[J]. The Journal of Chemical Physics, 1980, 72(4): 2384-2393.
    [174]Allen M P, Tildesley D J. Computer simulation of liquids [M]. Oxford university press,1989: 45 -67.
    [175]Ding H Q, Karasawa N, Goddard Iii W A. Atomic level simulations on a millionparticles: The cell multipole method for Coulomb and London nonbond interactions [J]. TheJournal of Chemical Physics, 1992, 97(6): 4309-4315.
    [176]Ewald P. Ewald summation [J]. Ann Physik, 1921, 64(1921): 253-371.
    [177]李有勇,侯廷军.对pluronic水溶液介观相分离的理论模拟研究[J].化学学报,2000, 58(4): 402-406.
    [178]Hildebrand J H, Scott R L. The solubility of nonelectrolytes [M]. Reinhold, 1955: 36-90.
    [179]何曼君.高分子物理[M].上海:复旦大学出版社, 1983: 123-150.
    [180]Dunkel M. Calculation of intermolecular forces in organic compounds [J]. Phys Chem,1928, 138: 42-54.
    [181]Krevelen D W. Properties of polymers,3rd Edition [M].Elsevier Science Pub Co, 1990:188-204
    [182]任玉立,陈少镇.关于硝化纤维素浓溶液的研究-体系溶度参数与相溶性[J].火炸药学报, 1981, (1): 9-16.
    [183]Manson J A, Sperling L H. Polymer blends and composites [M]. New York ; London :Plenum Press, 1976: 1-509.
    [184]Weintraub H, Ashburner M, Goodfellow P N, et al. Through the glass lightly [J].Science-AAAS-Weekly Paper Edition, 1995,267(5204): 1609-1618.
    [185]Gibbs J H, Dimarzio E A. Nature of the glass transition and the glassy state [J]. TheJournal of Chemical Physics, 1958, 28(3): 373-383.
    [186]Doi M, Edwards S F. The theory of polymer dynamics [M]. Oxford University Press,USA, 1988: 157-190
    [187]Wood L A. Glass transition temperatures of copolymers [J]. Journal of Polymer Science,1958, 28(117): 319-330.
    [188]Fox T G. Influence of diluent and of copolymer composition on the glass temperature ofa polymer system [J]. Bull Am Phys Soc, 1956, 1:123
    [189]Pochan J, Beatty C, Pochan D. Different approach for the correlation of the Tg of mixedamorphous systems [J]. Polymer, 1979, 20(7): 879-886.
    [190]Gordon M, Taylor J S. Ideal copolymers and the second-order transitions of syntheticrubbers. i. non-crystalline copolymers [J]. Journal of Applied Chemistry, 1952, 2(9): 493-500.
    [191]Kovacs A. Glass transition in amorphous polymers: a phenomenological study [J].Advances in Polymer Science, 1963, 3: 394-508.
    [192]Schneider H A. Glass transition behaviour of compatible polymer blends [J]. Polymer,1989, 30(5): 771-779.
    [193]Kwei T K. The effect of hydrogen bonding on the glass transition temperatures ofpolymer mixtures [J]. Journal of Polymer Science: Polymer Letters Edition, 1984, 22(6):307-313.
    [194] Carbone P, Rapallo A, Ragazzi M, et al. Glass transition temperature and chainflexibility of ethylene‐norbornene copolymers from molecular dynamics simulations [J].Macromolecular Theory and Simulations, 2006, 15(6): 457-468.
    [195]Li D X, Liu B L, Liu Y, et al. Predict the glass transition temperature of glycerol-waterbinary cryoprotectant by molecular dynamic simulation [J]. Cryobiology, 2008, 56(2):114-119.
    [196]Wagner K G, Maus M, Kornherr A, et al. Glass transition temperature of a cationicpolymethacrylate dependent on the plasticizer content–Simulation vs. experiment [J].Chemical Physics Letters, 2005, 406(1): 90-94.
    [197]Giovambattista N, Angell C A, Sciortino F, et al. Glass-transition temperature of water:A simulation study [J]. Physical Review Letters, 2004, 93(4): 7801-7805.
    [198]Dechesne J, Vanderschueren J, Jaminet F. Influence des plastifiants sur la temperature detransition vitreuse de filmogenes gastroresistants enterosolubles [J]. Journal de Pharmacie deBelgique, 1984, 39(6): 341-347.
    [199]Miller A. Glass-transition temperature of water [J]. Science, 1969, 163(3873):1325-1326.
    [200]Orford P, Parker R, Ring S, et al. Effect of water as a diluent on the glass transitionbehaviour of malto-oligosaccharides, amylose and amylopectin [J]. International Journal ofBiological Macromolecules, 1989, 11(2): 91-96.
    [201]Rasmussen D H, Mackenzie A P. Glass transition in amorphous water. Application of themeasurements to problems arising in cryobiology [J]. The Journal of Physical Chemistry,1971, 75(7): 967-973.
    [202]李红霞,强洪夫,武文明.丁羟胶玻璃化温度的模拟计算[J].中国胶粘剂, 2009,18(003): 17-20.
    [203]Jaidann M, Abou-Rachid H, Lafleur-Lambert X, et al. Modeling and measurement ofglass transition temperatures of energetic and inert systems [J]. Polymer Engineering &Science, 2008, 48(6): 1141-1150
    [204]Rigby D, Roe R J. Molecular dynamics simulation of polymer liquid and glass. I. Glasstransition [J]. The Journal of Chemical Physics, 1987, 87(12): 7285-7292.
    [205]Soldera A. Comparison between the glass transition temperatures of the two PMMAtacticities: A molecular dynamics simulation point of view [J]. Macromolecular Symposia,1998, 133: 21-32
    [206]过梅丽,赵得禄.高分子物理[M].北京:北京航空航天出版社, 2005: 39-100.
    [207]Clancy T C, Pütz M, Weinhold J D, et al. Mixing of isotactic and syndiotacticpolypropylenes in the melt [J]. Macromolecules, 2000, 33(25): 9452-9463.
    [208]Akten E D, Mattice W L. Monte Carlo simulation of head-to-head, tail-to-tailpolypropylene and its mixing with polyethylene in the melt [J]. Macromolecules, 2001,34(10): 3389-3395.
    [209]吴家龙.弹性力学(新版) [M].上海:同济大学出版社. 1993: 35-78.
    [210]Swenson R J. Comments on virial theorems for bounded systems [J]. American Journalof Physics, 1983, 51(10): 940-942.
    [211]Ray J R, Rahman A. Statistical ensembles and molecular dynamics studies of anisotropicsolids [J]. The Journal of Chemical Physics, 1984, 80(9): 4423-4428.
    [212]马秀芳.高聚物粘结炸药结构与性能的计算模拟研究[D].南京:南京理工大学,2006.
    [213]邱玲.氮杂环硝胺类高能量密度材料(HEDM)的分子设计[D].南京:南京理工大学, 2007.
    [214]许晓娟.有机笼状高能量密度材料(HEDM)的分子设计和配方设计初探[D].南京:南京理工大学, 2007.
    [215]朱伟.高能体系结构和性能的分子动力学研究[D].南京:南京理工大学, 2008.
    [216]Adem E, Burillo G, Avalos-Borja M, et al. Radiation compatibilization ofpolyamide-6/polypropylene blends, enhanced by the presence of compatibilizing agent [J].Nuclear Instruments & Methods in Physics Research Section B-Beam Interactions withMaterials and Atoms, 2005, 236(1): 295-300.
    [217]Bai S L, G'sell C, Hiver J M, et al. Polypropylene/polyamide 6/polyethylene-octeneelastomer blends. Part 3. Mechanisms of volume dilatation during plastic deformation underuniaxial tension [J]. Polymer, 2005, 46(17): 6437-6446.
    [218]Chapleau N, Favis B D, Carreau P J. Measuring the interfacial tension ofpolyamide/polyethylene and polycarbonate/polypropylene blends: effect of temperature [J].Polymer, 2000, 41(17): 6695-6698.
    [219]Fu S Y, Lauke B, Li R K Y, et al. Effects of PA6,6/PP ratio on the mechanical propertiesof short glass fiber reinforced and rubber-toughened polyamide 6,6/polypropylene blends [J].Composites Part B-Engineering, 2006, 37(2-3): 182-190.
    [220]Jarus D, Hiltner A, Baer E. Barrier properties of polypropylene/polyamide blendsproduced by microlayer coextrusion [J]. Polymer, 2002, 43(8): 2401-2408.
    [221]Jose S, Francis B, Thomas S, et al. Morphology and mechanical properties of polyamide12/polypropylene blends in presence and absence of reactive compatibiliser [J]. Polymer,2006, 47(11): 3874-3888.
    [222]Laurens C, Creton C, Leger L. Adhesion promotion mechanisms at isotacticpolypropylene/polyamide 6 interfaces: Role of the copolymer architecture [J].Macromolecules, 2004, 37(18): 6814-6822.
    [223]Ma G Q, Lou J, Zhang D H, et al. Studies on phase structures and properties ofpolypropylene/polyamide 1010 blends by analysis of microscope photographs [J]. ActaPolymerica Sinica, 2008, 1(1): 18-26.
    [224]Roeder J, Oliveira R V B, Goncalves M C, et al. Polypropylene/polyamide-6 blends:influence of compatibilizing agent on interface domains [J]. Polymer Testing, 2002, 21(7):815-821.
    [225]Wu Y, Yang Y M, Li B Y, et al Reactive blending of modified polypropylene andpolyamide 12: Effects of compatibilizer content on crystallization and blend morphology [J].Journal of Applied Polymer Science, 2006, 100(4): 3187-3192.
    [226]Liang Z Z, Williams H L. Dynamic mechanical properties of polypropylene polyamideblends: Effect of compatibilization [J]. Journal of Applied Polymer Science, 44(4):699-717
    [227]Gusev A. Finite element mapping for spring network representations of the mechanics ofsolids [J]. Physical Review Letters, 2004, 93(3): 4302-4305
    [228]Gusev A A. Numerical identification of the potential of whisker-and platelet-filledpolymers [J]. Macromolecules, 2001, 34(9): 3081-3093.
    [229]Gusev A A, Lusti H R. Rational design of nanocomposites for barrier applications [J].Advanced Materials, 2001, 13(21): 1641-1643.
    [230]Cosoli P, Scocchi G, Pricl S, et al. Many-scale molecular simulation for ABS–MMTnanocomposites: Upgrading of industrial scraps [J]. Microporous and Mesoporous Materials,2008, 107(1-2): 169-179.
    [231]Ceretti E, Zani C, Zerbini I, et al. Comparative assessment of genotoxicity of mineralwater packed in polyethylene terephthalate (PET) and glass bottles [J]. Water Research, 2010,44(5): 1462-1470.
    [232]Gupta V B, Bashir Z. PET fibers, films, and bottles [J]. Handbook of thermoplasticpolyesters Germany: Wiley-VCH, 2002, 1: 317-388.
    [233]Spangenberg J E, Vennemann T W. The stable hydrogen and oxygen isotope variation ofwater stored in polyethylene terephthalate (PET) bottles [J]. Rapid Communications in MassSpectrometry, 2008, 22(5): 672-676.
    [234]Jankauskait V, Macijauskas G, Lygaitis R. Polyethylene terephthalate waste recyclingand application possibilities: a review [J]. Materials Science, 2008, 14(2): 119-127.
    [235]Zamora F, Hakkou K, Munoz-Guerra S, et al. Hydrolytic degradation ofcarbohydrate-based aromatic homo- and co-polyesters analogous to PET and PEI [J]. PolymerDegradation and Stability, 2006, 91(11): 2654-2659.
    [236]Stoclet G, Seguela R, Lefebvre J M. Morphology, thermal behavior and mechanicalproperties of binary blends of compatible biosourced polymers: Polylactide/polyamide11 [J].Polymer, 2011, 52(6): 1417-1425.
    [237]Lehermeier H J, Dorgan J R, Way J D. Gas permeation properties of poly(lactic acid) [J].Journal of Membrane Science, 2001, 190(2): 243-251.
    [238]Auras R, Harte B, Selke S. An overview of polylactides as packaging materials [J].Macromol Biosci, 2004, 4(9): 835-864.
    [239]Chen H P, Pyda M, Cebe P. Non-isothermal crystallization of PET/PLA blends [J].Thermochimica Acta, 2009, 492(1-2): 61-66.
    [240]Pavel D, Shanks R. Molecular dynamics simulation of diffusion of O2and CO2inamorphous poly (ethylene terephthalate) and related aromatic polyesters [J]. Polymer, 2003,44(21): 6713-6724.
    [241]Tsuji H, Sumida K. Poly(L-lactide): v. effects of storage in swelling solvents on physicalproperties and structure of poly(L-lactide) [J]. Journal of Applied Polymer Science, 2001,79(9): 1582-1589.
    [242]Rigbi Z. Prediction of swelling of polymers in 2 and 3 component solvent mixtures [J].Polymer, 1978, 19(10): 1229-1232.
    [243]Dasari A, Yu Z Z, Mai Y W. Transcrystalline regions in the vicinity of nanofillers inpolyamide-6 [J]. Macromolecules, 2007, 40(1): 123-130.
    [244]Modesti M, Lorenzetti A, Besco S, et al. Synergism between flame retardant andmodified layered silicate on thermal stability and fire behaviour of polyurethanenanocomposite foams [J]. Polymer Degradation and Stability, 2008, 93(12): 2166-2171.
    [245]Paul D, Robeson L. Polymer nanotechnology: nanocomposites [J]. Polymer, 2008,49(15): 3187-3204.
    [246]Zhang J, Jiang D D, Wilkie C A. Thermal and flame properties of polyethylene andpolypropylene nanocomposites based on an oligomerically-modified clay [J]. PolymerDegradation and Stability, 2006, 91(2): 298-304.
    [247]漆宗能,尚文宇.聚合物/层状硅酸盐纳米复合材料理论与实践[M].北京:化学工业出版社, 2002: 23-67.
    [248]郑广,高芒来,罗忠新,等.季铵盐改性蒙脱土的微观结构与表面分形特征[J].石油化工高等学校学报, 2011, 24(001): 6-11.
    [249]Zhou Q, Frost R L, He H, et al. Changes in the surfaces of adsorbed para-nitrophenol onHDTMA organoclay—The XRD and TG study [J]. Journal of Colloid and Interface Science,2007, 307(1): 50-55.
    [250]Drits V, Weber F, Salyn A, Tsipursky S I. X-ray identification of one-layer illite varieties:Application to the study of illites around uranium deposits of Canada [J]. Clays and ClayMinerals, 1993, 41: 389-398
    [251]Delley B. From molecules to solids with the DMol approach [J]. The Journal ofChemical Physics, 2000, 113(18):7756-7764.
    [252]Delley B. DMol3 DFT studies: from molecules and molecular environments to surfacesand solids [J]. Computational Materials Science, 2000, 17(2): 122-126.
    [253]Boese A D, Handy N C. A new parametrization of exchange–correlation generalizedgradient approximation functionals [J]. The Journal of Chemical Physics, 2001, 114(13):5497-5503.
    [254]Mulliken R. Electronic population analysis on lcao [single bond] mo molecular wavefunctions. ii. overlap populations, bond orders, and covalent bond energies [J]. The Journal ofChemical Physics, 1955, 23(10): 1841-1846.
    [255]Nos S. Constant temperature molecular dynamics methods [J]. Progress of TheoreticalPhysics Supplement, 1991, (103): 1-46.
    [256]Connolly M L. Computation of molecular volume [J]. Journal of the American ChemicalSociety, 1985, 107(5): 1118-1124.
    [257]Scocchi G. Multiscale simulation of polymer-clay nanocomposites [D]. UniversitàdiTrieste, 2009.
    [258]Kato A U I S N H M. Polymer-clay nanocomposites [J]. Inorganic PolymericNanocomposites and Membranes, 2005, 179: 135-195.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700